
FileMaker for
PHP Developers

Part II

FEATURE

FileMaker is a workgroup productivity toolkit that
was designed to allow knowledge workers to quickly
and easily construct data management systems for

themselves.
In the first part of the FileMaker for PHP Developers

series, I introduced you to the basics of FileMaker de-
velopment in the desktop environment, and explained
how to leverage that development work to easily dis-
play your data on the Web using the FileMaker API for
PHP. I covered the terminology used by the FileMaker
API, introduced the list view and form view layouts,
and explained how having the business logic embedded
in the layout can be a surprisingly efficient approach
in real-world applications. We then went on to look at
views in more detail, and ended with a brief exploration
of where (and why) FileMaker might be deployed to the
greatest effect.

With much of the FileMaker desktop development ba-
sics behind us, we can focus more on the PHP side of
things. This time around, you will learn two different
techniques for updating your database records.

Updating a Single Record
Loyal php|architect readers will recall the view_products.
php script, which was the first of the code listings from
Part One of this series. If you recall, we used this script
to display a searchable and sortable list of products from
the ProductCatalog database, which is included with the
FileMaker API for PHP download bundle in the form of
ProductCatalog.fp7.To make the edit functions accessible
from the demo scripts available to you, I have simply
changed the view link beside each product listed on that
page to an edit link by altering the line:

FileMaker is a popular and powerful
desktop database application toolkit.
FileMaker, Inc. recently released a
beta version of the FileMaker API for
PHP, which allows PHP to more easily
talk to the FileMaker Server Advanced
product. Last month, author Jonathan
Stark introduced some of the concepts
behind the newly hatched API. In the
concluding episode of this two-part
series, he explains how FileMaker
makes editing your database records
a snap.

by Jonathan Stark

PHP: 4.3.x or better

O/S: Any supported by PHP

Other Software: FileMaker Pro and FileMaker Server

Advanced

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/365

38 • php|architect • Volume 6 Issue 3

$page_content .= '<td><a
href="view_product.php?recid='.$record_object-
>getRecordId().'">view</td>';

to read:

$page_content .= '<td><a
href="edit_product.php?recid='.$record_object-
>getRecordId().'">edit</td>';

This new link will navigate to a form view of the clicked
product. However, before we can look at the PHP code
used to update the selected product record, we really
need to take a peek at the corresponding layout in File-
Maker Pro.

Figure 1 shows the FileMaker layout in Browse mode,
which is also known as data entry mode. Notice that
there are radio buttons applied to the Category field
here, and there is also a drop-down list attached to the
Manufacturer field. It’s obvious that editing these value
lists will be a trivial task, even for novice FileMaker Pro
users. The end user need only click the Edit... link at
the bottom of the list to be presented with the Edit
Value List dialog shown in Figure 2. You will see in a
moment that this is very cool, because this simple action
on the part of the user will trickle through to the Web
without any changes being made to the PHP code.

The code that makes up edit_product.php is repro-
duced in full in Listing 1. For the sake of clarity, I have

left out large chunks of form validation and the saniti-
zation of user input. These are important concerns and
relevant here, but a discussion of general form submis-
sion handling is outside the scope of this article. It is
also notable that I left out much of the FileMaker error
checking because it is very repetitive and does not serve
to illustrate my point.

You will notice that the script is divided into four dis-
tinct sections. The first of these, initialization, opens
with the definitions used for database connection. For
reasons of security, any database credentials should be
stored in a separate configuration file above the docu-
ment root and included from there. Other items in the
script initialization section include the require_once()
call representing the FileMaker dependency, global vari-
able initialization, and some code to check the status of
the $_POST array to determine whether the form has yet
to be processed. If the process_form element has been
set, the result of the form processing will be displayed in
the browser above the empty form; otherwise, the empty
form alone will be displayed.

