
FEATURE

If you are not familiar with FileMaker (or have not
checked it out in a while), this article should give
you a good feel for the Web publishing capabilities

of a unique database application that is installed on 12
million computers around the globe.

I have two goals for this article:

• To familiarize you with the FileMaker environ-
ment

• To introduce you to the FileMaker API for PHP

What is FileMaker?
FileMaker is a workgroup productivity toolkit designed to
let knowledge workers quickly and easily construct data
management systems for themselves. It is often referred
to as a database—which it is—but it is more than that.
In order to give you a solid understanding of how and
when to use FileMaker, I am going to run through a real-
world scenario.

Spreadsheet Headaches
ABC Company sells office supplies. Their catalog team is
responsible for publishing product catalogs that are dis-
tributed to the sales force for generating new business.
Every week or so, the catalog team receives spreadsheets
of products that need to be included in upcoming cata-
logs. Information and images for any new products must
be procured from the product manufacturer. Once all the
data has been gathered, it is entered into a page layout
program and printed.The catalog team finds this process
very frustrating, because the spreadsheets are more of-
ten similar than not. Any given item might be going into
multiple catalogs, so any changes to the item price, for
example, must be made in multiple spreadsheets.

Even worse, the team members have to pass documents
back and forth, making sure to keep track of who has the
most recent version. It is all too easy to overwrite the
wrong file, or to find different changes made to two cop-
ies of the same document. Merging these changes is a
tedious manual process.

FileMaker for
PHP Developers
FileMaker is a popular and powerful
desktop database application toolkit.
Recently, FileMaker, Inc. released
a beta version of the FileMaker API
for PHP, which allows PHP to more
easily talk to the FileMaker Server
Advanced product. Learn how to
leverage FileMaker’s strengths to
deliver complex Web applications in
a fraction of the time it would take
using a typical SQL database.

PHP: 4.3.x or better

O/S: Any supported by PHP

Other Software: FileMaker Pro and FileMaker Server

Advanced

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/358

by Jonathan Stark

32 • php|architect • Volume 6 Issue 2

http://forum.phparch.com/358

Clearly, the team needs a database application, but
the IT department is too busy to deal with it. The cata-
log team know exactly what they need, and would be
happy to build it themselves, but none of them have the
time (or desire) to become a programmer.

FileMaker to the Rescue
One of the catalog designers—I’ll call him Dave—does
a little research and stumbles upon FileMaker Pro. He
downloads a trial version and, in a couple of hours, has
all his catalog spreadsheets imported into a single rela-
tional database file. FileMaker Pro has layout and script-
ing tools built right in, and Dave is able to rough out
a series of data entry screens and buttons that perform
automated tasks. It’s nothing fancy, but it works.Within
a week, Dave’s boss Cathy notices that Dave is cranking
out catalogs with time to spare. She asks him what his
secret is, and he shows her his little database applica-
tion. She likes what she sees of the database application
and asks Dave what it would take to roll it out to the five
other catalog designers. He tells her that she just needs
to purchase and install the software. The other designers
can actually log into Dave’s database directly from their
machines using FileMaker Pro’s peer-to-peer sharing fea-
ture. They would all be working in the same database at
the same time—no more emailing spreadsheets back and
forth. It just so happens that it is the end of the fiscal
year and Cathy has some leftover budget burning a hole
in her pocket, so she buys five sets of FileMaker Pro.

This all works out great. All the designers are happy
that the most tedious part of their job has evaporated,
and Cathy is happy because the team’s output and ac-
curacy is at an all time high.

Now Everyone Wants FileMaker
Interestingly, Dave now finds himself spending more
time improving the database than building catalogs.
The team continually suggests tweaks and improvements
that he is only too happy to implement. The application
starts to get quite sophisticated and has lots of embed-
ded business logic. More importantly, it is becoming the
best source of up-to-date product information in the en-
tire organization.Dave’s little database starts to gain no-
toriety. Product managers and salespeople start calling
Dave for custom reports. Cathy’s boss takes notice of the
team’s increased output and is given a tour of the ap-
plication. Before you know it, the marketing department
wants a version. Dave is happy to comply and builds the
features that they need. However, there are quite a few
people in the marketing department, and FileMaker Pro
can only share peer-to-peer with five users.

The IT department is called in and they purchase a
copy of FileMaker Server, which allows up to 250 connec-

tions. The server software is installed and Dave’s little
database is now hosted to anyone in the company that
has FileMaker Pro installed.

