Acumatica Framework
Development Guide

| Contents | 2

Contents

@0 Yo)V o | 5 O)

Acumatica Framework OVerVieW.ccccccceesssssssnsssssssnnnnsnsassnssnssnsssnnnnsnssnsnnnnnns 7

| g e 18w o o NPT PP 7
Acumatica Framework and Modern Web Development.....c.oiviiiiiiiiii i i rie e naeaas 8
Acumatica Framework and Microsoft TeChNOIOgY......ovieinieiiiie e e 12
Acumatica Framework ComMPONENES. . .ttt ittt e et et a et aa e aeeaaeraeaateraeans 15
L8] o]0 0 =T oY L= P 18
(D TSAVZ=T o] o7 g =1 o) o Ko o = 20
(670 Lol 18111 o FAru PPN 29

Components and TOOIS.....cuverimrimminmsesmsesssasssnsssnsssnsssnsssnsssnssanssanssnnssanssnnss 30

Design GuidelinesS......c.iciiiieiiminmrnnsss s s s s s s s s s s snnsnnsnnsnnsnnnnnnss 34
Database Design GUIAEINES. . u.uiiriiiii i a et et et s e e e n e e e aaeeaneaneannens 34
Application Design GUIAEIINES.t e e e e e aneeeas 40

Application Programming OVervieW.....c.vcccuiesmsassmmsnssssssssssnssssssssssnsssnnnsnnas 42

QUENYING The Dala...ciiiiiiiii i ettt ettt e e e e e et 43
ENtity Model DeClaration. . .ouiiei it e e et r e e e ns 45
Handling Entity Data.....ccooiniiiiiii e 45
Implementing BUSINESS LOGIC. .uuuiueiriititieitiiti ittt e it e e et e e e e e renraeeaennans 53

Programming TasKS...cuiccuiemimmsemmssmsnsmsnsmsnsmsnsssnsssnsssnsssnsssnssanssanssanssnnssnnsnns D5

LOCaliZiNg AP PlCAtIONS. .ttt e 55
Generating @ Data ACCESS Class. ..ottt 58
WOIrKIiNG With ImMages. e ettt et e e e et e e e e e e e e e e e e eananeanens 59
Adding Widgets to Dashboard.........ciiiiiiiiiii i e 64
Data RePrESENEAtiON. ...ttt 64
Filtering Data on @ Webpage. ...oviuiiiiiii e 64
Creating LoOKUD Fields. ..ot st e s e e e ne e annens 71
Adding Lookup Fields Onto a Form and Onto @ Grid......cvvvviiiiiieiiiii e renneens 77
(0] Lol U] F=) o o 1T PP 80
Calculating Values of UL Elements....ciiiiiiiii i e e ae e aeeas 80
1= = T 1 T 1 83
Managing Visibility of DAC Fields and UI Elements........cccooviiiiiiiiiiniiiiieieneneeees 83
Validating UI Element ValUes.c.viiiiiiii i et e e st e e r e e e 85
Using Input Mask and Display Mask........cooiiiiiiiiiiiii e 88
Interaction With the SeIVeI. .. e e e e e e e anans 90
Confifuring Webpage UI Elements and Behavior of BLCS.......ccccviiiiiiiiiiiiiiiiiceeaeens 91
Creating an Acumatica ERP Add-0N ProjecCt.......coviuiiiiiiiiii e 94

Implementing a Credit Card Processing PlUug=iN......ccoiiiiiiiiiiiiii i nae e 101

| Contents | 3

USING SUDSHEULE KY Sttt ettt et e e et e e e et e e aerrennans 110
Calling @ NeW PXSmMartPanel. .. .c.oouiiiiii it e a e e st e e e n e ane s 112

Debugging ApplicationsS.....ccvecricmimsssssssesssessssssnsssnsssnsssnsssnsssnsnnnsnnnsnnnss 1 14

API RefereNCe..ciiieeeerreeeennunssssssnssssssssnnnsnsssssnsnssssssnnnnnssssssnsnssnnnnnnnnnssssnnnsnes 116

V=T L o 17 ' Yo = 116
EVENT MOl OVeIVIEW. ettt ittt e et ea e et et a e et e e e e e e e e e aneanans 116
S 1] = T 1 118
= o o= 126
2 PPN 190
CoNnstructing Statements. .. o s 190
T = oo T PP 200
QueErying MUILIPlE Tables. .. vt e 214
Grouping and Aggregalting. . ..cuiiiii i i e 219
USING ParamElerS. . i e 224
LU =] T R B o U o o 229
EXeCULiNg Statements. ..o e 236
Y] 0 1< o e 240
[©e] I 1 1= 1= PP 246
[(= Tol g To Rl = L= D O I T < 247
PXSelectBase<Table> Class. . .uuuiiiiiii ittt ettt aaeas 292
[C] = 0 o T O F= TS 342
[QY=Y A 1 = =7 PP 375
o T = PP 391
BoUNA Field Data Ty DS, ittt ittt ettt ettt et ettt e et a e et e reaeas 393
UNDOoUNd Field Data Ty S, ittt ittt ettt e et e st e e e ae e e e aae e e e aeaanens 440
(O) =] [I @0 T g} e [=1 o o PR PP 465
DEfAUIL ValUBS. ittt et 485
(©f] ga] 0] [Ha] s 1¥ | Ml @o] o1 o] [PP 499
Referential Integrity and Calculations..........oiiii i e e 529
AdhOC SQL fOr FIlds. . uiuiitiiiiiiii e e e e e e e e e e e e e e aneanans 548
A8 T L o = e PP 551
Data ProjeCtioN. . vttt 558
ACCESS CONEIOl.t ittt et e 562
N 563
RepOrt Optimization.....ouie e 570
AL DUEES 0N DA CS .ttt ittt et e e et e e e e e et e e e e e ann e 571
ALErIDULES ON ACTIONS. ..ttt et e e e e e e e ees 581
ALEriDULES 0N Data ViEWS. . o e 593
[N TEYel=T =T = To LU = PPN 599
AlPhabetiCal INAeX. v e e et 633
(7o o T o aT0] o TN V7071 PP 638
PXENtryStatus ENUMEratioN. . ..o it e e e e e 638
PXErrorHandling EnUmMEration.....c.viuiiiii i e e aeas 639

[0} NV o L = T8 g g =T = o] o 1R P 639

| Contents | 4

PXDBOperation ENUMEration. it s ran e s rane e aneas 641

Report DESIgNer.....ccccimrimiimrimsie s sin s ssassassansansanssnssnssnssnssnssnssnssnnsassansansnns 043

Acumatica Report Designer Report Designer User Interface.......cooveviiiiiiiiiiiiiiiiiiiciiciinieens 643
Creating and Modifying the RePOItS.o e ns 647
Selecting Data for the ReEPOM e ae e e 647
Loading the Database SChema......ciiiiiiiiiii i e naaneas 648
Building the Database ReqUESTE.........coiuiiiiiiiii e 649
Composing the REPOIT LayOUt. ... uiiitiitiii i e e et e e et e e e e ane e enenes 652
Adding and Removing RepPOrt SECHIONS. . ..iiiiiiii i aaens 652
Defining the Appearance of @ Report SeCtion........ccooieiniiiiii i e 656
Defining the Behavior Settings of @ Report Section.........ccoviviiiiiiiiiiiii e 660
Adding and Removing Visual Elements in the Report.......c.covviiiiiiiiiiiiiiiiiiii e 663
Data Grouping and SOMtiNG.....o.ieiiiiii e 664
Defining the Data Groups and Grouping and Sorting Rules for a Report............ccovvuens 664
Defining Parameters for @ RePOrt.....coiviiiiiiii i e e 668
L] o T 1= =P 670
L] Lo T o o =11 o 1= 672
Using the EXPression EdifOr.ciie i e e e aaneanens 672
Using Globals, Parameters, and Local Variables........c.ccviiiiiiiiiii e 674
Using Operators iN EXPreSSIiONS. ...ttt et e e re e rneanannens 675
UsSiNg FUNCLIONS 1N EXPrESSIONS. .ttt siitesseessnesseessnesannesannssannssaesaaneaanneannes 678
Creating the Report Content. ..o e 687
Adding a Text Box to the Report SeCtion........coiiiiiiiiiiiii e 687
Adding a Picture Box to the Report SeCLiON......iciiiiiiii i e e 690
Adding a Panel to the Report Section.......cccoiuiiiiiiii e 693
Adding a Line to the Report SeCHiON....icviiii i e 695
Adding GraphiCs t0 @ REPOIM ...ttt i e e e e raes 696
Adding a Subreport to the RepOrt.....c.oiiii i 698
USING Variables. .o e et e 701
Using the External Parameter Collection Editor......c.ccvieiiiiiiiii i e eea s 702
Saving and Publishing the RepPOItS.......ociiiiii e 703
(2Tl aal g aT=Ta e F= 1 u o] o I PPN 704
Y= 1121 (ST 2= oL o o PP 708

Website Management........ccviciminsmsmsmsssssmssssssssnsssssssasssanssnsssnsssnsssnnsnnnsnnnes 7 14

[@feTa) o8 g1 g I aT=TS] 1 (I 1 - o P 714
Registering the Page as @ New Webpage......ccivuiiiiiiiiii i e e e 717
Granting Access Rights to a Registered Webpage.......ccviiiiiiiiiiiii i e 720
Managing the Help Wiki. ..o e aeas 722

Web Services API Developer Guide.......ccviimminmmmimmsssssssssssssssssnssssanssnnns 728

[T Tl = S 729
Examples of the Web Service API Implementation........ccvvviiiiiiiiiiiiiic i 737
EXporting Warehouse Data.......oceiuiiiiiiiiiii i e 737

EXPOrting SEOCK TEemMIS. .ttt et e 740

| Contents | 5

Simulating the Behavior of Add Buttons on the Purchase Receipts Form...................... 743
(0] o) AL aTe IE= TS T=1 (=TT @ 1 o [PP 748
Adding a New Cash Transaction DOCUMENT........ouiiiiiiiiiii e 751
Adding Records to the Business Accounts and Opportunities FOrms..........cccovvvieiennnn. 753
Importing of Data With an Image Into the Journal Transactions Form...........c.ccvvvevnens 755

Exporting of Data With an Image From the Journal Transactions Form........................ 758

| Copyright | 6

Copyright

© 2013 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.

4030 Lake Washington Blvd NE, Suite 100
Kirkland, WA 98033

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. All other product names and services herein are
trademarks or service marks of their respective companies.

Software Version - 5.0

Last updated: October 21, 2014

| Acumatica Framework Overview | 7

Acumatica Framework Overview

This chapter provides a high-level overview of Acumatica Framework architecture and components and
highlights the main concepts behind the platform design, in the following topics:

e Introduction

e Acumatica Framework and Modern Web Development
e Acumatica Framework and Microsoft Technology

e Acumatica Framework Components

e Runtime Tools

e Development Tools

e Conclusion

Introduction

Acumatica Framework is a modern web application development platform designed for developing
business applications. This document provides a high-level overview of Acumatica Framework
architecture and components and highlights the main concepts behind the platform design.

CTOs, Software Architects and Application Developers who are interested in using Acumatica
Framework for commercial or internal software development are the target audience of this document.

In addition to delivering traditional features specific to enterprise resource planning (ERP) development
platforms, Acumatica Framework introduces advanced features and functionality necessary for the
development of web applications, as listed below.

Modern Web Technology
e Desktop-like GUI functionality and accessibility through a web browser
e Security model that eliminates the possibility of browser-side data manipulation
e Excellent application performance, even over latent and unreliable Internet connections

e Cross-platform compatibility at the web browser level

Readiness for Data Center and SaaS Delivery Models
¢ Ability to scale horizontally and run on server farms behind a load balancer
e High application density, which allows for the maximum number of users per server
e Built-in support for multi-tenancy

e Centralized upgrade and versioning management

Tools for Personalization, Customization, and Integration with External Systems
e Built-in localization and personalization support

e Tools for customizing applications at the graphical user interface (GUI), business logic, and
database levels, including the integrated web interface and Acumatica Extensibility Framework

e Tools for developing add-on modules and components

e Generic Web Service application programming interface (API) for accessing the business logic

| Acumatica Framework Overview | 8

Acumatica Framework not only enables the development of modern web applications, but also provides
application developers with everything they need to develop and maintain applications in a fast and
cost-efficient way. This maximum efficiency of application development is achieved through the
following items.

Development Environment Built on an Industry-Standard Platform
e Runtime environment built on top of a Microsoft.NET platform
¢ Development environment built on top of Microsoft Visual Studio IDE

¢ Ready to host on Microsoft Azure

System Foundation Layer
e Set of low-level components and primitives required for full-cycle application development

e Database access layer and primitives to isolate the application developer from database specific
logic

e Set of integrated UI elements to isolate application developers from HTML, HTTP, and JavaScript

¢ Application programming model that isolates the business logic layer from the presentation and
data access layers

e Security model that is transparent to the application developer
e Set of wizards and designers to automate the creation of database access and presentation layers

e Set of extendable templates for creating typical application webpages

Application Foundation Layer
e Common application frameset and site management application
e Built-in security management and user management application
e Integrated report designer and report engine
e Integrated Help management system
e Integrated document management system

e Translation and localization tools

Acumatica Framework and Modern Web Development

The inspiration behind Acumatica Framework was the concept of creating a commaodity platform that
enables the development of contemporary web applications. To achieve this task two items must be
addressed:

e Providing the technologies and runtime architecture that deliver the features and functionality of a
modern web application

e Providing the development tools and methodology that make it a commodity product for
application development

This section explains the technologies implemented in the runtime design of Acumatica Framework that
that address these items. Development tools and development process are covered in Chapter 7 of this
document.

| Acumatica Framework Overview | 9

What is a Modern Web Application?