The second section is all about form display. It con-
tains the function show_form(), which takes all its cues
from the specified FileMaker layout. The fields that have
value lists applied in FileMaker will be formatted appro-
priately in HTML, depending on the style type associated
with the underlying field object. Note that everything
here is completely dynamic, so that changes made to the

FIGURE 1

39 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

FileMaker layout or to the values lists on that layout will
be reflected in the HTML page without any modification
of the PHP code.

Thirdly, there is the form processing, which takes place,
unsurprisingly, within the process_form() function. As
with the show_form() function, process_form() bases
all its logic on the FileMaker layout named at the begin-
ning of the function; in this case, the chosen layout is
edit_product. When the time comes for the record to

be updated, PHP queries the layout object for the fields
it contains, using $layout->getFields(). It then loops
through the array of fields and matches the field names
with those in the $_REQUEST superglobal array. On find-
ing a match, it pulls the corresponding data out of the
$_REQUEST array and updates the field value. Finally, it
submits the change to the database. It is important you
should be aware that there is a lot of validation miss-
ing from this area in particular, as mentioned earlier; a
database should never be updated with raw user input in
any real-life application.

With that out of the way, the final section of the script
is dedicated to HTML rendering. Since this is a demo
script, I chose to have the CSS style definitions inline
rather than force an unnecessary listing upon you. Apart
from that and the title, all we have here is a back link to
view_products.php and the HTML content generated by
show_form() and process_form(), if applicable.

Updating a Group of Records
Technically, it would be possible to update a group of re-
cords by simply expanding on the “single record update”
technique, feeding the script an array of record IDs in a
do.. while loop. However, this would be less than opti-
mal from the performance perspective, since a) it would
require a call to the server for every single record and
b) the data is transmitted as XML. A better option would

FIGURE 2

FIGURE 3

40 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

be to use PHP to call a FileMaker script that will do all
the dirty work for you; and that’s precisely why there are
FileMaker scripts.

FileMaker Scripts
FileMaker Pro has a point-and-click scripting environ-
ment called ScriptMaker. This ScriptMaker allows you to
create macros that can execute all sorts of useful com-
mands with a great deal of ease. Normally, scripts are
run by FileMaker Pro users, but they can be triggered
by PHP as well. The coolest part is that you can send
parameters to a FileMaker script via PHP, thereby cus-
tomizing the behavior of that script on the fly. In this
example, I am going to create a PHP page that will al-
low the user to select a Manufacturer, enter a Status
and submit the form. The form will send the Manufac-
turer Name and Status to the Update Status script in
FileMaker, passing all the data elements as arguments.
The FileMaker script will then locate any Product records
with a matching Manufacturer, and update the Status

value accordingly.
Figure 3 is an illustration of the ScriptMaker environ-

ment in FileMaker Pro. Hopefully you can see from the
image that it’s quite simple to use. The area on the left
contains a list of the available commands, and you can
double click on any of these to move them into the text
area on the right, which displays the script itself. Not all
the commands that are made available in ScriptMaker are
compatible with PHP, so I have activated the Indicate
web compatibility checkbox; those of the command op-
tions that can’t be used are grayed out as a result.

Figure 4 is the Update Status script itself. As you can
see, it is very short, and in fact it only took about three
minutes to write. It would have taken me much longer to
write it in PHP and, as I mentioned earlier, the perfor-
mance obtained in this way would have been less than
wonderful.

Let’s break down that Update Status script and see
what it’s made of.

FIGURE 4

41 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

Update Status
The first section in the Update Status script accepts the
incoming script parameter, breaks it into two values,
and stores the values in separate variables:

Set Variable [
 $Manufacturer;
 Value:GetValue(Get(ScriptParameter); 1)
]

Set Variable [
 $Status;
 Value:GetValue(Get(ScriptParameter); 2)
]

Technically speaking, a FileMaker script can only accept
one parameter, and you should access that parameter
value with the Get(ScriptParameter) function. You can
get around the single parameter limitation, as shown
here, by delimiting your values with returns and using
the GetValue() function. GetValue() accepts an EOL-
delimited list of values and a value number as param-
eters, and will return the value indicated by the number.
If you think of the EOL-delimited list as an array, then
GetValue($Values; 2) is equivalent to $Values[’2’] in
PHP.