At this point, Dave is busier than ever. People are
constantly calling on him for custom reports and new
features. At the same time, there is a growing desire
from the sales force to get access to the database from
outside the office, preferably via the Web. If they could
just browse the product data without having FileMaker
Pro installed, they could stop pestering Dave.

Dave suggests to IT that they upgrade FileMaker Server
to FileMaker Server Advanced (FMSA), because FMSA al-
lows Web connections. IT gets approval and the server is
upgraded. Unfortunately, Dave doesn’t know PHP.

That’s where you come in.

Pause for Perspective
This example is not meant to sell you on FileMaker. It
is meant to illustrate how quickly and thoroughly it can
penetrate a small business or a workgroup. If Dave had
had to build the application with PHP and MySQL, it
would never have been built. Even if he knew how to do
it that way—which he didn’t—it would have taken him
ten times as long to build.This increased development
time is significant. When application development takes
a long time, it is common for the business needs to have
changed in the meantime. The marketplace is not going
to stand still while you are coding. Rapid change is the
hallmark of FileMaker applications. When the business
changes fast, FileMaker is a great option for internal
systems.

When Web development needs to keep pace with these
rapid change requests, it can present a problem. The
only way you can realistically pull it off is to have the
Web site inherit much of the business logic that is built
into the internal system—which brings us neatly to the
FileMaker API for PHP.

The FileMaker API for PHP
You can connect to FileMaker Server Advanced via ODBC,
but to do so with a Web application would be to discard
the main advantage of using FileMaker as your back-
end—namely, the reuse of embedded business logic.
Fortunately, FileMaker, Inc. has released a beta of some-
thing called the FileMaker API for PHP. It is a bundle
of object oriented PHP files that you can install on any
typical Web server running PHP 4.3.x or greater. The
API is a free download, although using it requires File-
Maker Server Advanced and FileMaker Pro, which are not
free.The bundle has one main file called—appropriately
enough—FileMaker.php. If you want to talk to File-
Maker with PHP, you just download the bundle, include
FileMaker.php in the page you are working on, point it

33 • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

at FMSA, and you are off to the races.
As an aside, there is also an installer version of the

API available—but if you are already running PHP, you
are going to want to avoid it because it will override
your php.ini file.

The developers of the API went to great lengths to al-
low access to more than just the data in the database—
they knew that much of the ’data’ in a FileMaker solution
is embedded in the interface itself, so they revealed it
to the API. As a result, connecting to FileMaker using
the API for PHP allows you to run scripts, pull value lists
from your layouts, work with portals of related records,
and so on.

Of course, none of this carries much weight if you
don’t know what portals, scripts, and value lists are, or
how incredibly easy it is to make them. My next step is
to give you some idea.

No Habla FileMaker?
It is beyond the scope of this article to teach you how
to develop FileMaker databases, but understanding the
terminology will be a great start, so let’s begin with a
glossary of FileMaker terms:

• File—A FileMaker file is a single self-contained
binary that is created by the FileMaker Pro
application. FileMaker files are sometimes
referred to simply as ’databases’, and can be
identified by their .fp7 extension. Like a typi-
cal database, they can contain one or more
tables. Unlike a typical database, they can
also contain a UI for interacting with the data
in the tables.

• Window—When you open a FileMaker file with
FileMaker Pro, a window is created. You can
have multiple windows into a given file, but
you must have at least one window open for
the file to be open. When you close the last
window into a file, the file closes.

• Layout—A layout is what you is displayed in
a FileMaker window. A layout is basically a
screen that allows users to search, view, and
edit data in the file. Each layout is linked
to a single underlying table. Each table can
have any number of layouts attached to it.
Layouts come in three flavors: Table view,
which shows your records in a spreadsheet
style format, List view, which shows multiple
records in the same window (think of Google
search results), and Form view, which shows
a single record at a time (think of a typical
Web form).

• Mode—When you are viewing a layout in a
window, you can opt to view it in one of four
modes: Find, Browse, Preview or Layout. A
user would enter Find mode to define search
criteria for records. To create, edit, duplicate,
or delete records, you must be in Browse
mode. Entering Preview mode will show you
how the layout will look if printed. Layout
mode is for creating, editing, duplicating or
deleting the objects on a layout, or the lay-
outs themselves.