In our vision, a modern web application can be differentiated from traditional desktop or web
applications by combining the following features:

e The primary client interface is a web browser and can be accessed from anywhere via an ordinary
Internet connection

e The application does not require any files or components to be installed on the client's computer

e The application is easy and convenient to use, especially when compared to similar Desktop
applications

e The application addresses issues related to slow and unreliable Internet connections without
affecting the user experience.

e The application addresses security issues related to the exchange of confidential data over a
public Internet connection and eliminates the possibility of client-side data manipulation

e The application can be configured and operated in high-availability mode so that the failure of one
of the deployment infrastructure nodes does not result in data loss or prevent the application from
its normal operations

e It should be possible to scale the application horizontally, which means there is a nearly linear
increase of the application throughput in terms of number of users, humber of tenants and
number of transactions by adding more computing power

e The application is designed for datacenter deployment and natively supports deployment and
operation in a multi-tenant environment

e Operating in a multi-tenant environment does not compromise application density, application
performance or application security

Each of the points above can be addressed individually, but when combined, they present quite a
challenge to application development and the runtime architecture. The articles below explain how
these challenges were addressed during the design of the Acumatica Framework runtime components.

Interactive GUI using an Internet Browser

To provide an interactive GUI through the web browser interface Acumatica Framework exposes a
set of advanced web controls through the browser Document Object Model (DOM) and implements a
communication layer between these controls and the application server through the XMLHttpRequest
object in the web browser. This technology can be referred to as an AJAX application model.

The client-side Acumatica Framework web controls are designed as a set of JavaScripts functions that
are downloaded during the initial application load and then cached by the web browser. Each application
screen is a standard HTML page that contains the details of the screen layout and references to the
client side web controls. When combined, the HTML page and the web controls produce an interactive
web page that is similar in functionality and behavior to traditional Desktop applications.

Additionally, this technology only requires a standard web browser and does not require the installation
of any client-side software or redistributable components. It also works over HTTP or HTTPS protocol
which makes it available virtually everywhere.

Performance over Unreliable and Latent Connections

An application written with Acumatica Framework provides good performance even over unreliable and
latent Internet connections. This is achieved through the following techniques:

e JavaScript is moved into static generic classes that are loaded one time, when opening the
application, and then cached by the browser.

e The static HTML part of the form is minimized to present only the visible screen area. The rest of
the form is loaded on demand.

| Acumatica Framework Overview | 10

o After the initial form load, only the modified data is sent between the client and server to
minimize network traffic and improve response time.

e Server is optimized for the fastest possible request execution.

Browser Level Cross-Platform Compatibility

Generally, an application written with Acumatica Framework is supported by any browser that is
compatible to the Level 2 Domain Object Model standard maintained by W3C.

An application written with Acumatica Framework can be accessed through the following Web browsers:
e Internet Explorer
¢ Mozilla Firefox
e Apple Safari
e Google Chrome

These browsers are available on Windows, Linux and Mac OS platforms providing cross-platform
application compatibility.

The list of supported Internet browsers will be extended in the future.

Prevention of Client Side Data Manipulation

The AJAX programming model assumes the use of browser side JavaScript. The JavaScript executed

in the browser is not protected, enabling a user to take control of the executed code using a
JavaScript debugger. This means that any application logic written with JavaScript is vulnerable to data
manipulation. For business applications this means that any data received from the client cannot be
trusted and needs to be re-validated when received by the server’.

With Acumatica Framework, JavaScript is only used for handling initial data format validation, GUI
related logic and synchronizing the browser content with data located on the application server. All
business logic is executed exclusively on the application server. All data validation logic is duplicated on
the application server to prevent any possibility of data manipulation on the client-side.

YThis assumption is only valid for applications where data manipulation on the client side is not
acceptable. For a large range of applications where data manipulation on the client side is not critical,
business logic can be moved to the client browser.

Exchange of Confidential Data over the Internet

Acumatica Framework relies on and supports the HTTPS protocol to provide confidentiality of data
transmitted over the Internet. This is the same technology the banking industry uses to provide on-line
Internet banking services.

High Performance, Scalability and Availability Support

To achieve horizontal scalability and fault tolerance an application written with Acumatica Framework
can be configured to run on multiple application servers behind a load balancer. With this configuration,
it is not possible to predict the application server that will receive the next request from the client.

In this model, session specific data must be shared between the application servers. The cost of
serialization and the amount of data that need to be shared between application servers is often the
main challenge to scaling complex business applications horizontally.

Acumatica Framework implements the following techniques to address issues related to session-state
management without sacrificing performance, fault tolerance, or scalability:

e Objects on the application server are created on each request and disposed after the request
execution. The applicaiton state is preserved in the session through the serialization mechanism.

| Acumatica Framework Overview | 11

« Data serialized into the session is minimized® to store only modified data (inserted, deleted, or
modified records). The rest of the data is extracted from the database on demand? and built
around the session data.

e A custom serialization mechanism is implemented to serialize only relevant data and reduce the
amount of service information.>

e Hash tables, constraints, relations, and indexes concerned with the execution of business logic are
created strictly on demand. This technique allows the user to avoid execution of these operations
on each request if not needed.*

!Serialization and retrieval times are directly proportional to the size of the serialized data.

%A custom algorithm that extracts only the data required for the current request execution from the
database is implemented.

3The standard serialization mechanism implemented in the Microsoft .NET platform is generic and
cannot be optimized when used for a specific task.

“Creation of indexes, constrains, hash tables, and relations consumes a significant amount of CPU and
runtime memory.

High Application Density

An application created with Acumatica Framework provides an excellent per-user density. In general,

a web-based application provides a better per-user density compared with traditional applications
deployed through Microsoft Remote Desktop, Citrix, or Virtual Desktop Infrastructure technologies.

This is because of lower memory consumption and extensive pooling of shared resources. The use of
AJAX technology in Acumatica Framework allows the user to achieve an even better application density1
compared with standard web-based applications. Two factors take place here:

e Expensive HTML rendering operations are performed only once: on the initial page load. All
subsequent requests to the same page do not trigger HTML rendering, which reduces the load on
the application server.

e Exchange with only modified data between client and server reduces network traffic.

11t should be pointed out that because of the rich GUI functionality a user can generate more requests
to the server within the same period of time when compared to traditional web-based applications. This
may result in a higher server load generated by a single user within the same time period. But, at the
same time, the rich GUI allows the user to execute the same job faster compared to traditional web
applications, providing better user experience. Overall the number of transactions per second that could
be handled in an AJAX model on the same hardware is higher.

Designed for Datacenter Deployment

Combination of the following factors makes applications created with Acumatica Framework perfect for
deployment in datacenters:

e Build-in support for deployment of single instance of application on multiple application servers
behind a load balancer. This mean that highly reliable and scalable configurations can be
supported.

¢ An excellent per-user density. This means lower investments into hardware infrastructure.

e Web-based and accessible through HTTP and/or HTTPS protocol, a set of technologies to minimize
network traffic. This means simple network configuration and lower requirements for network
bandwidth.

e Zero footprint on client computers. This means simple upgrade and update management and
lower maintenance costs.

¢ All the benefits of underlying Microsoft.NET technology in regards to datacenter deployment.

| Acumatica Framework Overview | 12

Ability to Scale Up or Down

Scaling an application down is as important as scaling an application up. With minimum deployment
an application created with Acumatica Framework can be installed on a single desktop or notebook
computer in both production or development environment. With a single code base an application can
be scaled up or down.

Built in Multi-tenancy Support

With the development of microprocessor technologies and increasing computing power it becomes
possible to host multiple tenants on a single application server. This approach can be referred to
as multi-tenancy. The multi-tenant approach allows for the best application density and hardware
utilization. In addition, the use of a multi-tenant approach opens the questions related to tenants
isolation and quality of the services monitored.

Acumatica Framework has a build-in multi-tenancy architecture and applications created with Acumatica
Framework can be configured to operate in multi-tenant mode. Acumatica Framework supports both the
execution of a single application instance that hosts multiple tenants and the execution of an individual
application instance for each tenant. The following items are addressed on the platform level:

e Isolation of custom code that is submitted by tenants as customization and the quality of service
for each2 of these tenants! are addressed by starting the application in a different application
domain”®.

e Tenants database isolation is implemented by providing a single tenant identifying field in all
database structures®. This mechanism is generic, the name and value of the field are linked to the
tenant's application domain and are not exposed to application code or Iogic3.

e Database isolation can also be achieved by linking the tenant's application domain to the
individual tenant database.

e Acumatica Framework provides a set of tools for automated tenant deployment, monitoring of
services quality and upgrade management of multi-tenant deployments4.

Configuring an application, created with Acumatica Framework, to operate in multi-tenant mode creates
close to zero overhead compared to running in single tenant mode.

Thisis a configurable option and can be activated if required.

2Application domain is a term specific for Microsoft.NET platform. Please, refer to Microsoft
documentation for mode detailed explanation.

3This is important, because if the multi-tenancy isolation mechanism is exposed to application logic it
becomes vulnerable to mistakes made by application programmers.

“These tools are not a part of standard Acumatica Framework and must be purchased separately.

Acumatica Framework and Microsoft Technology

Acumatica Framework is built on top of Microsoft.NET and Microsoft Visual Studio IDE technologies.
This choice makes it easy for an application developer who is familiar with Microsoft.NET technology to
learn Acumatica Framework and start application development. Also, the use of Microsoft Visual Studio
IDE provides an efficient and productive environment for programmers. This section explains the use of
Microsoft technologies in Acumatica Framework.

Acumatica Framework and Microsoft.NET Technology

Acumatica Framework is designed and created on top of Microsoft.NET technology. It is written using
C# programming language as a managed code. Acumatica Framework extensively uses core services
and components of Microsoft.NET technology such as:

e CLR and JIT compilation

Thread and memory management
Session Management

Build Providers

SOAP Implementation

C# Programming Language
Generics and Attributes

Code Reflection

Dynamic Methods

Web Site Code Compiler

Code Security

Application Domain model

| Acumatica Framework Overview | 13

Additionally, Acumatica Framework does not rely on or use the high level components, primitives
or application building blocks provided with Microsoft.NET. Instead, it implements its own stack of
primitives and components on top of core Microsoft.NET technologies. This stack includes:

Application programing API and application event model

Database access layer and support of multiple database access engines

Transaction management and thread pooling

Serialization, searching and indexing primitives

Caching

SOAP proxy builder

Membership and access providers
Site management

Localization

Audit tools

Help system

Session splitter

Web controls

Microsoft.NET technology was selected as a foundation for Acumatica Framework because:

It fits Acumatica Framework runtime performance and scalability requirements

It provides all the features and technologies required for Acumatica Framework design

It provides a complete set of high quality services, components and primitives required to build

Acumatica Framework

Wide acceptance of the technology and programmers familiarity of Microsoft.NET platform

Microsoft Visual Studio IDE environment

Support and maintenance from industry leader

The reasons for implementing its own stack of primitives, components, and building blocks instead of

one supplied with Microsoft.NET platform are:

Implementation of functionality that is specific for Acumatica Framework

| Acumatica Framework Overview | 14

e Optimization of components and primitives to meet performance requirements of Acumatica
Framework

e Elimination of wrappers and additional code layers related to modification of generic components
behavior for Acumatica Framework requirements

¢ Independence from software vendor on possible components and primitives modification®

!Core features and services of Microsoft.NET platform that are used as a base for Acumatica Framework
are stable, reliable and not subjected to significant changes from the vendor. At the same time, high
level components, primitives, and services are less generic and subjected to significant functionality and
code changes.

Acumatica Framework and Microsoft Visual Studio IDE

The Acumatica Framework development environment is implemented as a set of extensions to Microsoft
Visual Studio IDE. These extensions include:

e Template project for Microsoft Visual Studio

e Master pages and a set of Page Templates to create typical application screens
e Web controls integrated with Visual Web Designer

e Wizards for creating data access, business logic, and presentation layers

e Design time libraries and components of Acumatica Framework

The choice of Microsoft Visual Studio IDE is quite natural considering the use of Microsoft.NET
technology.

Acumatica Report Designer is implemented as a standalone WinForms application and does not utilize
Microsoft Visual Studio IDE.

Acumatica Framework and External Components

Acumatica Framework does not rely, use, or depend on any external non-Microsoft tools or components.
This is a principal decision, chosen for the following reasons:

e All Acumatica Framework components are designed to be integrated to provide the best
performance and development experience. The use of external components significantly restricts
this integrated design.

e Acumatica Framework does not contain any unmanaged code and extensively uses the code
security model provided by Microsoft.NET. Most of the external components do not use the same
standards.

e Use of external components raises the question of functionality and security issues and at the
same time triggers compatibility issues on components, updates, and upgrades.

e Use of external components also increases the cost of software through licensing and royalty fees.

In fact, it is the same set of reasons why the use of Microsoft.NET technology is limited to core services
and components.

However, Acumatica Framework does not restrict the use of external components if the developer needs
them.

Acumatica Framework and Microsoft Azure

Applications developed with the Acumatica Framework are easily hosted with Microsoft Azure for the
following reasons:

e Hosting at Microsoft Azure out of the box with one code base

| Acumatica Framework Overview | 15

e Full support of Microsoft SQL Azure

¢ Unique load-balancing proxy for effective multi-server deployment

Acumatica Framework Components

This section provides an overview of the Acumatica Framework component structure.

Application

[Data Access Layer J [Businas&LﬂqicLayarj [Presentation Layer j [Reports J

Acumatica
Application

Application Foundation Layer

[RapnrtManagemsnt J [User Management J [Customization Tools j [Localization Tools)
[Applicatlan Frarnasai] (Security Managernent) [Help Management) [Ducument Managm‘lentj

I

System Foundation Layer

[Web Ul Elem ents J [Reporting Services j [Web Sarvices J [Designe«s andWizardsJ
[Data Access Layer j [Security Layer] [Customization Layer j [Development AP J

Microsoft Visual Studio IDE

Acumatica Studio

Figure: Acumatica Framework components

Acumatica Framework consists of the System Foundation Layer that provides core platform services and

the Application Foundation Layer that provides a template application and a set of application building
blocks.