Now that we have the number of arguments we need to
pass, the next thing is to find the Product records that
are associated with the selected Manufacturer name. We
do this by entering Find mode, inserting the selected
Manufacturer name into the Manufacturer field, and
performing the Find request. While we’re there, notice
that the Product:: prefix in the Set Field step indi-
cates that the Manufacturer field belongs to the Product
table.

Enter Find Mode
Set Field [
 Product::Manufacturer;
 $Manufacturer
]
Perform Find

At this point, we need to check to see whether our request
matched any records. To do so, we open an If block and
make our enquiry using the function Get(FoundCount),
which will return an integer. If the integer it returns
happens to be 0, the If condition will evaluate to FALSE
and the rest of the script will be skipped. If, however,
the number of items is greater than 0, the If condition
will evaluate to TRUE. This will trigger the execution of
the Replace and Commit Records/Requests commands.

If [Get(FoundCount)]
 Replace Field Contents [
 Product::Status;
 Replace with calculation: $Status
]
 Commit Records/Requests
End If

The call to Replace does just as you might expect—name-

ly, it replaces the value in the Status field of the found
Product records with the value in the $Status variable.
Remember this: the $Status variable was populated by
the script parameter that was sent from PHP.

When the Replace routine has completed, the Com-
mit command is executed; this routine is responsible for
writing the changes to the database.

update_status.php
With the FileMaker script in place, we can turn our atten-
tion to the PHP page that will call it: update_status.php,
rendered here as Listing 2. As with the earlier code list-
ing, I have left out much in the way of form validation
and the sanitization of user input, so please tread with
care when it comes to implementing this functionality
yourself. There are five distinct sections in update_sta-
tus.php, some of which match the sections in edit_prod-
uct.php (Listing 1) and some of which are unique to this
script. Thus, as before, we have the initialization stage
making the decision about the nature of the HTML page
content, depending on the stage of processing the script
has reached. We meet, once again, the form display sec-
tion containing the show_form() function, where the
options for the select block in the Manufacturer field
are pulled from the layout in FileMaker. Next up, there’s
something you haven’t seen until now; form validation.
In this instance, this is restricted to checking that the
Manufacturer and Status fields contain some input, and
ensuring that $_POST[’manufacturer’] doesn’t contain an
illegal hyphen or $_POST[’status’] any HTML tags. Again,
this offers very little protection, and you will need tight-
er control over your user input data in any real-life ap-
plication.

Next up is our old friend form processing, which is the
home of the process_form() function. In this particular
case, process_form() is the focus of the example, as it
shows you how to go about sending a form submission
to a FileMaker script. As an added bonus, you can see the
syntax for sending multiple parameters in the line:

$script_param = $_POST['manufacturer']."\n".$_
POST['status'];

Remember, though, that “\n” is not valid syntax on ev-
ery platform. Those of you who are running PHP 5.0.2 or
newer will be able to use the built-in constant PHP_EOL
here, but if you’re stuck with an older version of PHP you
will need to create your own EOL constant to achieve
portability.

Finally, there is the HTML template, which once again
contains inline CSS style definitions, a title, and the ab-
solute basic necessities to frame and decorate this dy-
namically rendered page.