• Field—The word ’field’ can be quite confus-
ing in FileMaker because it means two dif-
ferent things depending on the context. If

3� • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

http://www.phparch.com/redir/736/56

 1 <?php
 2
 3 # For security reasons, these lines should either be included from a
 4 # config file above the Web directory, or possibly captured during a
 5 # login and stored in the SESSION superglobal array
 6 define('FM_HOST', '127.0.0.1');
 7 define('FM_FILE', 'ProductCatalog.fp7');
 8 define('FM_USER', 'esmith');
 9 define('FM_PASS', 'f!r3crack3r');
 10
 11 # grab search criteria, if any has been sent
 12 $criteria = (array_key_exists('criteria', $_GET)) ? htmlspecialchars($_
GET['criteria']) : '';
 13
 14 # grab the sort column, if any has been sent
 15 $column = (array_key_exists('column', $_GET)) ? htmlspecialchars($_
GET['column']) : '';
 16
 17 # set the layout name for this page
 18 $layout_name = 'view_products';
 19
 20 # set convenience var
 21 $this_page = $_SERVER['PHP_SELF'];
 22
 23 # initialize our output var
 24 $page_content = '';
 25
 26 # this is the include for the API for PHP
 27 require_once ('FileMaker.php');
 28 # instantiate a new FileMaker object
 29 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 30
 31 # get the layout as an object
 32 $layout_object = $fm->getLayout($layout_name);
 33
 34 # check for errors
 35 if (FileMaker::isError($layout_object)) {
 36 die('<p>'.$record->getMessage().' (error '.$record->code.')</p>');
 37 }
 38
 39 # get the fields as an array of objects
 40 $field_objects = $layout_object->getFields();
 41
 42 # create a new search transaction
 43 $request = $fm->newFindCommand($layout_name);
 44
 45 # indicate that we want an OR search
 46 $request->setLogicalOperator(FILEMAKER_FIND_OR);
 47
 48 # search each field on the layout for the criteria, if any
 49 #
 50 # NOTE: I am using the getResult method of the field object to check
 51 # the data type of the field. Even in a find request, data type
 52 # formatting must be respected. If we didn't check for this, we
 53 # would get an error if we searched a date field for the value
 54 # 'Erica', for example
 55 foreach($field_objects as $field_object) {
 56 $field_name = $field_object->getName();
 57 # format the criteria appropriately for the current field data type
 58 if ($field_object->getResult() == 'date') {
 59 if (strtotime($criteria)) {
 60 $request->addFindCriterion($field_name, date('n/j/Y',
strtotime($criteria)));
 61 }
 62 } elseif ($field_object->getResult() == 'time') {
 63 if (strtotime($criteria)) {
 64 $request->addFindCriterion($field_name, date('H:i:s',
strtotime($criteria)));
 65 }
 66 } elseif ($field_object->getResult() == 'timestamp') {
 67 if (strtotime($criteria)) {
 68 $request->addFindCriterion($field_name, date('n/j/Y H:i:s',
strtotime($criteria)));
 69 }
 70 } elseif ($field_object->getResult() == 'container') {
 71 # skip this field because it is a container (like a blob) and
can't be searched for text
 72 } else {
 73 $request->addFindCriterion($field_name, $criteria);
 74 }
 75 }
 76
 77 # specify sort column (aka, field), if any
 78 $request->addSortRule($column, 1);
 79
 80 # execute the search transaction
 81 $result = $request->execute();