System Foundation Layer

System Foundation Layer is a set of core components and primitives with functionality required to
develop and run an Acumatica Framework-based application.

The primary reasons behind the inclusion of the system foundation layer are:

e Isolate application programmer from complexities related to coding of a web application and from
direct use of HTML, CSS, HTTP, and JavaScript.

e Provide the application programmer with a development environment where all pieces of the GUI,
business logic, and database access are programmed with the same language and technology.

e Provide the application programmer with development API and methodology to create an
application.

| Acumatica Framework Overview | 16

e Provide transparent to application programmer runtime services to handle application security,
customization, localization, and personalization.

e Provide a set of high level tools and utilities to speed up and automate the creation of business
and GUI components and at the same time enforce application integrity.

The System Foundation Layer consists of the following main components:

e Data Access Layer - set of components responsible for database access, data manipulations, and
data persistence management.

e Security Layer - set of components responsible for user authorization, access rights verification,
and audit on data access and business logic levels.

e Customization Layer - set of components responsible for providing runtime customization features
on the GUI, database access, and business logic layers.

e Development API - set of templates and API for implementing application business logic.

e Web Controls - set of web controls implementing access to business logic through the Web GUI
interface.

e Web Services - the component that provides access to application business logic through the
generic Web Service API.

e Reporting Services - Acumatica Report Designer and components responsible for runtime report
execution.

e Designers and Wizards - set of components to automate creation of the application data access
classes from the database tables and the GUI (Web Forms) during application development.

Application Foundation Layer

Application Foundation Layer is a set of application building blocks and database structures
implemented on top of the system foundation layer components. It provides the application
programmer with ready to use components and framework for creating and extending Acumatica
Framework-based applications. By using the System Foundation Layer components, the programmer
will be able to focus on implementing the application business logic and then plug it into the template
application, delivering it to the end user as a full functioning business application.

The application foundation layer consists of the following components:

e Application Frameset, also referred to as the template application, - application and database
structures providing frameset, layout, and navigation services.

e User Management System - set of components and database structures for managing users and
storing users personal settings and user preferences.

e Security Management - set of components and database structures for managing application
security, application access policies, and security audit.

e Help Management System - the integrated Wiki-based help content editing, management, and
search system.

e Document Management System - the integrated document storage and management system.

e Report Management System - set of tools, components, and database structures that allow
registration, listing, and execution of reports created with the Acumatica Report Designer.

e Customization Tools - set of tools, components, and database structures for creating, storing,
and applying the customization of the standard application on the representation, functional, and
database levels.

e Localization Tools - the component that allows localization of the application to the different
languages.

| Acumatica Framework Overview | 17

Application Layer

An application written with Acumatica Framework has the n-tier architecture with a clear separation
of the presentation, business, and data access layers. All these layers are implemented by application
programmers on top of System Foundation Layer and Application Foundation Layer.

5
- e -. >
| { =
Web Form (ASP.NET) Web Service (WSDL) 2
.
\] \. p o
iy 4 N e o
ﬂ J‘\-\.l /\l E -I.
r Business Logic Controller \\
‘Entity Model . Entity Business Logic

1

@

>

Lo by
DAC Reference . © Actions Events 5 7
. : . =
| : + -PXSave - Row_Inserted() : S
- -PXDelete - Row_Updated|) : ol
'3/ DAC Reference . - PXNext - Row_Deleted() ; o
; . -PXPrev - Field_Verifying() : c

)4 ; S - Field_Updating() §

N
\‘—\- TT . I.
___ T E——————
s N &
Data Access Class =
\) o
] | | o
| 1l | :
[1: S

Database Web Services Session

Figure: Application architecture

The picture above illustrates the application component model from the point of view of the application
programmer.

Data Access Layer

Data Access Layer is implemented as a set of data access classes which wrap data from database tables
or data received through other external sources. A data access class associated with a database table
may be generated with the help of the Data Access Class Generator wizard, which reads database meta
data and allows the application developer to select a table and specify columns that should be reflected
in the data access class.

Instances of data access classes are maintained by the Business Logic Layer. Between request they are
stored in the session through a custom optimized serialization mechanism.

| Acumatica Framework Overview | 18

Business Logic Layer

The business logic is implemented though the business logic controller. These objects are classes
derived by the application programmer from the special API class and tied to one or more data access
classes.

Each business logic controller consists conceptually of two parts: (i) Object Model, which includes the
required data access classes, their relationships, and other meta information, and (ii) Business Logic
section, which implements the business logic. Each business logic controller could be accessed from
Presentation Layer or from the application code that is implemented within another business logic
controller.

When the business logic controller receives an execution request, it extracts data required for request
execution from the data access classes included in the Object Model, triggers business logic execution,
returns its result to the requesting party, and updates data access classes instances with modified data.

Presentation Layer

Presentation Layer is responsible for providing access to the application business logic through the GUI.
It consists of a set of declarative Web Forms bound to particular business logic controllers. Web Forms
are created by the application developer from the templates provided with Acumatica Framework and
customized with the help of the Layout Editor wizard, which utilizes meta data information extracted
from the business logic controller.

When the user requests a hew web page, the Presentation Layer is responsible for processing this
request. Web Forms are used for generating static HTML page content and providing additional
service information required for dynamic configuration of the Web Controls. When the user receives
the requested page and starts browsing or entering data, the Presentation Layer is responsible for
handling asynchronous HTTP requests. During processing, the Presentation Layer submits a request to
the Business Logic Layer for execution. Once execution is completed, it analyzes any changes in the
business logic container state and generates the response that is sent back to the browser as an XML
document.

Business logic can also be accessed through the generic Web Services that are part of the Presentation
Layer as well. Web Services provide an alternative interface to the application business logic associated
with a particular Web Form. From the point of view of the related business logic controller, request

from the Web Form and the Web Service are identical and, thus, cause execution of exactly the same
business logic. Unlike Web Forms, Web Services are generic and automatically generated by the
Acumatica Framework runtime component, based on meta data information extracted from the business
logic container and the Web Form.

The Presentation Layer also includes reports created with the Acumatica Report Designer. At runtime,
reports are loaded and executed through Reporting Services, which interface with the Presentation
Layer through the special, predefined, business logic controller included in the Application Foundation
Layer.

Runtime Tools

The previous section explained the ability of Acumatica Framework to deliver a set of core services
and tools that are important for building and deploying large business applications. All these tools
and services are generic and transparent to the application developer. This means that the application
developer should not worry about implementing them during the design or application programming
stages. In this section, the tools and services used at run time are explained in more detail.

Role-Based Security

Applications created with Acumatica Framework automatically implement role-based security. Access
rights can be assigned to:

| Acumatica Framework Overview | 19

e A group of screens and reports that have similar logic and are listed under the same namespace
e A screen or report
e Fields used in a particular screen or report
e Methods that can be executed from a particular screen or report
The following access rights can be granted:
e Namespace: Denied, View Only, Granted

e Screen or report: Denied, View Only, Edit, Insert, Delete, Undefined (inherited from the
namespace level)

e Field: Denied, View Only, Edit, Undefined (inherited from the screen level)
e Method: Denied, Granted, Undefined (inherited from the screen level)
Assess rights are implemented on the Business Logic Level. Access rights are validated each time the
business logic is accessed through both GUI or Web Services.
Personalization
Applications created with Acumatica Framework can be personalized by the user through:
e Adding any application screen or report to the favorites folder
e Saving widgets of an application screen to the personal dashboard
e Preserving the sequence, width, and set of visible columns for grids in any application screen
e Preserving personal filtering settings for any grid and lookup window in any application screen

e Configuring personal export and regional settings

Localization

Applications created with Acumatica Framework can be localized on the presentation, business logic,
and database level owing to:

e Standard Microsoft.NET localization mechanism is implemented for localizing the presentation
layer.

e All messages returned from the business logic layer can be localized through the dictionary
mechanism.

e The runtime environment of Acumatica Framework supports the Unicode standard to store and
operate with data in a non-ANSI format.

e Information like addresses or product descriptions can be stored in special, language-specific,
database fields and presented in the user selected language.

Acumatica Framework also provides a built-in utility that enables localization of the product by the end
user. Once localization is entered and applied, the applicaiton does not require any recompilation or re-
installation. Also, localization can also be exported, imported, and merged.

Customization for End Customers

An important feature of Acumatica Framework is the built-in support for end-customer customization,
which allows modification of all application layers without recompilation and re-installation of the
application and includes:

e Customization of the Presentation Layer through:

e Removing or disabling controls from any application form

| Acumatica Framework Overview | 20

e Changing the form layout by moving controls and changing the tab order of controls
¢ Adding new bounded and unbounded controls to any application form

¢ Modifying lookup logic by adding more fields to the lookup windows or even by completely
replacing the lookup logic

e Customization of the Data Access Layer through an extension of the database scheme with new
user defined fields

e Customization of the Business Logic Layer by submitting a custom application code to the
application server

Customization is stored separately from the core application code as meta data. Customization can
be modified, exported, or imported. Because customization is stored separately, it is preserved with
updates and upgrades of the core application.

Customization for Serial Solutions

Acumatica Extensibility Framework is a part of Acumatica Framework customization plaform that
enforces development of third party solutions for multiple customers. Acumatica Extensibility
Framework is the key instrument for independent software vendors (ISVs), owing to the following
features:

e Customization of the Data Access Layer through an extension of the database scheme with new
user-defined fields or new user-defined tables that are logical extensions of existing tables

e Customization of Business Logic Layer through extension classes built into a separate assembly

e Support for multiple interdependent extensions of both the Data Access Layer and Business Logic
Layer on a single instance of the end-customer application

Generic Web Service API

Applications created with Acumatica Framework expose a generic Web Service application programming
interface (API). The API is based on SOAP and WSDL standards and provides programmable access to
the same application logic. It is a fast, reliable, and convenient way to perform such operations as:

e Data migration and data import

e Data query and extraction of information for reporting
e Application integration with the external systems

e Execution of long running operations

e Administrative tasks

Each operation made in the API is executed through the same business logic as in the GUI. This ensures
functionality and database integrity of the application, regardless of the way it was accessed.

Access to the business logic layer through the API is controlled by the same security mechanism that
controls access to the business logic layer through the GUI. In order to perform the API operations, the
user must be authorized on the application server and must be granted the appropriate access rights.

The Web Service API is dynamically generated from the application data access and business logic
layers and customized metadata. Meaning that if any customization of the data access layer or the
business logic layer is made, it will be reflected with the Web Service API as well.

Development Tools

Providing the development tools and the methodology that make a modern web application a
commodity is one of the main objectives of Acumatica Framework. This section gives an overview

| Acumatica Framework Overview | 21

of such development tools and methodologies provided by Acumatica Framework to the application
developer and explains on examples of how this increases product quality and the application
programmer's productivity.

Visual Web Designer Support

The Acumatica Framework Integrated Development Environment (IDE) is built on top of the Microsoft
Visual Studio product. However, it implements its own set of web controls to generate an advanced GUI
in a web browser.

The creation of a consistent, professional, and appealingly looking GUI is a complicated task, and
special attention was paid in Acumatica Framework to GUI development. All of Acumatica Framework's
Web Controls have the same rendering and similar appearance in design mode in the IDE and

runtime mode in a web browser. This allows the developer to utilize all the facilities of the Visual Web
Designer component of Visual Studio. The application developer can use the convenient drag-and-drop
mechanism to create an application form layout, to perform form visual editing, and to set control's
properties and behavior through an intuitive graphical interface. This approach does not require any
knowledge of HTML or Java Script, yet allows the developer to create a professional and appealing web
GUIL.

The example below illustrates design versus runtime rendering.

Pages/RapidByte/RB204000.aspx X
I MMasterpages/FomTabmasa] << S Suppliers Help ~
Save Cancel Inset Delete Fist Prev Nedt Last 2]

> |+ || D | W K < > 2l

CompanyName AccountCD

CompanyName Supplier ID:)

Supplier | Products

ContactTitie CreatedByiD

Addross CreatedByScreenD Supplter) JEEEEES

city CreatedDateTime ContactTitle: CreatedByID. admin - admin)
— LasthodifiedByiD Address: CreatedByScreeniD: |RB.20.40.00

EeETeT LasthodifiedByScreer City CreatedDateTime: |5/20/2013 7.0t ~

LastiodifiedDateTim¢ Region: LastiodifiedByID: agmin - admin el
CountryCD

PostalCode: LastiodifiedByScr... |RB.20.40.00
Phone

CountryCD: LastMlodifiedDateTi...|5/2012013 7:0: ~
Fax Y
Phone:

o Fax

G Design | o Split | @ Source | [{] <asp:Content=contl> C|

Figure: Web Form in design mode (left) vs. Web Form in runtime mode (right)

Convenient Programming API

In Acumatica Framework, the application programmer is provided with a convenient, event-driven
programming API, traditional in rich GUI applications. This model covers database access, business
logic, GUI behavior, and error handling. All coding is done with a single language: C#.

This piece of code is written to update the receipt total once one of its related transactions is updated
and gives an example of the business logic implemented in the business logic controller:

public virtual void DocTransation RowUpdated (PXCache cache,
PXRowUpdatedEventArgs e)
{

DocTransaction old = e.0ldRow as DocTransaction;

DocTransaction trn = e.Row as DocTransaction;
if ((trn != null) && (trn.TranQty != old.TranQty ||
trn.UnitPrice != o0ld.UnitPrice))
{
Document doc = Receipts.Current;

if (doc != null)

{
doc.TotalAmt -= old.TranQty * old.UnitPrice;
doc.TotalAmt += trn.TranQty * trn.UnitPrice;
Receipts.Update (doc) ;

| Acumatica Framework Overview | 22

This code's execution will result in the following behavior:
1. The user selects document transaction in the grid and updates its fields.