42 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

 1 <?php
 2 /* edit_product.php */
 3
 4 #########################
 5 # INITIALIZATION #
 6 #########################
 7
 8 # For security reasons, these lines should either be included from a
 9 # config file above the document root, or possibly captured during a
 10 # login and stored in the SESSION superglobal array
 11
 12 define('FM_HOST', '127.0.0.1');
 13 define('FM_FILE', 'ProductCatalog.fp7');
 14 define('FM_USER', 'esmith');
 15 define('FM_PASS', 'f!r3crack3r');
 16
 17 # this is the include for the API for PHP
 18 require_once ('FileMaker.php');
 19
 20 # initialize page content var
 21 $page_content = '';
 22
 23 # if this page has been submitted to itself, then process it
 24 if (array_key_exists('process_form', $_POST)) {
 25 $page_content .= process_form();
 26 }
 27
 28 # show the form
 29 $page_content .= show_form();
 30
 31 #########################
 32 # FORM DISPLAY #
 33 #########################
 34
 35 function show_form() {
 36 # grab the record id sent in the url from list page or a post from
this page
 37 $recid = (array_key_exists('recid', $_REQUEST)) ?
htmlspecialchars($_REQUEST['recid']) : '';
 38
 39 # set the layout name for this page
 40 $layout_name = 'edit_product';
 41
 42 # initialize our output var
 43 $html = '';
 44
 45 # instantiate a new FileMaker object
 46 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 47
 48 # get the record by it's id
 49 $record = $fm->getRecordById($layout_name, $recid);
 50
 51 # get the layout as an object
 52 $layout_object = $fm->getLayout($layout_name);
 53
 54 # get the fields from the layout as an array of objects
 55 $field_objects = $layout_object->getFields();
 56
 57 # start compiling our form inputs
 58 $html .= '<form action="'.$_SERVER['PHP_SELF'].'" method="post">';
 59 $html .= "<input type=\"hidden\" name=\"process_form\" value=\
"true\" />\n";
 60 $html .= "<input type=\"hidden\" name=\"recid\" value=\"{$recid}\"
/>\n";
 61 $html .= "<table>\n";
 62 foreach($field_objects as $field_object) {
 63 # grab the actual field name
 64 $field_name = $field_object->getName();
 65
 66 # replace any spaces with underscores so field names match keys
in $_REQUEST array
 67 $field_name_underscore = str_replace(' ', '_', $field_name);
 68
 69 # grab the field value from either the $_REQUEST array, or from
FileMaker
 70 if (array_key_exists($field_name_underscore, $_REQUEST)) {
 71 if (is_array($_REQUEST[$field_name_underscore])) {
 72 # convert checkbox input to return delimited values
 73 $field_value = implode("\n", $_REQUEST[$field_name_
underscore]);
 74 } else {
 75 # grab whatever was sent
 76 $field_value = $_REQUEST[$field_name_underscore];
 77 }
 78 } else {
 79 # this must be the first time through the form because $_
REQUEST array does not exist for this field