LISTING 1
 82
 83 # check for errors (including no records found)
 84 if (FileMaker::isError($result)) {
 85 die('<p>'.$record->getMessage().' (error '.$record->code.')</p>');
 86 }
 87
 88 # display the found count
 89 $total = $result->getTableRecordCount();
 90 $found = $result->getFoundSetCount();
 91 $s = ($found==1) ? '' : 's';
 92 $page_content .= '<p>Your search for "'.$criteria.'" returned '.$found."
record{$s} of ".$total.' total</p>';
 93
 94 # get the result record set as an array of record objects
 95 $record_objects = $result->getRecords();
 96
 97 # start compiling our record output
 98 $page_content .= '<table border="1">';
 99 $page_content .= '<tr>';
100 $page_content .= '<th> </th>';
101
102 # loop through array of field objects to draw header
103 foreach($field_objects as $field_object) {
104 $field_name = $field_object->getName();
105 $page_content .= '<th><a href="'.$this_page.'?criteria='.$criteria.'
&column='.$field_name.'">'.$field_name.'</th>';
106 }
107 $page_content .= '</tr>';
108
109 # loop through record objects
110 foreach ($record_objects as $record_object) {
111 $page_content .= '<tr>';
112 $page_content .= '<td><a href="view_product.php?recid='.$record_
object->getRecordId().'">view</td>';
113
114 # loop through array of field objects
115 foreach($field_objects as $field_object) {
116 $field_name = $field_object->getName();
117 $field_val = $record_object->getField($field_name);
118 $field_val = htmlspecialchars($field_val, ENT_QUOTES);
119 $field_val = nl2br($field_val);
120 $page_content .= '<td>'.$field_val.'</td>';
121 }
122 $page_content .= '</tr>';
123 }
124 $page_content .= '</table>'."\n";
125
126 ?>
127 <html>
128 <head>
129 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
130 <title>view_products</title>
131 <style type="text/css" media="screen">
132 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana, sans-serif;}
133 table {width: 600px;border-collapse:collapse;border-color: #cccccc;}
134 th {padding: 3px; background-color: #DDD; text-align: center;}
135 td {padding: 3px;}
136 a, a:visited {color: blue;text-decoration: none;font-weight:
bold;display: block;}
137 a:hover, a:active {color: blue;text-decoration: underline;font-weight:
bold;}
138 </style>
139 </head>
140 <body id="view_products" onload="">
141 <form action="<?php echo $this_page ?>" method="get">
142 <p>
143 <input type="text" name="criteria" value="<?php echo $criteria; ?>" />
144 <input type="submit" value="search" />
145 </p>
146 </form>
147 <?php echo $page_content; ?>
148 </body>
149 </html>
150

LISTING 1: Continued...

35 • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

you are defining a table, the word ’field’ is
equivalent to the word ’column’ in traditional
SQL databases. So, you might ask a FileMaker
developer to “Add a Phone Number field to
the Company table.” However, the word ’field’
means something very different when you are
defining a layout in layout mode. On a layout,
a field is a like a form input on a Web page. It
is a rectangular area that allows a user to in-
teract with a particular cell of data—a ’field’
of a particular record. When I am teaching
my Intro to FileMaker class, I often explicitly
refer to Table Fields and Layout Fields until
students start to get the feel for things.

• Value List—A value list is simply a return de-
limited list of values, usually used to aid data
entry of common values such as US state ab-
breviations. A value list can be applied to
a field on a layout to aid data entry. When
you attach a value list to a layout field, you
specify the way you want it to look. It can
be formatted to display as a pop-up menu, a
drop-down list, radio buttons, or checkboxes.
Each behaves more or less like similarly named
HTML form controls.

• Portal—As mentioned above, layouts are tied
to a particular table. Often, you want to dis-
play data that is related to a given record—for
example, showing a product record and view-
ing the related inventory data. This is done
with a layout object called a portal. You can
think of it as a list view embedded in a form
view.

• Script—FileMaker has a built-in macro script-
ing language. It has a point and click inter-
face that is accessed by selecting ScriptMaker
under the Scripts menu. Once a script is cre-
ated, it is a trivial matter to attach it to an
object on a layout, thereby turning the object
into a button. When the button is clicked in
Browse or Find mode, the script runs.

A Picture is Worth a Thousand Words
Now that you know what everything is called, let’s look at
a couple of FileMaker layouts. By the way, these screen-
shots are of the ProductCatalog.fp7 file that is included
with the FileMaker API for PHP download bundle.Figure
1 is a list view layout. At the top of the layout is the
header, which contains a number of buttons that trigger
scripts when clicked. Beneath the header is the body,
which contains a list of records. If the number of records
is such that they will not all fit in the window, the body
section can be scrolled while the header remains in view

at the top of the window.
Figure 2 is a form view layout. Like the list view, it

has a header area with buttons, but in the body part of
the layout, we are looking at a single record. Notice that
the category field has a value list applied to it as check-
boxes. At the very bottom of the layout, labeled with
the word Inventory, is a portal. As described above, it is
displaying a list view of records from the Inventory table
that are related to the current product record.

Bear in mind while reviewing these layouts that even
a novice FileMaker user could edit, add, delete, or rear-
range these objects in a matter of minutes. And—for
better or worse—they often do. In fact, much of the
time spent working on a FileMaker solution is spent on
the layouts.