2. To complete the row editing, the user presses Ctr/ + Enter on the keyboard. This triggers an
event and execution of the code above resulting in update of the receipt total (see the figure

below).
Document Info Totals Document nfo Totals
+ Reference Nor 0008) TotalAmt « Reference Nbr. 0008) TotalAmt
DocType: Receipt - TotalQty 10.00 DocType: Receipt - TotalQty 15.00
+ DocDate 1111900 - Released + DocDate: 1111900 M Released
ExtDocNbr: e BBzl Audit data
SURCHEIE) L CreatedBylD admin - admin] Slipes el CreatedBylD: admin - admin Jal
Description: CreatedByScreen|D: RE.20.10.00 Description CreatedByScreeniD RE.30.10.00
CreatedDateTime 5/2412013 122 CreatedDateTime: 5/24/2013 122 ~
LasthlodifiedBylD: admin - admin) LastModifiedBylD: admin - admin)
LastiodifiedByScreeniD: | RE 30.10.00 LastiodifiedByScreeniD: RE 30.10.00
LasthodifiedDateTime: 5/24/2013 12 ~ LastModifiedDateTime: 5/24/2013 12 ~
C Refresh = New Line W Delete | |=|Adust] Export (@ Refresh < New Line W Delete | | adust [x] Export
Tran. Gty ProductlD Unit StockUnit Conv. UnitPrice Line Total LastTransacti... Tran. Qty ProductlD Unit StockUnit Conv UnitPrice Line Total LastTransacti..
7 BANANA 100kg 100 kg 1.0 200.00 >BANANA 100 kg 100 kg 1 D 200.00

Figure: Example of document transaction details update

BQL and Multiple Database Engine Support

With Acumatica Framework, the application programmer is restricted from direct database access and
from writing SQL queries. Database specifics are hidden for the application behind data access classes,
and the SQL queries are constructed declaratively through Business Query Language (BQL). Through

a set of generic classes, the BQL library provides rich syntax for building equivalents of SQL queries

of any complexity. Unlike SQL statements, BQL statements operate with data access classes, rather
than database tables, and provide compatibility between different database engines. The BQL library
supports MS SQL and MySQL database engines as well as access to the database through the ODBC
provider.

You can see an example of building BQL queries in the application code below, where BQL queries are
declared using generic PXSelect and PXSelectOrderBy classes and execution of the queries is triggered
by invoking static Select () methods of these classes:

private IEnumerable accIngRecords ()
{
int? ledgerid = ((AccountHistoryFilter)AccIngFilter.Current) .Ledger;
string periodnbr = ((AccountHistoryFilter)AccIngFilter.Current) .PeriodNbr;
if (ledgerid == null && periodnbr == null)
yield break;

List<string> fperiods = new List<string>();

if (periodnbr != null)

{

foreach (FiscalPeriod fp in
PXSelect<FiscalPeriod,
Where<FiscalPeriod.periodNbr,
Equal<Current<FiscalPeriod.periodNbr>>>>.
Select (this))

fperiods.Add (fp.FiscalPeriodID) ;

}

foreach (PXResult<AccountHistory, Account> res in
PXSelectOrderBy<

| Acumatica Framework Overview | 23

AccountHistory,
LeftJoin<Account,
On<AccountHistory.accountID,
Equal<Account.accountID>>>,
OrderBy<Asc<Account.accountCD>>>.Select (this))

AccountHistory ah = res;
if ((ah.LedgerID == ledgerid || ledgerid == null) &&
(fperiods.Contains (ah.FiscalPeriod) || periodnbr == null))
{
yield return res;

}
}

Besides creating abstraction from the database specifics, the BQL library also provides the following
benefits to the application programmer:

e Compile time statements verification

¢ Dynamic query building

e Prevention of SQL infusion

e Intellisense support

e Implemented methods for select, insert, update, and delete

¢ Intelligent requests execution.

A repeated request does not result in additional query to the database and returns the data cached in
the business logic controller, unless the requested collection was changed in the database. The Business

Logic Layer can be configured to identify such situations and automatically load and return the latest
version of data from the database.

Code Reuse through Attributes

Take a look at the first example of code above. It implements logic of updating receipt total based
on updating a document transaction. Such logic is often common for entire applications, not a single
screen. This logic can be generalized by having it moved into an Attribute class. The attribute is used

to annotate a data field in the data access class. Then it can be reused anywhere in the code, as in the
example below:

public class DocTransaction : PX.Data.IBglTable
{

#region TotalAmt
public abstract class totalAmt : PX.Data.IBglField
{

[PXDBDecimal (2)]

[PXDefault (TypeCode.Decimal, "0.00")]

[PXUIField (DisplayName = "Line Total", Enabled = false)]

[DeltaMultiply (typeof (DocTransaction. tranQty), typeof (DocTransaction.unitPrice),
typeof (Document. totalAmt)]

public virtual decimal? ExtPrice { get; set; }

#endregion

}

In this example, the logic of updating receipt total on updating of the transaction is generalized and
implemented inside the DeltaMultiply attribute. It will be triggered after each update, delete, or insert
operation on the DocTransaction data access class instance and will update totals on the receipt level,
in the the appropriate Document data access class instance.

| Acumatica Framework Overview | 24

Acumatica Framework provides a wide range of preprogrammed attributes that can be used for defining
data types, database mapping, referential integrity, data format validation, and specifying default
values for the field, among other things. For example, the logic shown in the above example can be

implemented using the preprogrammed PXFormula attribute, which is meant exactly for implementing
calculations of data fields:

public class DocTransaction : PX.Data.IBglTable
{

#region TotalAmt

public abstract class totalAmt : PX.Data.IBglField
{

[PXDBDecimal (2)]

[PXDefault (TypeCode.Decimal, "0.00")]

[PXUIField (DisplayName = "Line Total", Enabled = false)]

[PXFormula (typeof (Mult<DocTransaction. tranQty, DocTransaction.unitPrice>),
typeof (SumCalc<Document. totalAmt>))]

public virtual decimal? ExtPrice { get; set; }

#endregion

As the data access classes are shared within an application, formatting, custom logic, and any
constraints implemented in attributes will be reused in each business logic controller that utilizes
this data access class . This technique allows the user to move shared application functionality into
attributes and avoid code duplication, while still enforcing application integrity.

Error and Message Handling

Acumatica Framework provides the application programmer with a standard mechanism to handle
multiple errors and messages in the application code, which transparently passes these errors and

messages to the client. The code below gives an example of handling an error triggered by the business
logic on an attempt to add a data record:

protected virtual void SupplierProduct RowInserting (PXCache cache,
PXRowInsertingEventArgs e)
{

SupplierProduct product = (SupplierProduct)e.Row;

if ((product != null) && (product.ProductID != null))
{

SupplierProduct record =
PXSelect<SupplierProduct,
Where<SupplierProduct.accountID,
Equal<Current<Supplier.accountID>>,
And<SupplierProduct.productID,

Equal<Required<SupplierProduct.productID>>>>>.
Select (this, product.ProductID) ;
if (record != null)

throw new PXException ("Such supplier's product already exists");

This code will result in the error indication in the GUI if the user attempts to a add a product that
already exists for the given supplier account, as illustrated below.

Supplier

c

@ Products

] =

Conversion Fa...

+

Produc... +SupplierUnit
BANANA 100
CABBAGE 150

© BANANA

| 1o

Supplier Price Last Supplier ... LastPurchas..
35.00 0.00 51412013
50.00 0.00 5M18/2013
0.00 0.00

MinOrderGty CreatedBylD
0.000000000 admin
12 0.000000000 admin

10

Such supplier's product already exists

Figure: Error handling example

Managing Advanced GUI Behavior

| Acumatica Framework Overview | 25

By using the API provided by Acumatica Framework, the developer has access to special properties of
the Business logic controller. Elements such as: visible, disabled, tab stop, color etc. These properties
are mapped to the appropriate properties of Web Controls during data binding. Any change to these
properties gets propagated back to the browser during the request execution and is reflected in the
user GUI. This piece of code illustrates disabling of controls in case the document is not subjected to

modifications because of its state:

protected void Document RowSelected(PXCache sender, PXRowSelectedEventArgs e)

{

Document doc

e.Row as Document;

if (doc == null || doc.Released == true)

{
PXUIFieldAttribute.SetEnabled (sender, doc, false);
Receipts.Cache.AllowDelete = false;
Receipts.Cache.AllowUpdate = false;
ReceiptTransactions.Cache.AllowDelete = false;
ReceiptTransactions.Cache.AllowUpdate = false;
ReceiptTransactions.Cache.AllowInsert = false;

}

else

PXUIFieldAttribute.SetEnabled (sender, doc, true)

PXUIFieldAttribute.SetEnabled<Document.totalAmt> (sender, doc, false);
PXUIFieldAttribute.SetEnabled<Document.totalQty> (sender, doc, false);
Receipts.Cache.AllowDelete = true;
Receipts.Cache.AllowUpdate = true;
ReceiptTransactions.Cache.AllowDelete = true;
ReceiptTransactions.Cache.AllowUpdate = true;
ReceiptTransactions.Cache.AllowInsert = true;

}

PXUIFieldAttribute.SetEnabled<Document.docNbr> (sender, doc, true);

PXUIFieldAttribute.SetEnabled<Document.docType> (sender, doc, true);

This code's execution will result in the following behavior on the screen:

1.
the grid are available for modification.

2.

The user selects a document that is not released and can see that the controls on the form and

The user navigates to a released document and can see that the data entry controls become

disabled. Also, the user cannot insert or update any data in either the document header or the

details (see the figure below).

| Acumatica Framework Overview | 26

= + B~ u I< < > >l = + » - 1< < > >l
Decument Info Totals Document Info Totals
= Reference Nbr 0004 I TotalAmt 0.00 = Reference Nor 0004 I TotalAmt 0.00
DocType: Receipt - TotalCty: 10.00 DocType: Receipt - Total Gty 10.00
* DocDate mneon - = DacDate 1111300
ExDochbr Audt data Eubochor Auott data
SuRigh 2 CrealedByID: admin - admin @ Sk CreatedByID: admin - admin
Description: CreatedByScreeniD: RB.30.10.00 Description CreatedByScreeniD. RB.30.10.00
CreatedDateTime: 5/24/2013 127 CreatedDateTime: 5242013 12:24
LastModifiedBylD: admin - admin Il LastModifiedBylD admin - admin
LastModifiedByScreenlD: RB.30.10.00 LastModifiedByScreenlD: | RB.30.10.00
LastlodifiedDateTime: 5124/2013 121 ~ LastModifiedDataTime: 5/24/201312:24
C Refresh == NewlLine W Delete | || Adjust] Export C Refrash | k=lagmust [x] Export

Tran. Gty ProductiD Unit StockUnit Conv UnitPrice Line Total LastTransacti Tran. Gty ProductiD Unit StockUnit Conv... UnitPrice Line Total LastTransacti...

> 10.00 BANANA 100 kg 100 kg 10 0.00 0.00 ¥ 10.00 BANAMA 100 kg 100 kg 10 0.00 0.00

Figure: Example of disabling controls

It is important to mention that changes in the representation logic coded inside the business logic
controller are not pushed into the Presentation Layer, but requested by the Presentation Layer if it
supports and recognizes this additional information. This technique enables support of an alternative
Presentation Layer like Web Services that might not be aware or require such advanced behavior.

At the same time, it allows programming of advanced GUI behavior in the same location where the
application business logic is coded. This feature is convenient for the programmer, because it reduces
the application code base and the possibility of programming mistakes.

Master Pages, Templates, and CSS Support

The Visual Studio project and item templates provide reusable and customizable project and item stubs
that accelerate the development process, removing the need to create new projects and items from
scratch. Project templates provide the basic files needed for a particular project type, include standard
assembly references, and set default project properties and compiler options.

Acumatica Framework distribution includes:
e The project template for the creation of a new application
e A set of page templates that automate the creation of typical page layouts

The master pages mechanism in ASP.NET allows for the creation of an application that looks and feels
consistent. Master pages define the standard appearance and behavior that is common in all application
pages. The application developer creates individual content pages that refer to the master page. When
a content page is requested, it merges with the master page to produce output that combines the
layout and base functionality of the master page with the content of the requested page.

Acumatica Framework fully supports the master pages mechanism and provides the application
developer with a set of predefined master pages. The application developer can design his own master
pages or modify existing ones.

A web application written with Acumatica Framework supports style modification through Cascading
Style Sheets (CSS).

The combination of these technologies creates consistent application GUI and behavior.

Application Creation Wizards

Acumatica Framework provides a set of wizards for automating creation of data access classes and Web
Forms. Use of these wizards eliminates the manual job associated with data access class creation and
data biding configuration.

| Acumatica Framework Overview | 27

ol Data Access Class Generator [

Table Properties
Name: Ascourt - Class Name: Account

Append Ul Altributes Namespace: RB RapidByte

Class File: C:\Program Files ¢e86)\Acumatica Studio\RB\RB\Rz

Columns And Attributes

[Z] ComparyType Active Attibute Constructor
~ | FXDBSting(15. IsUnicode = true)
[¥] CompanyName + | PXDefaut)
[7] ContactTtle UFed <] o "
7] ke Ul Field PXUIField(DisplayName = "Accourt ID")

[v] Gty # [] -
[¥] Region
[¥] PostalCode

[¥] CourtryCD

[7] Phane

V] Fax

[¥] TStamp

[¥] CreatedBylD

[¥] CreatedBySereeniD
[V] CrestedDate Time

[¥] LestModifiedByID

[¥] LestModifiedByScreer
[¥] LestModiedDate Tim

« f

Add o Custom Fields st]

Figure: Data Access Class Generator

The Data Access Class Generator wizard provides the application developer with an easy and convenient
way to create and modify data access classes. It implements the following functionality:

e Reading data structure from a table, SQL query, or Web Service (referred to as an external data
source).

e Creating a data access class based on data structure received from external data source.

e Reading data access class structure from its definition and merging it with data structure received
from the external data source.

e Automatical mapping of application-specific attributes based on external data source properties'
names.