LISTING 1
 80 $field_value = $record->getField($field_name);
 81 }
 82
 83 # get the style type, which will tell us if there is a value
list attached to the field, and if so, what style
 84 $field_style_type = $field_object->getStyleType();
 85
 86 # output the form control appropriate to the field style type
 87 switch ($field_style_type) {
 88 case 'POPUPLIST':
 89
 90 # start compiling html for this select control
 91 $html .= "<tr>\n";
 92 $html .= "<th>{$field_name}</th>\n";
 93 $html .= "<td>\n";
 94 $html .= "<select name=\"{$field_name_underscore}\">\n";
 95
 96 # loop through the values from the list attached to this
field
 97 $values = $field_object->getValueList();
 98 foreach($values as $value) {
 99 $selected = ($field_value == $value) ? '
selected="selected"' : '';
100 $html .= "<option{$selected}>{$value}</option>\n";
101 }
102
103 # close the open tags
104 $html .= "</select>\n";
105 $html .= "</td>\n";
106 break;
107
108 case 'CHECKBOX':
109
110 # start compiling html for this checkbox set
111 $html .= "<tr>\n";
112 $html .= "<th>{$field_name}</th>\n";
113 $html .= "<td>\n";
114
115 # loop through the values from the list attached to this
field
116 $values = $field_object->getValueList();
117 foreach($values as $value) {
118 $checked = (strpos($field_value, $value) !== FALSE)
? ' checked="checked"' : '';
119 $html .= "<input type=\"checkbox\" name=\"{$field_
name_underscore}[]\" value=\"{$value}\"{$checked} />{$value}
\n";
120 }
121
122 # close the open tags
123 $html .= "</select>\n";
124 $html .= "</td>\n";
125 break;
126
127 case 'RADIOBUTTONS':
128
129 # start compiling html for this checkbox set
130 $html .= "<tr>\n";
131 $html .= "<th>{$field_name}</th>\n";
132 $html .= "<td>\n";
133
134 # loop through the values from the list attached to this
field
135 $values = $field_object->getValueList();
136 foreach($values as $value) {
137 $checked = (strpos($field_value, $value) !== FALSE)
? ' checked="checked"' : '';
138 $html .= "<input type=\"radio\" name=\"{$field_name_
underscore}\" value=\"{$value}\"{$checked} />{$value}
\n";
139 }
140
141 # close the open tags
142 $html .= "</select>\n";
143 $html .= "</td>\n";
144 break;
145
146 default:
147
148 # the remaining field style types (EDITTEXT and
CALENDAR) are best represented as text inputs
149 $html .= '<tr><th>'.$field_name.'</th><td><input
type="text" name="'.$field_name_underscore.'" value="'.$field_value.'" /></
td></tr>'."\n";
150 break;
151 }
152 }
153
154 # add a submit button and close the open tags

LISTING 1: Continued...

43 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

 1 <?php
 2 /* update_status.php */
 3
 4 #########################
 5 # INITIALIZATION #
 6 #########################
 7
 8 # For security reasons, these lines should either be included from a
 9 # config file above the document root, or possibly captured during a
 10 # login and stored in the SESSION superglobal array
 11 define('FM_HOST', '127.0.0.1');
 12 define('FM_FILE', 'ProductCatalog.fp7');
 13 define('FM_USER', 'esmith');
 14 define('FM_PASS', 'f!r3crack3r');
 15
 16 # include the FileMaker API for PHP
 17 require_once ('FileMaker.php');
 18
 19 # handler for showing, validating, and processing the form
 20 if (array_key_exists('process_form', $_POST)) {
 21 if ($errors = validate_form()) {
 22 $page_content = show_form($errors);
 23 } else {
 24 $page_content = process_form();
 25 }
 26 } else {
 27 $page_content = show_form();
 28 }
 29
 30 #########################
 31 # FORM DISPLAY #
 32 #########################
 33
 34 function show_form($errors = array()) {
 35
 36 # initialize variables
 37 $layout_name = 'update_status';
 38 $post_manufacturer = (array_key_exists('manufacturer', $_POST)) ?
$_POST['manufacturer'] : '';
 39 $post_status = (array_key_exists('status', $_POST)) ? $_
POST['status'] : '';
 40
 41 # instantiate a new FileMaker object
 42 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 43
 44 # create a new layout object
 45 $layout_object = $fm->getLayout($layout_name);
 46 if (FileMaker::isError($layout_object)) {
 47 return ('<p>'.$layout_object->getMessage().' (error '.$layout_
object->code.')</p>');
 48 }
 49
 50 # get the manufacturer value list as an array
 51 $manufacturers = $layout_object->getValueList('Manufacturer');
 52 if (FileMaker::isError($manufacturers)) {
 53 return ('<p>'.$manufacturers->getMessage().' (error
'.$manufacturers->code.')</p>');
 54 }
 55
 56 # sort manufacturers
 57 sort ($manufacturers);
 58
 59 # create the html manufacturer options
 60 $manufacturer_options = "<option>Select a manufacturer...</option>\
n";
 61 $manufacturer_options .= "<option>-</option>\n";
 62 foreach($manufacturers as $manufacturer) {
 63 $selected = ($manufacturer == $post_manufacturer) ? '
selected="selected"' : '';
 64 $manufacturer_options .= "<option{$selected}>{$manufacturer}</
option>\n";
 65 }
 66
 67 # compile errors as html, if any
 68 $error_list = '';
 69 if (count($errors)) {
 70 $error_list .= '<ul class="errors">'."\n";
 71 foreach ($errors as $error) {
 72 $error_list .= "{$error}\n";
 73 }
 74 $error_list .= "";
 75 }
 76
 77 # insert the errors and manufacturer options into a form
 78 $html = <<<HTML
 79 {$error_list}
 80 <form action="{$_SERVER['PHP_SELF']}" method="post">