Why You Should Care
This is probably going to sound counter-intuitive at
first, but when you are publishing to the Web with File-
Maker, you don’t talk to the tables directly—you talk
to layouts. Other than a couple of minor exceptions, all
calls to a FileMaker database from PHP include a lay-
out name. When you query the database, you only get
back the fields that are present on the layout that you
targeted—you don’t get all the fields from the underly-
ing table.At first, this drove me nuts. I just wanted to
access the data in the table directly and on the fly. For
example, if I wanted to express something like:

SELECT Name, Description FROM Product WHERE ID=1;

I would have to launch FileMaker Pro, open the file,
make a layout with Name, Description, and ID fields on
it, and point my code at that layout. What this meant
was that I was constantly going back and forth between
the FileMaker Pro application and my PHP text editor in
order to write a page.

However, when I started working on real-world solu-

When you are publishing
to the Web with FileMaker,

you don’t talk to the
tables, directly.

36 • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

tions for customers, I came to appreciate this arrange-
ment. As I took pains to illustrate above, FileMaker cus-
tomers usually have lots of business logic embedded in
their layouts, and they are constantly modifying things.
The first time I didn’t have to recreate all that layout
logic in PHP, I saw the light. That is because FileMaker
allows you to pull information about the layout itself in
the query. A lot of time goes into creating layout objects
like portals, value lists and scripts. Those things can be
very usefully reused on a Web page, so why reinvent the
wheel?

Alright, Already, Let's See an Example
What I am going to do here is write a couple of pages
that take most of their cues from the two FileMaker lay-
outs that we have seen so far. The one in Listing 1 will
be called view_products.php and will correspond to a
table view layout in FileMaker, and the script in Listing

2 will be view_product.php, which will correspond to a
form view layout.The pages were written specifically to
handle updates to the layouts they are attached to. In
fact, they can be pointed at any FileMaker layout, and
they will do a pretty good job of rendering the infor-
mation on the Web as it is displayed in FileMaker. For
example, I could put these pages on a Web server; my
customer could then add or delete fields from a layout,
and their changes would auto-magically appear on the
site.

Explanations are included as comments inline with the
code. There is nothing really earth shattering here—it

FIGURE 4

FIGURE 2

FIGURE 3

FIGURE 1

3� • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

is really just an introduction to some of the more useful
objects and methods in FileMaker.php.

View_products.php
Refer to Figure 3, and you will notice the similarity be-
tween the FileMaker layout and the resulting Web page.
The underlying FileMaker layout is at the top of the pic-
ture, and the browser version is directly beneath it. No-
tice, when you are reading through the following code,
that I never refer to any fields by name—they show up
on the Web (and are searchable) solely by virtue of the
fact that they are on the layout. Compare Figure 3 with
Figure 4 to see what happens to the Web page when I

reorder the fields on the FileMaker layout.Form View
With the form view, there is again a strong similar-

ity between the FileMaker layout and the resulting Web
page; refer to Figure 5. The underlying FileMaker layout
is at the top of the picture, and the browser is directly
beneath it. As with the previous example, I never refer
to any fields by name—they just show up on the Web
(and are searchable) solely by virtue of the fact that
they are on the layout. This time, we add a portal that
contains related records from the Inventory table.RAD
Comes at a Price

Using FileMaker as a Web backend can allow you to
rapidly develop and deploy powerful and complex solu-

FIGURE 5

3� • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

tions because it allows you to reuse existing business
logic. However, this advantage does have a price. Since
FileMaker is sending back so much information in ad-
dition to the actual record data, it is not as fast as a
typical SQL database. Also, there is a hard limit of 100
maximum concurrent connections to the database. For-
tunately, most connections last less than a second, so in
practice it is not uncommon to serve data to thousands
of browsers at the same time because it is unlikely that
they would all refresh their user agents simultaneously.
All things considered, FileMaker is well suited for in-
tranet or extranet style solutions, where the user group
is a known quantity and a login is required.Conclusion
Well, here I am at the end of the article, and we have so
much more to discuss. Hopefully, you now have a basic
feel for how to best use FileMaker as a Web backend.
Stay tuned for Part 2 of this series, when you’ll learn

how to use value lists and scripts pulled from FileMaker
to edit records.

JONATHAN STARK is the President of Jonathan Stark Consulting,
an IT consulting firm located in Providence, RI. He consults a
variety of clients from the creative industry including Staples,
Turner Broadcasting, and Ambrosi. He has spoken at the FileMaker
Developers Conference, is a Certified FileMaker Developer, and teaches
training courses in both FileMaker and Web publishing. Jonathan is
reluctant to admit that he began his programming career more than
20 years ago on a Tandy TRS-80. For more information, please visit
http://jonathanstark.com.