The Data Access Class Generator wizard is a powerful reverse engineering tool, which allows the user to
connect to an existing database and extract the information required for building the application Data
Access Layer.

a2 Layout Editor |
=] =& Layout Rule [Container - [53 Control »
[Properties | Fields
Column
7] &
= AccourtCD 7‘]’ |
2 CompanyName Caption o
= ContactTile CaptionVisible True
=B Group (Location} > Contertlayout
= Address DataMember Customers
2 City EnableExq
2 Region Height 200px
= PostalCode Parameters {Collection)
= CountryCD SkinlD
= EndGroup Width 100%
=-E Column 4 Behavior £
= Group (Contacts) Client!DMode Inhesit
= Phone ViewStateMode Inheit
= Fax 4 Data
= EndGroup (Expressions)
=B Group (Audit data) 4 Ext Property
2 CreatedBylD Activitylndicator False
=) CreatedBySereeniD AlowCollapse Falss I
= CreatedDateTime > CallbackCommands
= LastModffiedBylD > ClientEvents
= LastModfiedByScreenlD DataSourcelD ds
= LastModfiedDateTime Dt o =
= EndGroup Auto Format
DataScurcelD
The cortrol 1D of an IDataSounce that will be used as the data source

Figure: Web Page Layout Editor

| Acumatica Framework Overview | 28

The Layout Editor wizard automates creation of new web forms. It uses meta data stored in the
business logic controller and data access class to help the application developer create new web forms
or to modify existing ones in a fast and efficient manner. The Layout Editor wizard implements the
following features:

e Reading meta data from the business logic controller and the data access class and creating a list
of controls that could be added to the Web Form.

¢ Adding controls selected by the programmer to the Web Form.

e Updating Web Form controls with changed business logic controller and the data access class

meta data.

Acumatica Report Designer

Acumatica Framework provides application developers with an integrated report designer.

R Properties

T

Acumatica Report Designer =8 =n |
File Edit Format
o= X
I I T e T e AR S e T (hpoer |-
Bl pageHeaderSectionl + | b TextBox
Product Replenishment - | * Category: | [<[@CategoryName}] Page |[-PageOf] =] PictureBox
5 |User - I-Repars GesDUithspsssinf Usemama' | -SUBPAiEE . |[={@SupplierCD]] Dts; |[=Todzy()] -
N Line
[l greupHeaderSectionl (Header of Suppliers) A Chrt
a
- Supplier - |[=[Accounts. CompanyName]]- - - - | * |Gontact: - [={Acceunts: ContactNeme]+'=+{Accounts. ContactTitle} - o
B 1S bRenvst
5 Phone: - - |[=[Accounts. Phone]]
- Country: - [=[Accounts Country]] Froperies | Flds |
* |category/Product: - - |Stock Unit: | -+ inStock| - - :On Orders| - - Min Level| - MinReorder: detsiSection? DetaiSection M
o s
B groupHeaderSection2 (Header of Categories) @/‘l ‘
li=fProducts:CategeryNamel} | B Appearance
ColumnCourtt 1
(] detailSectionl
ColumnSpacing
- |[=[F’mduELs ProductNamel} [={Product. | -[=[Products. | -[=[Products. | -[=]Products. |[=Hf({[Product’ ’ Height Jm
| = Style
StyleName
Style.,
N E Behavior
B Style Copy KeepTogether True
- Style Paste PageBreak None
- PrirtAtBottom False
a Reset Style PintErety o
B Duplicate section WhikRezd =]
- ResetPageNumber False
Bl greupFooterSection2 (Footer of Categories) |5 Select reportl Varizbles (Collection)
i = 1 Visble Tue
[El groupFooterSectionl (Footer of Suppliers) Cut VisibleBxpr
Copy S upplier totah | [=Sum(IIf(([Pr B Design
- Past EP) [(s ’ (Name) detail Section2
[l pageFooterSectionl e DranGiid True
A Delete GridSize 8px: 8px
SnapToGrid True

Specfiesthe report ftem processing order.

Figure: Acumatica Report Designer

Acumatica Report Designer is implemented as a standalone desktop application. It can be used by both
application developers, for developing new reports, and end users, for customizing existing reports.

Acumatica Report Designer is tightly integrated with Acumatica Framework runtime components and

provides the following features and services:

e Remote connection to the application server and the ability to browse the application database

schema through web services.

e Report's query designer that supports simple selects, sub selects, views, and server-side pre-

processing.

e Grouping, sorting, and filtering support.

e Creation of report elements tree with support of drag and drop placement of report elements on

the design form.

e Automatic formatting of report elements based on meta data extracted from application database

schema.

e Support of basic aggregate expressions and runtime-calculated formulas.

e Support of mass control movement, alignment, editing, and formatting operations with undo

functionality.

| Acumatica Framework Overview | 29

e Integrated report starting form with report parameters that are dynamically loaded from the
report's definition.

e Runtime synchronization of report elements' formatting such as setting masks and decimal values'
precision.

e Export to HTML, Excel, and PDF formats.
e Drill down to application forms.

Integrated with Reporting Services,Acumatica Report Designer provides a complete reporting solution
for the application developer and a complete set of customization tools for the end user.

Conclusion

Acumatica Framework provides the complete suite of components and technologies for developing
complex web applications with rich graphical user interface.

Acumatica Framework is generally suitable for creating any kind of application, but the biggest
competitive advantage could be achieved on large projects that require the creation of multiple screens,
with similar interface and rich business logic functionality, such as:

e Business Support Systems (ERP, CRM, or MRP)
e Large custom solutions implemented by consulting companies
e Custom solutions in large companies implemented by internal development teams
The main advantages Acumatica Framework provides are:
e High speed of application development through the high level of development automation
e Low number of errors in the application code by enforcing code reuse and application integirty
e Simplicity of the platform through a single coding place
e Language and transparency of the platform services to the application developers

e Scalability and high-availability of the created application combined with simple application
deployment

e Remote availability of the created application through the common Internet connection
¢ Rich and consistent GUI
All of this results in:
e Faster time to market
e Lower application development costs
e Lower TCO for customers

e Better user experience and satisfaction

Components and Tools

| Components and Tools | 30

Acumatica Framework provides a set of development tools and Visual Studio templates for building

applications:

e Acumatica Framework Configuration Wizard

e Report Designer
e Acumatica Framework Templates
e Data Access Class Generator

e Layout Editor

Acumatica Framework Configuration Wizard

The wizard helps you to create, deploy and maintain applications built on Acumatica Framework.

Q Acumatica Framework Configuration Wizard B

Please select one of the options below to continue:

+ Deploy New Instance of Acumatica Application Template

Select this option if you are running this wizard for the first time or if you need to deploy a new
instance of Acumatica Framework application

+ Deploy New Instance of Acumatica Training Application

Select this option if you need to deploy a new instance of Acumatica Framework training
application with all demo data

+ Perform Database Maintenance

Select this aption if you need to create new application database or upgrade existing database
with a current version of the database schema

+ Perform Application Maintenance

Select this option if you need to upgrade existing instance Acumatica Framework application with
a current version of the software.

+ Deploy Acumatica Framework Tools

Select this option if you need to deploy the Acumatica Framework Tools.

@ Version: 4.10.0468 itp i wweracumatica

Welcome to the Acumatica Framework Configuration Wizard

Q Acumatica

Figure: Acumatica Framework Configuration Wizard

Report Designer

Report Designer is the visual tool for creating report forms and printable pages.

| Components and Tools | 31

sl Acumatica Report Designer

[E] pageHeaderSectionl

File Edit Format
BEeHY | BRXY DRL(E & ST & .85 E e 0 & S
[] sl el 2 e 3o 4 B B o F o B 90 1000 211 212 0 22300 14 0 1B 1 216 1 3T

k Pointer -

ab: TextBox
=|FictureBax
= | Panel

\ Line

74 Chart

m

4 [

g_; Deesign

Properties | Figlds

report1 Report

B2

4 Appearance

> Style
StyleName
StyleSheet
Styles Template
Title

4 Behavior

> CommonSettings
Localizable

> MailSettings
MavigationDepth
Mavigation Tree
ParamsColumns
ProcessOrder
RequestParams
RequestSign
TabularFresze
TabularReport

Visible
Visible Expr
4 Data

{Collection)

Tue

0

True

2
WhileRead
True

False

Opxc

False

ViewerFieldsMode MengeWithlUsed

Tue

Indicates the name of the report item.

m,

Figure: Report Designer

Acumatica Framework Templates

The Acumatica Framework Templates is a package of default Visual Studio templates that include:

1. PXGraph class template
2. FormDetail page template
3. FormTab page template
4. FormView page template
5. ListView page template
6. TabDetail page template
7. TabView page template

it o)

Installed Templates Sort by | Default - | Search Installed Templates 2|
5'(L& FormDetail W Crystal Report Type: Visual C#
L& FormView 528 Dynamic Data Field
LA ListView =] Generic Handler
I L& TabDetail [s] HTML Page
.' L& TabView &) Jscript File
I [E] Web Form [£, LINQto 5QL Classes
'. 1 Master Page 2 Preprocessed Text Ten
" Web User Control Report
i 4 ADO.NET Entity Data Model il Report Wizard
: 4 ADO.NET EntityObject Generator B ResourcefFile
| 4 ADO.NET Self-Tracking Entity... B Silverlight 1.0 JScript P
: B% AmIAX-enabled WCF Service & silverlight Application
f ©] Browser File B2 Silverlight-enabled WC
& Class & siteMap
2 Class Diagram [Skin File
| ClF—Tm— ;
Name: FormDetail.aspx | Place code in separate file
|| Select master page

m
U

Figure: Acumatica Framework Templates

Data Access Class Generator

| Components and Tools | 32

The Data Access Class Generator tool is intended for initial automated generation of data access class
declaration. The Data Access Class Generator is opened from the data source's smart tag menu from a

page opened in the design mode in Visual Studio.

o Data Access Class Generator ==
Table Properties
Neme: Accourt -

(et | o

Class File: CATFS\Main\WebSites'\ Tutorial\RB'\RapidByte \DA

Class Name: Account

Columns And Aftibutes
AccountiD
CompanyType
AccountCD
CompanyName
ContactName

Active Altribute Constructor

CreatedDate Time:
LastModifiedBylD
LastModifiedByScreer
LastModified Date Tim

(s om) St ki 1

Figure: Data Access Class Generator

Layout Editor

The Layout Editor tool allows you to configure the page layout and adjust positioning of controls on a

form.

al Layout Editor

=) & Layout Rule 53 Container « [Control ~
B2 form Properies | Fields |
£ Row (Documert Irfo) N
Bl DocType s
-2 Dochbr 4 Base Property =
EI DocDate (ID) form M
B ExtDocNbr b AuoSize E
= Status BindingCortext
B AccourtlD Caption L
21 Description Caption Visible True
1B Column (Totals) b ContentLayout
1 TotalAmt Datallember Receipts
B TotalGty EnableBp
£ Column {Audt data) Height
Ei CreatedBylD Parameters (Collection)
| « 2 CreatedByScreeniD SkinlD =
1 CreatedDateTime
-2 LastModfiedBylD 4uto Fomel..
B LesthlodfiedByScresniD || [poyocon—in
B LastModfiedDaleTme The control ID of an IDataSeurce that wil be used as the data source.

Figure: Layout Editor

| Components and Tools | 33

| Design Guidelines | 34

Design Guidelines

This section contains the design requirements for the database schema and the application built on
Acumatica Framework.

e Database Design Guidelines

e Application Design Guidelines

Database Design Guidelines

The article covers the following aspects of database design:

e System and Application Tables

e Table and Column Naming Conventions

e Typical Columns and Data Types

e Primary Key

e Foreign Keys and Nullable Columns

e Audit Fields

e Concurrent Update Control

e Support for Attaching Additional Objects to Data Records
e Preserving Deleted Records

e Multi-Tenancy Support

System and Application Tables
The database of your Acumatica Framework-based application consists of the following tables:

e System tables: Those that are created by default for the application template and not used to
store your application data

e Application tables: Acumatica ERP tables (which exist if you have created an add-on project or
implemented customization)

e Application tables: Your own tables

Do not add columns to system tables or modify them in any other way. Such modifications could
corrupt the application and would be lost during the next database upgrade. See the System table list
file for the list of system tables.

Regarding your own application tables, you have to design and create the needed tables that store your
application data. You then map these application tables to data access classes (DACs) that define the
object model of the application. In one table, you can keep data records of multiple entities, each of
which is defined as a separate data access class in the application object model.

Table and Column Naming Conventions

When you are creating a table, you should consider the following suggestions regarding naming
conventions:

e Make sure that table and column names are valid C# identifiers, because these names match the
names of classes and properties you declare in the application. Do not start a table or column
name with a digit.

| Design Guidelines | 35

e Do not use the underscore symbol (_) in table or column names, because it is a reserved
symbol in Acumatica Framework. For example, CompanyType is a valid column name, while
Company Type is invalid.

e Use singular nouns for table names. Typically, a table is mapped to a data access class that
represents the entity. For instance, the SOShipment table contains data records that represent
instances of the SOShipment entity.

Acumatica Framework generates SQL statements with table and column names in the same letter
=| case as the corresponding data access classes and fields are declared in the application. Also, the
DAC Generator tool produces data access class declarations in the same letter case as the tables and
columns are defined in the database schema.

e Use two prefixes in table names: a two-letter company name and two-letter application module
prefix. For example, the MCSVAppointment table can be used in the Services (SV) module
for the MyCompany company. These prefixes help to distinguish your application tables from
Acumatica ERP tables and tables of other vendors if you create an add-on project or extension
library.

e If you add a column to an Acumatica ERP table, start the column name with the Usr prefix
followed by the two-letter company name. For instance, you could use UsrMCColumn for the
column of the MyCompany company. In this case, the column will be preserved during upgrades.
In your own application tables, there are no strict requirements to start column names with any
prefixes.

e Be sure that custom indexes on Acumatica ERP tables start with the Usr prefix followed by the
two-letter company name, so that the indexes will be preserved during upgrades.