LISTING 2
 81 <input type="hidden" name="process_form" value="true" />
 82 <select name="manufacturer">
 83 {$manufacturer_options}
 84 </select>
 85 <p><input type="text" name="status" value="{$post_status}" /></p>
 86 <p><input type="submit" name="submit" value="Continue" /></p>
 87 </form>
 88
 89 HTML;
 90 return $html;
 91 }
 92
 93 #########################
 94 # FORM VALIDATION #
 95 #########################
 96
 97 function validate_form() {
 98 $errors = array ();
 99 if ($_POST['manufacturer'] == 'Select a manufacturer...') {
100 $errors[] = 'Select a manufacturer';
101 }
102 if ($_POST['manufacturer'] == '-') {
103 $errors[] = 'Select a manufacturer';
104 }
105 if ($_POST['status'] == '') {
106 $errors[] = 'Status is required';
107 }
108 if ($_POST['status'] != strip_tags($_POST['status'])) {
109 $errors[] = 'HTML tags are not allowed in the Status field';
110 }
111 return $errors;
112 }
113
114 #########################
115 # FORM PROCESSING #
116 #########################
117
118 function process_form() {
119 # instantiate a new FileMaker object
120 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
121
122 # set a couple variables
123 $layout_name = 'update_status';
124 $script_name = 'Update Status';
125 $script_param = $_POST['manufacturer']."\n".$_POST['status'];
126
127 # call the script with the parameter
128 $script_object = $fm->newPerformScriptCommand($layout_name, $script_
name, $script_param);
129
130 # run the script
131 $script_result = $script_object->execute();
132
133 # check for errors
134 if (FileMaker::isError($script_result)) {
135 return ('<p>'.$script_result->getMessage().' (error '.$script_
result->code.')</p>');
136 }
137
138 $html = <<<HTML
139 <p>{$_POST['manufacturer']} records have been updated with {$_
POST['status']} status.</p>
140 <p>Click here to continue...</p>
141
142 HTML;
143 return $html;
144 }
145
146 #########################
147 # HTML RENDERING #
148 #########################
149 ?>
150 <html>
151 <head>
152 <meta http-equiv="Content-type" content="text/html; charset=utf-
8">
153 <title>update_status</title>
154 <style type="text/css" media="screen">
155 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana,
sans-serif; text-align:center;}
156 a, a:visited {color: blue;text-decoration: none;font-weight:
bold;}
157 a:hover, a:active {color: blue;text-decoration:
underline;font-weight: bold;}
158 input, select {width:260px;}
159 #container {width:400px;margin:0 auto;padding:20px;}
160 .errors {background-color:yellow;border:2px solid

LISTING 2: Continued...

44 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

Conclusion
I hope that this article has given you a taste for the
rapid application development that is possible with
FileMaker Pro, FileMaker Server Advanced, and the
FileMaker API for PHP. No, FileMaker is never going
to be an Oracle killer; but I can’t tell you the num-
ber of times I have seen a “temporary” FileMaker so-
lution bridge the gap for someone who was waiting
for a SQL solution that ultimately never materialized.
If you would like to look at the API code, currently at
public beta status, you can download the FileMaker
API for PHP at no cost from http://www.filemakertrial.
com/php/default.aspx simply by filling a short form.
If you would like to play around with this code, you will

need a copy of FileMaker Pro, and you will also need File-
Maker Server Advanced. Neither are available for free, but
you can get limited versions of each by joining the File-
Maker Solutions Alliance (FSA). There is an annual fee for
FSA membership, but the amount of free software offered
to members would more than offset the membership fee.
Please visit http://www.filemaker.com/developers/join_
fsa.html for more information about joining the FSA.