 1 <?php
 2
 3 # For security reasons, these lines should either be included from a
 4 # config file above the Web directory, or possibly captured during a
 5 # login and stored in the SESSION superglobal array
 6 define('FM_HOST', '127.0.0.1');
 7 define('FM_FILE', 'ProductCatalog.fp7');
 8 define('FM_USER', 'esmith');
 9 define('FM_PASS', 'f!r3crack3r');
 10
 11 # grab the record id sent in the url
 12 $recid = (array_key_exists('recid', $_GET)) ? htmlspecialchars($_
GET['recid']) : '';
 13
 14 # set the layout name for this page
 15 $layout_name = 'view_product';
 16
 17 # initialize our output var
 18 $page_content = '';
 19
 20 # this is the include for the API for PHP
 21 require_once ('Filemaker.php');
 22
 23 # instantiate a new FileMaker object
 24 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 25 # get the record by its id
 26 $record = $fm->getRecordById($layout_name, $recid);
 27
 28 # check for errors
 29 if (FileMaker::isError($record)) {
 30 die('<p>'.$record->getMessage().' (error '.$record->code.')</p>');
 31 }
 32
 33 # get the layout as an object
 34 $layout_object = $record->getLayout();
 35
 36 # get the fields from the layout as an array of objects
 37 $field_objects = $layout_object->getFields();
 38
 39 # start compiling our output
 40 $page_content .= '<table border="1">';
 41 foreach($field_objects as $field_object) {
 42 $field_name = $field_object->getName();
 43 $field_value = $record->getField($field_name);
 44 $field_value = htmlspecialchars($field_value, ENT_QUOTES);
 45 $field_value = nl2br($field_value);
 46 $page_content .= '<tr><th>'.$field_name.'</th><td>'.$field_value.'</
td></tr>';
 47 }
 48 $page_content .= '</table>'."\n";
 49
 50 # check the layout for portals
 51 $portal_objects = $layout_object->getRelatedSets();
 52
 53 foreach($portal_objects as $portal_object) {
 54 $page_content .= '<table border="1">';
 55 # loop through the portal fields to draw the table header row
 56 $page_content .= '<tr>';

LISTING 2

 57 $field_names = $portal_object->listFields();
 58 foreach($field_names as $field_name) {
 59 # related fields are returned with double colons in the name, so
remove them
 60 $page_content .= '<th>'.str_replace('::', ' ', $field_name).'</
th>';
 61 }
 62 $page_content .= '</tr>';
 63
 64 # get the name of the current portal object
 65 $portal_name = $portal_object->getName();
 66
 67 # get the records related to this record, based on the portal name
 68 $related_records = $record->getRelatedSet($portal_name);
 69
 70 # if there are no related records in the portal, filemaker will
return an error
 71 if (FileMaker::isError($related_records)) {
 72 $page_content .= '<td colspan="'.count($field_names).'">no
related records</td>';
 73 } else {
 74 foreach($related_records as $related_record) {
 75 foreach($field_names as $field_name) {
 76
 77 $field_val = $related_record->getField($field_name);
 78 $field_val = htmlspecialchars($field_val, ENT_QUOTES);
 79 $field_val = nl2br($field_val);
 80 $page_content .= '<td>'.$field_val.'</td>';
 81 }
 82 $page_content .= '</tr>';
 83 }
 84 }
 85 $page_content .= '</table>'."\n";
 86 }
 87 ?>
 88 <html>
 89 <head>
 90 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 91 <title>view_product</title>
 92 <style type="text/css" media="screen">
 93 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana, sans-serif;}
 94 table {width: 600px; border-collapse:collapse; border-color: #cccccc;
margin-bottom: 10px;}
 95 th {padding: 3px; background-color: #DDD; text-align: left;}
 96 td {padding: 3px;}
 97 a, a:visited {color: blue;text-decoration: none;font-weight: bold;}
 98 a:hover, a:active {color: blue;text-decoration: underline;font-weight:
bold;}
 99 </style>
100 </head>
101
102 <body id="view_product" onload="">
103 <p>view products</p>
104 <?php echo $page_content; ?>
105 </body>
106 </html>

LISTING 2: Continued...

3� • php|architect • Volume 6 Issue 2

FileMaker for PHP Developers

http://jonathanstark.com