Column Name Suffixes
We recommend that you use the following suffixes in column names:
e ID for surrogate keys, including database identity columns—for example, CustomerID
e CD for natural keys—for example, CustomerCD
e Nbr for numbering identifiers—for instance, OrderNbr
e Price for prices, such as UnitPrice
e Cost for costs—for example, UnitCost
e Amt for amounts, such as FreightAmt
e Total for totals, such as OrderTotal
e Qty, QtyMin, and QtyMax for quantities—for instance, OrderQty
e Date for dates, such as OrderDate
e Time for time points and time spans—for example, BillableTime

e Pct for percents, such as DiscountPct

Typical Columns and Data Types

You should use the following data types for columns. In the Type Attribute column in the table below,
you can find the most typical type attributes that are added to the corresponding data fields in the data
access class declaration.

Typical Data Types

Value Data Type (SQL Server) Type Attribute on the Data Field

Database identity int [PXDBIdentity]

| Design Guidelines | 36

Value Data Type (SQL Server) Type Attribute on the Data Field

Natural key (for example, nvarchar (15) [PXDBString (15, IsKey = true,

document number) IsUnicode = true)]

Line number int [PXDBInt]

Short string (for example, a nvarchar (20), nvarchar [PXDBString (20, IsUnicode =

name or unit of measure) (50) true)]

Long string (such as a nvarchar (255) [PXDBString (255, IsUnicode =

description) true)]

Type or status identifier (for int or char (1) [PXDBInt] or [PXDBString (1,

instance, a document type) IsFixed = true)] respectively

Boolean flag (for example, bit [PXDBBoo01]

active/inactive)

Price or cost, monetary units decimal (19, 6) [PXDBDecimal (6)]

Amount or total, monetary units decimal (19, 4) [PXDBDecimal (4)]

Quantity, pieces decimal (25, 6) [PXDBDecimal (6)]

Maximum, minimum, or decimal (9, 6) [PXDBDecimal (2)]

threshold quantity, pieces

Percent, rate (for example, decimal (9, 6) [PXDBDecimal (2)]

discount percent)

Weight or volume decimal (25, 6) [PXDBDecimal (6)]

Date smalldatetime [PXDRBRDate]

Time span int [PXDBTimeSpan (DisplayMask =
"t", InputMask = "t")]

Coefficient (such as a conversion decimal (9, 6) [PXDBDecimal (1)]

factor)

Primary Key

You have to define the primary key in each application table that you create. The primary key may
consist of one column or multiple columns. The primary key must include the CompanyID column if one
is defined in the table.

For each table, you can use one of the following typical primary key variants:

e One key column included in the primary key in the table and set as the key in the data access
class

e A pair of columns, with one column included in the primary key in the table and the other one set
as the key in the data access class

e Multiple columns that are included in the primary key and set as the compound key in the data
access class

In a setup table, the only CompanyID column must be included in the primary key.

One Key Column

You may use one key column for rather short dictionaries. For instance, you can use the two-letter
country code from ISO 3166 as the key in the Country table.

A Pair of Columns With Key Substitution in the UI

| Design Guidelines | 37

If you want to represent a user-friendly key in the user interface (UI) that corresponds to a surrogate
key in the database, you may use a pair of columns and the key substitution mechanism provided by
Acumatica Framework. You can define two columns in a table, one for the surrogate key (typically the
database identity column) and one for the natural key, and set only the surrogate key as primary in the
table. In the application object model, you set the key to the only natural key data field. In this case,
Acumatica Framework provides the ability to transparently work with different keys at the database and
application level. In the UI, users work only with the natural key while the database operates with the
surrogate key (see the key substitution scheme below).

Ul DAC DB

CD key CD key

'
D - CD

ID key

v

) J

ID denotes a surrogate key
CD denotes a natural key

Figure: Key substitution in Acumatica Framework

For instance, you can define two columns in the Product table, ProductID and ProductCD.
ProductID is the identity column that is the only column included in the primary key of the table.
ProductCD is the string key of a product instance, which is entered by the user through the UIL. The
ProductCD column isn't included in the primary key and is handled as the unique key column by
Acumatica Framework.

Multiple Column Key

The compound key consisting of multiple columns may be used for complex entities. For instance, you
can include two columns, DocType and DocNbr, in the primary key for the Document table. In the
DocDetail table, you may use DocNbr and DocDetailNbr as the compound primary key. The
corresponding data fields should be also set as the key fields in the data access class.

Foreign Keys and Nullable Columns

In the database, you have to define the primary key in each application table that you create. The
primary key defines the unique data record identifier, which provides table-level integrity of data.

There are no strict requirements to define column-level constraints and foreign keys in application
tables. Whether or not you define the constraints at the database level depends on the design approach
you use. At the higher level of the application object model represented by data access classes, you
can flexibly define any level of constraints, including default values, nullable fields, and parent-child
relationships between data access classes. If you aren't sure whether a column should allow a null
value, you can allow null values for it in the database. Later, in the data access class, you can make the
data field either required or nullable; you can even make the field required on one page and optional on
another.

For boolean and decimal columns, we recommend that you define default values either in the database, or
—] in data access classes. This simplifies the application code by helping to avoid multiple checking of values
for nulls.

Audit Fields

Audit fields keep meta information on the creation and last change of a database record. Audit fields are
updated automatically by the framework.

| Design Guidelines | 38

To enable tracking of audit data for a particular table, you should add the columns listed below to
the table and declare the corresponding audit data fields in the data access class. You have to add
the corresponding type attribute to each audit field. If the audit columns are properly created in the
database table and the corresponding data fields are declared in the data access class, Acumatica
Framework automatically updates audit data in these fields every time a data record is modified from
the application. The audit column parameters and DAC attributes are given below.

Audit Columns

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field
CreatedByID uniqueidentifier, not null [PXDBCreatedByID]
CreatedByScreenlID char (8), not null [PXDBCreatedByScreenID]
CreatedDateTime smalldatetime, not null [PXDBCreatedDateTime]
LastModifiedByID uniqueidentifier, not null [PXDBLastModifiedByID]
LastModifiedByScreenID char (8), not null [PXDBLastModifiedByScreenID]
LastModifiedDateTime smalldatetime, not null [PXDBLastModifiedDateTime]

Concurrent Update Control

You can add the SQL Server timestamp column to a table to make Acumatica Framework able to
handle concurrent updates. The corresponding timestamp data field should be declared in the data
access class. If the timestamp data field is declared, Acumatica Framework handles the timestamp
column automatically. Acumatica Framework checks the row version every time the row is modified. We
recommend that you add the timestamp column to all tables of your application (see the table below).

The Timestamp Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

TStamp timestamp, not null [PXDBTimestamp]

Support for Attaching Additional Objects to Data Records

You can attach additional objects to a data record—for instance, add a textual note or upload a file or
multiple files to a data record. You enable support for data record attachments for each particular table
individually. To enable support for data record attachments, add the column that stores the global data
record identifier (typically, NoteID) to the table and declare the corresponding field in the data access
class. For more information on file upload through an application page, see Working With Images.

See below for the global identifier column parameters and the attribute that should be added to the
corresponding DAC field.

The Global Data Record Identifier Column (NoteID)

Database Column Data Type (SQL Server) Type Attribute on the Data Field

Global data record identifier bigint, null [PXNote]
(typically named NotelD)

Preserving Deleted Records

Acumatica Framework provides a low-level mechanism for preserving deleted data records in the
database. With this mechanism, when an application initiates deletion of a data record, the data access
layer generates the SQL query that marks the data record as deleted but does not permanently remove
the data record from the table. On select, the data access layer generates the SQL query that returns

| Design Guidelines | 39

only data records that are not marked as deleted. The data records that are preserved in this way can
be restored. You can enable the preservation of deleted data records for each table individually. To
preserve data records in a particular table, add the DeletedDatabaseRecord column to the table
and do not declare the data field in the data access class. On deletion of a data record in the table, the
framework automatically preserves the deleted data record transparently to the application developer.

The DeletedDatabaseRecord Column

Database Column Data Type (SQL Server) Type Attribute on the Data Field

DeletedDatabaseRecord bit, not null Not declared in DAC

Multi-Tenancy Support

Multiple companies or tenants can work on the same instance of an Acumatica Framework-based
application with completely isolated data. The application looks identical to all tenants, but each
company has exclusive access to its data only. Data is isolated at the lowest level of the application, in
the data access layer that executes SQL queries for the company of the current logged-in user.

Multi-tenancy support is enabled for each particular table individually. To enable multi-tenancy support
for a table, add the CompanyID column to it and include the column in the primary key (see the
column parameters in the table below). The CompanyID column is handled automatically by the
framework and should not be declared in data access classes. If a table doesn't have the CompanyID
column, all data from the table is fully accessible to all companies that exist in the database. For more
information, see Support of Multiple Companies.

The following scheme illustrates how different logical companies work with the Acumatica Framework-
based application in a multi-tenant configuration. They work with the same application but have isolated
data access, as if they work with different database instances.

DB

Multi-tenant Acumatica
Framework-based
application

Company 1 Company 2 Company 3

Figure: Multi-tenant Acumatica Framework-based application

The CompanyID Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field
CompanyID int, not null, included in Not declared in DAC
primary key

Support for Shared Data Access Between Companies

Acumatica Framework provides shared data access in a multi-tenant configuration. Acumatica
Framework supports a hierarchy of logical companies that may work with a combination of shared and
individual data. In shared access mode, every company may work with its individual copy of a data
record. Copies differ by CompanyID. All copies represent the same logical object in the application but
different data records in the database. For instance, each company may use individual settings of the
application.

Support for shared data access is enabled for each particular table individually. To enable support for
shared data access for a table, add the CompanyMask column to the table (see the column parameters
in the table below). The CompanyMask column is handled automatically by the framework and should

| Design Guidelines | 40

not be declared in data access classes. If a table doesn't have the CompanyMask column, shared data
access is not available for this table.

The scheme below shows a possible multi-tenant configuration with shared data access between
Company 1, Company 2, and Company 3. Users of Company 2 have access to the data of all three
companies. Users from the other two companies have access to their individual data only. Physically,
the data of all three companies is stored in a single database instance.

DB

Multi-tenant Acumatica A \ A / A

Framework-based
application
with data sharing

Company 1 Company 2 Company 3

Figure: Shared data access in a multi-tenant Acumatica Framework-based application

The CompanyMask Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

CompanyMask varbinary (32), not null, Not declared in DAC
default OXAA

Application Design Guidelines

This document summarizes the application design and style conventions used in Acumatica ERP.

Development Environment Options
Acumatica Framework supports Microsoft Visual Studio 2008, 2010, and 2012. See below for additional
details about these versions.

For Microsoft Visual Studio 2008, you must have Service Pack 1 installed. Also, you must install the
following hotfix from Microsoft: KB967253.

The following settings are recommended for the MS Visual Studio environment to enforce a uniform
webpage appearance:

1. Set the following options under the Tools > Options > HTML Designer > CSS section:
e Font and text: CSS (classes)
e Padding and borders: CSS (classes)
* Floating, positioning, and sizing: CSS (inline styles)
e Bullets and nhumbering: CSS (classes)
e Background: CSS (classes)
e Margins: CSS (classes)

2. Select the following buttons and check boxes under the Tools > Options > HTML Designer >
CSS Styling section:

¢ Auto Style Application
¢ Only reuse classes with the prefix "style"
¢ Use width and height attributes for image instead of CSS

¢ Use shorthand properties when generating styles

http://connect.microsoft.com/VisualStudio/Downloads/DownloadDetails.aspx?DownloadID=17185

| Design Guidelines | 41

e Change positioning to absolute for controls added using Toolbox, paste, or drag

and drop
We also recommended that you modify the following options:
¢ View > Visual Aids > CSS Display:none Elements: False (cleared)

e View > Visual Aids > CSS Visibility:hidden Elements: False (cleared)

Captions
Add a caption to the following:

e Each form header

e Each form details grid header

Screen Numbering
When numbering screens in Acumatica ERP, use the following convention:

X
| | Sub-Screen Sequential Number
| Screen Sequential Number
Screen Type:

10 - Setup

20 - Maintenance

30 - Data Entry

40 - Inquiry

50 - Processing

60 - Reports
Two-Letter Module Code

X.99,99,99

I

I

I

|
|
|
|
|
|
|

Report Numbering

When numbering reports in Acumatica ERP, use the following conventions in addition to those outlined

above:

XX.6X.99.99

|
| Report Type:

61: Review Reports - Reports for document review prior to release

62: Register Reports - Reports used to print audit information
on processed documents or entities
63: Balance Reports - Reports reflecting current or historical

balance information

64: Forms - Printed webpages

65: Ingquiry Reports - Reports that provides status information
required for operational management

66: Statistical Reports - Reports that provide statistical or

historical information

| Application Programming Overview | 42

Application Programming Overview

Acumatica Framework provides the platform and tools for developing cloud business applications.
This document explains Acumatica Framework runtime structure, introduces main components, and
illustrates their relationships on simple examples.

The chapter is a starting point for application developers who are going to develop and customize
applications with the help of Acumatica Framework.