Jonathan Stark is the President of Jonathan Stark Consulting,
an IT consulting firm located in Providence, RI. He consults a
variety of clients from the creative industry including Staples, Turner
Broadcasting, and Ambrosi. He has spoken at the FileMaker Developers
Conference, is a Certified FileMaker Developer, and teaches training
courses in both FileMaker and Web publishing. Jonathan is reluctant
to admit that he began his programming career more than 20 years
ago on a Tandy TRS-80. For more information, please visit http://
jonathanstark.com.

#ff9900;padding:10px 0 10px 30px;text-align:left;}
161 </style>
162 </head>
163 <body>
164 <div id="container">
165 <h2>Update Product Status</h2>
166
167 <!-- BEGIN DYNAMIC CONTENT -->
168
169 <?php echo $page_content; ?>
170
171 <!-- END DYNAMIC CONTENT -->
172
173 </div>
174 </body>
175 </html>

LISTING 2: Continued...

155 $html .= '<tr><th> </th><td><input type="submit" name="submit"
value="save changes" /></td></tr>'."\n";
156 $html .= "</table>\n";
157 $html .= "</form>\n";
158 return $html;
159 }
160
161 #########################
162 # FORM PROCESSING #
163 #########################
164
165 function process_form() {
166 # instantiate a new FileMaker object
167 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
168
169 # set a couple variables
170 $layout_name = 'edit_product';
171 $recid = $_REQUEST['recid'];
172
173 # get the layout as an object
174 $layout_object = $fm->getLayout($layout_name);
175
176 # get the fields from the layout as an array of objects
177 $field_objects = $layout_object->getFields();
178
179 # loop through fields, pulling values from the $_REQUEST array
180 $values = array();
181 foreach($field_objects as $field_object) {
182 $field_name = $field_object->getName();
183 $field_name_underscore = str_replace(' ', '_', $field_name);
184 if (is_array($_REQUEST[$field_name_underscore])) {
185 $values[$field_name] = implode("\n", $_REQUEST[$field_name_
underscore]);
186 } else {
187 $values[$field_name] = $_REQUEST[$field_name_underscore];
188 }
189 }
190
191 # create a new edit command

LISTING 1: Continued...
192 $edit_command = $fm->newEditCommand($layout_name, $recid, $values);
193
194 # execute the edit_command
195 $edit_command->execute();
196
197 $html = '<p>Record has been updated!</p>';
198 return $html;
199 }
200
201 #########################
202 # HTML RENDERING #
203 #########################
204
205 ?>
206 <html>
207 <head>
208 <meta http-equiv="Content-type" content="text/html; charset=utf-
8">
209 <title>edit_product</title>
210 <style type="text/css" media="screen">
211 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana,
sans-serif;}
212 table {width: 600px; border-collapse:collapse; border-color:
#cccccc; margin-bottom: 10px;}
213 th {padding: 3px; background-color: #DDD; text-align: left;}
214 td {padding: 3px;}
215 table, th, td { border:1px solid #cccccc; }
216 a, a:visited {color: blue;text-decoration: none;font-weight:
bold;}
217 a:hover, a:active {color: blue;text-decoration:
underline;font-weight: bold;}
218 </style>
219 </head>
220 <body>
221 <p>view products</p>
222 <?php echo $page_content; ?>
223 </body>
224 </html>

LISTING 1: Continued...

45 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

http://www.filemakertrial.com/php/default.aspx
http://www.filemakertrial.com/php/default.aspx
http://www.filemaker.com/developers/join_fsa.html
http://www.filemaker.com/developers/join_fsa.html