Runtime Structure and Components

An application written with Acumatica Framework has n-tier architecture with a clear separation of the
presentation, business, and data access layers. The picture below illustrates the application component
model from the point of view of the application programmer.

g
-~ - -
/ o w
“\\ (“\. T:l E
Web Form (ASP.NET) Web Service (WSDL) -% :
E
/| \ 8
e U A . N u s y. E ;
4 . . Y
Business Logic Controller N :
‘EntityModel . Entity Business Logic %
DAC Reference : Actions Events i
»| DAC Reference | : - PXSave - Row,_Inserted() _6': :
: - PXDelete - Row_Updated() ®
» . - PXNext - Rpw_De!gteq() : H
T : - PXPrev - Field_Verifying() : £
- P Upastng) ||| 2
" T -
VVVVVVVVVVVVVVVVVVVVVVV wJ l' e ‘_. 9
_ ~ 3 -
Data Access Class e
\) o
- - - Q
S e -) o
1T]| i o
N L g
=
(=

Database Web Services Session

Figure: Application architecture.

Data Access Layer

Acumatica Framework relies on object relationship mapping (ORM) technology to access the database
from the business logic. Acumatica Framework implements own, proprietary ORM technology. This
technology provides an application developer with a set of standard CRUD operations to execute on
database tables and methods to execute complex SQL queries.

An important feature of the Acumatica Framework ORM technology is a high-performance serialization
mechanism that stores modified but not persisted database records in the session state. Modified data
are merged with the result of the query execution to emulate statefull data access behavior for the
application developer and minimize the amount of data stored in the session.

| Application Programming Overview | 43

Business Logic Layer
Business Logic Layer is implemented as a set of business logic controllers (graphs).
Each business logic controller consists of two parts:

e Entity Model that declares data access classes the entities are stored in, their relationships, and
actions that can be executed over the entities

e Entity Business Logic that implements the business logic of the actions and events associated with
modifying entity data

Business logic controllers implement the interfaces for Presentation Layer to retrieve the entity data and
execute the actions over the entity. Business Logic Layer relies on Data Access Layer to retrieve data
from the database and execute CRUD operation.

Presentation Layer
Presentation Layer is responsible for providing:

e The user interface based on the ASPX technology and implemented as a set of declarative Web
Forms

e The alternative interface for accessing the business logic in the form of auto-generated Web
Service API

Presentation Layer is completely declarative and contains no business logic.

Querying the Data

This system implements a custom language for writing database queries called BQL (business query
language). It is not LINQ and doesn't use it. BQL is written in C# and based on generic classes syntax,
but still is very similar to SQL syntax. It has almost the same keywords placed in the order they are
used in SQL. For example:

PXSelect<Product,
Where<Product.availQty, IsNotNull,
And<Product.availQty, Greater<Product.bookedQty>>>>

If the database provider is MS SQL Server, the framework will translate this expression into the
following SQL query:

SELECT * FROM Product
WHERE Product.AvailQty IS NOT NULL
AND Product.AvailQty > Product.BookedQty

BQL gives several benefits to the application developer. It does not depend on database-provider
specifics, is object-oriented and extendable. An important benefit is compile-time syntax validation,
which helps to prevent SQL syntax errors.

Since BQL is implemented on top of generic classes, you need types that would represent database
tables. In the context of Acumatica Framework, they are called data access classes (DACs).

For example, to execute the SQL query from the example above, you should define the Product data
access class as:

using System;
using PX.Data;

// Types used in BQL statements should derive from special interfaces:
// table - IBglTable, column - IBglField.
[System.SerializableAttribute ()]

public class Product : PX.Data.IBglTable

| Application Programming Overview | 44

// The type used in BQL statements to reference the ProductID column
public abstract class productID : PX.Data.IBglField

{

}

// The property holding ProductID value in a record

[PXDBIdentity (IsKey = true)]

public virtual int? ProductID { get; set; }

// The type used in BQL statements to reference the AvailQty column
public abstract class availQty : PX.Data.IBglField

{

}

// The property holding AvailQty value in a record

[PXDBDecimal (2)]

public virtual decimal? AvailQty { get; set; }

// The type used in BQL statements to reference the BookedQty column
public abstract class bookedQty : PX.Data.IBglField

{

}

// The property holding BookedQty value in a record

[PXDBDecimal (2)]

public virtual decimal? BookedQty { get; set; }

Each table field is declared in a data access class twice:
e As a type to reference a field in the BQL command
¢ As a value to hold the table field data

If the DAC is bound to the database, it must have the same class name as the database table.
Fields are bound to the database by means of data mapping attributes (such as pxDBIdentity and
PXDBDecimal), using the same naming convention.

A complete code sample that queries the database is given below:

using System;
using System.Collections;
using PX.Data;

public static void Main ()
{
// Select Product records
PXResultSet<Product> res =
PXSelect<Product,
Where<Product.availQty, IsNotNull,
And<Product.availQty, Greater<Product.bookedQty>>>>
.Select (new PXGraph()):;

// You can iterate through the result set
foreach (PXResult<Product> rec in res)
{
// A record from the result set can be cast to the DAC
Product p = (Product)rec;
Console.WriteLine ("ID: {0}, available: {0}, booked: {0}",
p.ProductID, p.AvailQty, p.BookedQty):;

BQL library also supports such advanced features as:
e DACs that are not bound to the database
¢ Virtual fields that are not bound to the database

e Scalar sub-selects

| Application Programming Overview | 45

e Projections
e Stored procedures execution
e Server-side calculated fields

e Non-blocking updates of statistical data records

Entity Model Declaration

Business Entity or simply Entity in Acumatica Framework represents an individual instance of the
objects (such as Product, Order) to which the information pertains. Entity can be simple, where the
data are represented with a single database record in a single table, or complex. With the complex
entity, data are typically held in multiple tables and associated through a complex hierarchy and
relationship rules.

Working with the business entities in Acumatica Framework is implemented through the business logic
controller object also referred as graph (graph is a mathematical term for a set of objects where some
pairs of objects are connected by links).

A graph provides the interface for the presentation logic to operate with the business entity and relies
on Data Access Layer components to store and retrieve the business entity from the database.

Let's first take a look at the declaration of a simple business entity:

//Declaration of the graph
public class ProductMaint : PXGraph<ProductMaint>

{
//Declaraion of the data view
public PXSelect<Product> Products;

//Declaration of the actions
public PXCancel<Product> Cancel;

public PXSave<Product> Save;
}

In this example the graph implements the following interfaces:
¢ Products - the data view that can be used for querying and modifying entity data

e Cancel - the action that discard all the changes made to the entity and reloads it from the
database

e Save - the action that commits the changes made to the entity to the database and then reloads
the committed data

Handling Entity Data

Data View and Entity Cache

Data views implement the interfaces for querying entity data from the business logic controller and
submitting modified data back to the entity.

Data views are declared as public fields of PxSelect command type:
public PXSelect<Product> Products;

Based on this declaration, the system automatically instantiates the DAC entity cache.

An entity cache object in the Acumatica Framework is the primary interface for working with individual
entity records from the graph business logic. It has two components and two primary responsibilities:

e The Cached collection — in-memory cache that contains modified entity records. The Cached
collecton is instantiated based on the corresponding DAC declaration and managed by the cache.

| Application Programming Overview | 46

e The controller — the cache component that implements basic CRUD operations on the cached
collection and triggers a sequence of data manipulation events when modifying or accessing the
data in the cached collection. These events can be later subscribed from the graph to implement
the business logic associated with entity data modification.

The diagram below helps to understand the internal graph structure and responsibilities of the data
view and the entity cache.

BLC
L Data view :i—f—\
A
Entity cache‘ | Database
1 Controller ——>]
~¢ L J
g %)
Cached collection +—> Session
e e e ; -/

Figure: The graph structure - a data view and an entity cache.

Data Modification Scenarios

Now lets consider basic entitiy data manipulation scenarious that can be executed from the graph
business logic or from the user interface. Entity data manupulation through the user interface indirectly
invokes the same methods as the direct call from the business logic.

Querying Entity Data for the First Time

Entity data can be requested through the Products.Select() method. During this operation, the systems
will execute BQL command from the data view declaration. Data returned by the BQL command will be
returned to the requestor. See the diagram below.

View Business logic Cache Session Database

User data request

Select
|:| statement

execution Data query

Search in
the cache

(nothing cached yet)

Presentation
events generation

Presentation
business logic

| —

The data are
returned to the user
!

i
)

® & &

Figure: Querying entity data for the first time.

| Application Programming Overview | 47

Updating an Existing Entity Record

An existing business entity record can be updated through the Products.Update(record) method. This
method places the modified record into the cache.

If the data record is not found in the cached collection, the cache controller will load the data record
from the database, add it to the cached collection, mark it as updated, and update it with the new
values. The search of the data record in the cached collection and loading of the data record from the
database is based on the DAC key fields. The diagram below illustrates this scenario.

View Business logic Cache Session Database
User request
to modify data
Update()
method
invocation
Search in
the cache
Data|query (not cached yeQ
n
Performed Adding to Updated
several times collection and generatirg
update-cycle events
Data modification
business logic
| >
| I
Presentation
events generation
< "1 Storing the
Presentation modified data
The data are business logic
returned to the user »
< <
) s e
) Y,)

Figure: Updating the entity record for the first time.

If the updated record exists in the cached collection the cache controller will locate it and update it with
the new values. The diagram below illustrates this scenario.

| Application Programming Overview | 48

View Business logic Cache Session Database
User request
to modify data N Loading
modified data
Update() .
[:| method < into the cache
invocation

Search in the cache
(the data are found)

Adding to Updated
collection and generatin
update-cycle events

Performed
several times

(]

¥

€

Data modification
business logic

Y

J Presentation

events generation
) Ll
. Storing the
Presentation modified data
The data are business logic
returned to the user »
< «
VoY VY L,’I

Figure: Updating the cached (previously modified) entity record.

Inserting a New Entity Record

A new record can be inserted into the business entity through the Products.Insert(record) method. The
new inserted record will be added to the cached collection and marked as inserted. The diagram below
illustrates this scenario.

| Application Programming Overview | 49

View Business logic Cache Session Database

User request to
insert a record

Insert()
|j method

invocation

Inserting the record
into the cache

Performed Adding to Inserted
several times collection and generatir
insert-cycle events

wr

<
Data modification
business logic

1

1

] Presentation

events generation
-l »
"1 Storing the
Presentation inserted data
The result is business logic
retuTed to the user »
- -

& & &

Figure: Inserting the new entity record.

Deleting an Existing Entity Record
An existing record can be deleted from the business entity using the Products.Delete(record) method.

If the data record is not found in the cached collection, the cache controller will load the data record
from the database, add it to the cached collection, and mark it as deleted. The search of the data
record in the Cached collection and loading of the data record from the database is based on the DAC
key fields. The diagram below illustrates this scenario.

| Application Programming Overview | 50

View Business logic Cache Session Database
User request to
delete a record
71 Delete()
[method
| invocation

the cache

Y

Data guery (not cached yet)

J Search in
<

Performed
several times collection and generatin

delete-cycle events

(=]

]

—‘ Adding to Deleted

i
Data modification
business logic

|

1 Presentation
events generation
< f » Storing the
Presentation modified data
The result is business logic
returned to the user >
< <

Figure: Deleting the non-cached (unmodified) entity record.

If the deleted record is found in the cached collection, the cache controller will locate it and mark as
deleted. The diagram below illustrates this scenario.

View Business logic Cache Session Database
User request to]
delete a record Lr:;a_admg
modified data
Delete() into the cache
method <
invocation

Search in the cache
(the data are found)

Performed Adding to Deleted
several times collection and generating
delete-cycle events

Data modification
business logic

X

events generation

] Presentation

)

. Storing the
Presentation modified data
The data are U business logic
returned to the user »
< <

X ® ®

Figure: Deleting of the cached (previously modified) entity record.

| Application Programming Overview | 51

Querying an Updated Entity Data

Entity data can be modified and then queried again. In this scenario, the data records stored in the
caches memory will be merged with the result of the BQL command execution. Data records merge is
based on DAC key fields. The final result of the select () execution will incorporate all the earlier entity
records modifications that has not been preserved to the database yet. The diagram below illustrates
this scenario.

View Business logic Cache Session Database
User data request Loading
—> Select modified data
elec into the cache
statement <
execution Data query q

Search in the cache

and merge
Presentation
events generation
. Storing the
Presentation modified data
The data are business logic
returned to the user »

4 i
-)

& %Y %Y

Figure: Querying the modified entity data - reading and merging with the cached data.

Persisting Entity Changes to the Database

When entity data are modified, the system has two different entity versions, the new one stored in the
caches memory and the original one persisted in the database. At this point a programmer has two
options:

e Save the new entity version to the database using the persist () method of the graph

e Discard all in-memory changes and load the original entity version using the clear () method of
the graph

From the Presentation Layer these methods are called by invocation of the save and Cancel actions.
These actions are predefined and mapped to the persist () and Clear () methods.

The diagram below illustrated saving of entity changes to to the database.

| Application Programming Overview | 52

View Business logic Cache Session Database
Loading
User r th modified data
ser request ‘o into the cache
save the changes «

—

Pre-persisting
events generation

1

Pre-persisting
business logic .
Commit

i

1

Post-persisting
events generation

Post-persisting
business logic

events generation

LY

:| Presentation

i

business logic

|

J Presentation

The result is
retu‘rned to the user P
-

& ® & ®

Figure: Saving the entity changes to the database.

Y

The diagram below illustrated discarding of all in-memory entity changes.

View Business logic Cache Session Database
Loading
User request to modified data
discard the changes |« into the cache
H Clearing the cache
Requesting the
original data

Data query

i

Presentation
events generation

Presentation
The resultis business logic
returned to the user |

-

® ® & ®

Figure: Discarding the changes and loading the original entity data.

1

| Application Programming Overview | 53

Preserving the Entity Version Between the Round Trips and Handling the Subsequent Selects
from the Views

It is important to understand that a graph is a stateless object. It is discarded after each data request.
In order to preserve the modified entity version between the requests, the cache controller serializes
the cached collection into the session state and restors it later when the graph is instantiated on the
subsequent request. In this scenario, it is very important that the cache contains only the modified
entity records, not the complete entity record set.

Implementing Business Logic

Business logic is implemented by overloading certain methods invoked by the system in the process
of manipulating data. For such procedures as inserting a data record or updating a data record, the
PXCache controllers generate series of events causing invocation of the methods called event handlers.
The application is able to interfere in the series of events on different stages. For this purpose, the
application impements methods that are executed as event handlers.

There are 18 events raised on all stages of data processing.

Business logic can be divided into common logic relevant to different parts of the application and the
logic specific to an application screen (web page). The common logic is implemented through event
handler methods defined in attributes, while the screen-specific logic is implemented as methods in the
associated graph.

Common Business Logic

The common business logic is implemented by defining event handlers in attributes. If such attribute is
added to the declaration of a data access class, attribute logic is applied to the data records of this type
for any graph used to access this table.

There are a number of predefined attributes implemented in the framework. For example, in the
following declaration of a data field for a column

[PXDBDecimal (2)]
public virtual string AvailQty { get; set; }

PXDBDecimal is an attribute binding this field to a database column of the decimal type. The attributes
of this form exist for most database data types.

Another typical example of an attribute is PxUIField. It is used to configure the input control for the
column in the user interface. This allows having the same visual representation of the column on all
application screens (unless a screen redefines it). For example:

[PXDBDecimal (2)]
[PXUIField (DisplayName = "Available Qty", Enabled = false)]
public virtual string AvailQty { get; set; }

Application can also define its own attributes, in the following way:

// Bpplication-defined attribute implementing common business logic
public class MyAttribute : PXEventSubscriberAttribute,
IPXEventNameSubscriber
{
// An event handler
protected virtual void EventName (PXCache sender,
PXRowEventNameEventArgs e)

{
}

| Application Programming Overview | 54

Such attributes are also added to the DAC declaration:

PXDBDecimal (2)]

[

[PXUIField (DisplayName = "Available Qty", Enabled = false)]
[MyAttribute]

public virtual string AvailQty { get; set; }

Screen-Specific Business Logic

For a specific screen, the application can redefine the common logic or extend it. For this purpose, you
should define event handlers in the graph associated with the screen. Each event hanlder method is tied
to a particular table or a table field via the naming convention.

For example, you can verify a value of a column:

public class ProductRecalc : PXGraph<ProductRecalc>
{

// Event handler verifying that the value of the AvailQty column
// in Product records is greater than 0.
// It is triggered when, for instance, a Product record is updated.
protected virtual void Product AvailQty FieldVerifying(

PXCache sender,

PXFieldVerifyingEventArgs e)

Product p = (Product)e.Row;
if (p !'= null && p.AvailQty != null)
{
if (p.AvailQty < 0)
throw new PXSetPropertyException<Product.availQty>(
"Value must be greater than 0.");

| Programming Tasks | 55

Programming Tasks

The articles from this section explain how to complete various programming tasks that you may face
with while developing a business application on Acumatica Framework.

e Localizing Applications

e Generating a Data Access Class

e Working With Images

e Adding Widgets to Dashboard

e Data Representation

e Calculations

e Data Input

e Interaction With the Server

e Creating an Acumatica ERP Add-on Project
e Implementing a Credit Card Processing Plug-in
e Using Substitute Keys

e (Calling a New PXSmartPanel

Localizing Applications

Acumatica Framework provides built-in localization tools that you can use to translate the user interface
and application messages to different languages. This topic provides guidelines on how to prepare the
Acumatica Framework application for further localization efforts. (See the related link under this topic.)

To get the application ready for localization, you must prepare data access classes (DACs) and the
application code.

What Can Be Localized
The system can retrieve the string constants specified in the following items of the application:
e PXUIField attributes in DAC fields
e PXUIField attributes in business logic container (BLC) DAC override fields and actions
e PXStringList and PXIntList attributes
e Tooltips for the pxButton attribute
e Captions of form, grid, and panel controls and input control labels specified in the ASPX page
e Site Map tree (titles of all sitemap nodes)
e Reports (textbox labels, diagram agenda, etc.)
e Classes marked with the pxLocalizable attribute

By using the System > Management > Manage > Translation Dictionaries system webpage, you
can add translations for the collected string constants and save them to the database. When a user
signs in with a specific language, the systems loads the translations and displays translated strings to
the user.

| Programming Tasks | 56

If the same string is found in multiple places in the application, the system saves information about all
the occurences. You can specify a default translation that applies to all occurences of the same string
and separate translations for some or all the occurences.

Preparing DACs

The system can automatically update the translation dictionary of Acumatica ERP with the string
constants specified in the DisplayName parameter of the PXUIField attribute. The translation dictionary
is also updated with list attributes of the pPxStringList attribute or PxIntList attribute. Therefore, the
declaration of a field in a DAC should meet the following requirements:

e Each visible field in a DAC must include the pPxUIField attribute.

e The DisplayName parameter must be specified for the pxUIField attribute, not only to make the
name of the user interface element of the webpage clearer than the corresponding field name of
the database table, but also to provide the localization capability.

Note the following example of a field declaration with the pxUIField attribute applied.

#region DocType

public new abstract class docType : PX.Data.IBglField
{

}

[PXDBString (3, IsKey = true, IsFixed = true)]
[PXDefault ()]

//The PXUIField with the DisplayName parameter
[PXUIField (DisplayName = "Document Type")]

public override string DocType { get; set; }
#endregion

If you apply the pxstringList attribute to the string field, its list attributes will also be collected and
placed in the dictionary for localization.

Here is an example of a field declaration with the pxstringList attribute and pxUIField attribute
applied.

#region LineSource
public abstract class lineSource : PX.Data.IBglField
[PXString (1, IsFixed = true)]

//The PXStringListAttribute with its list attributes
[PXStringListAttribute (

new string[] { "D", "R" 1},

new string[] { "Draft", "Request" })]

//The PXUIField with the DisplayName parameter

[PXUIField (DisplayName = "Line Source")]
public virtual string LineSource { get; set; }
#endregion

Localizing Application Code

To enable localization of messages in the source code, move all translatable strings from the application
to the public static class marked with the pxLocalizable attribute. (The exceptions to this
requirement are field descriptions and list attributes in the data access classes, which are handled
separately.) An example of such a class follows.

using System;
using PX.Data;

namespace PX.Objects.EM

| Programming Tasks | 57

[PXLocalizable ()]
public static class Messages

{

public const string FieldNotFound = "The field specified is not found.";
public const string InvalidAddress = "The address is not valid.";
public const string AdditionalData = "Author's title: {0}, author's name: {1}"

A string may contain placeholders (as with the last code line in the code above, which contains {0} and
—| {1} placeholders).

The string from a class marked with the pxLocalizable attribute can be collected by the application
and added to the translation dictionaries. If you need to receive the translated string within the
application code, use the PXMessages.Localize (...) method or PXLocalizer.Localize(...), as
shown below.

string msg = PXMessages.Localize (Messages.FieldNotFound) ;

When you throw an exception of PXxException type or of a type derived from pXException, you should
provide a not-localized message. The system will localize the message automatically if the translation
dictionaries include a translation for this message. See the example below.

if (field == null)
{

throw new PXException (Messages.FieldNotFound) ;

}

Notice that no hyphenation is provided by the system. During the acquisition process of localizable data, all
—| the new-line symbols (\n\r) are to be removed. You can use the reserved symbol (~) to cause insertion of a
new line.

Localizing Strings in the Code

To get a localized string at run time, you should use the Localize (string) method of the PxMessages
class or the Localize (string, string) method of the PxLocalizer class.

The pPXMessages.Localize (string) method searches for the translation of the provided string in the
database and returns the first translation found.

string text = PXMessages.Localize (PX.Data.Update.Messages.SiteUnderMaintenance) ;

You should use the pxMessages.LocalizeFormat (...) method if the string includes placeholders (such
as {0} or {1}).

The PXLocalizer.Localize (string, string) method returns the translation with the given key,
which you specify in the second parameter. A string may have multiple translations; one translation for
each occurence of the string in the application. For each of the occurences, a key value is created. For
example, if the string is declared in a class marked with the pxlocalizable attribute, the full qualified
name of the class is the key, as the following code shows.

string localizedMsg = PXLocalizer.Localize (
ActionsMessages.ChangesWillBeSaved,
typeof (ActionsMessages) .ToString()) ;

When you throw an exception of the PXException or derived type, you should provide a non-localized
string as the exception message. The system will automatically search for translation and display a
localized version of the message.

| Programming Tasks | 58

If you change the DisplayName value of the PXUIField attribute on the fly, create your own
—| PXUIFieldState, you should localize the string independently.

Generating a Data Access Class

Once you have linked the created page to the business logic container (BLC) class, you can generate a
data access class (DAC) that implements a communication layer between the BLC and the database. To
use the Data Access Class Generator to generate the Country.cs DAC file code in the simplest way, do
the following steps:

In this topic, we assume that your database includes the simple Country table. Although for

= simplicity this table doesn't include the system attribute NoteID and the audit fields CreatedByID,
CreatedByScreenID, CreatedDateTime, LastModifiedByID, LastModifiedByScreenlID, and
LastModifiedDateTime, we recommend that you use all these fields in each database table.

1. Open the page in design mode, point to the ds control, click the smart tag associated with this
control, and select Generate Class, as shown in the screenshot below.

Pages/RapidByte/RB201000.aspx*

e e e

PX¥DataSource - ds PXDataSource Tasks

Auto Format...

Refresh Schema

Mew Line Delete

Filter SetFilter Type Mame: | RE.RapidByte.Country E

[7] Provide Real Data

Generate Class...

Figure: Starting to generate the DAC

2. In the Data Access Class Generator window that appears (see the screenshot below), type
Country into the Name field under the Table Properties section as the name of the table that will
store countries' data, or select Country from the drop-down list of database tables. The list of
fields from the Country table appears.

3. Click Append UI Attributes to add the pxUIField attribute to the fields.

If you decide not to display some DAC fields on the webpage, after generating the DAC, you should
—|] manually delete redundant PXUIField attributes.

4. C(Click Generate to generate the data access class.

| Programming Tasks | 59

o) Data Access Class Generator @
Table Properties
Name: E Class Name: Country
N -
Aoperd Ul Altrbuies RSIERS |
Class File:
Columns And Attributes
[E Active Attribute Canstructor
V| D i ETTEEE——
Escription » DB Sting + | PXDBSting(2, lsKey =true, lsUricode =true, IsFied...
V| |Defautt | PXDefault
i Ul Field | PXUIField(DisplayMame = "Country™)
-
Move Up Move Down Add to Custom Fields list |
==

Figure: Generating the DAC by using the Data Access Class Generator window

As a result, Acumatica Framework creates the new file, Country.cs, with the generated DAC code and
then opens this file

When the list of fields is loaded, the Data Access Class Generator automatically assigns attributes to the
audit fields. The settings are stored in the CustomFields.config file, which you can update by clicking Add
to Custom Fields List. If the DAC already exists, the wizard that is built into the DAC Generator loads
data from the DAC and replenishes the list of fields with the database fields that are not listed in the DAC.
By default, new fields, which are displayed at the end of the list, are not selected.

When you click Generate, already existing fields are overridden if you have selected them for generation.

The CustomFields.config file has an XML structure and consists of two main sections, called Config and
CustomfFields.

In the config section, the design class type is annotated, and some necessary default property values
are defined.

The CustomfFields section contains the definitions, type definitions, and constructors of the system
attribute NoteID and the audit attributes CreatedByID, CreatedByScreenlID, CreatedDateTime,
LastModifiedByID, LastModifiedByScreenID, and LastModifiedDateTime are defined.

Only Acumatica ERP developers can change the content of this file. You can use this file as a reference
manual, for instance, on the stage of constructing the structure of database tables or the generation of
multiple DACs.

Working With Images

This topic covers how to upload images to attach them to webpages and how to manage uploaded
images. You can attach image and video files to any area of a webpage: upper (form), lower (tab), or
lower (tab table). In this topic, attachment of an image file to the form area of a webpage is illustrated.

Preparing a Placeholder to Upload an Image File

To make it possible to upload an image file and attach the uploaded image to the required area of the
webpage, you must perform the following actions:

1. Add two mandatory fields—Image, having the nvarchar(256) data type, and NotelD, with the
bigint data type—to the database table whose fields are to be used for generating the respective
data access class (DAC) fields, so that the Image and NoteID fields in the DAC code are defined
as classes.

2. Open an Acumatica Framework solution and generate a new DAC.

| Programming Tasks | 60

Create the page.

Set the DataMember property value as the related business logic container (BLC, also called
graph) name based on this DAC.

Open the source mode and modify the .aspx page code of the created page: Replace the starting
and ending PXTextEdit tags of the Image field with the PXImageUploader tags, as shown in the
screenshot below.

Pages/RapidByte/RB206000.aspx > [yl Nad Pages/RapidBy 00.aspx Team Explorer ~ Properties
Image <PXIMAGEUPLO ~

Client Objects 8 Events - (Mo Events) -
= <px:PXLayoutRule runat="server” ControlSize="SM" LabelsWidth="sM" +§ 5= 4l | :
" " (CESy A =
StartColumn="True"> s
</px:PXLayoutRule> (D) Image
= <px:PXSelector ID="Product{D" runat="server" DataField="ProductCD" ClientlD! Inherit

DataSourceID="ds" ValueField="ProductCD" CommitChanges="True">»
<AutoCallBack Command="Cancel™ Target="ds"»
</AutoCallBack:>
</px:PXselectors Tablnde:
<px:PXTextEdit ID="ProductName" runat="server" DataField="ProductName"> ViewStat Inherit
</px:PXTextEdit> Width 180px
<px:PXCheckBox ID="Active" runat="server" DataField="Active" >
</px:PXCheckBox>
= <px:PXLayoutRule runat="server” ColumnWidth="L" GroupCaption="Picture"
StartColumn="True" StartGroup="True">
</px:PXLayoutRule>
= ID="Image" runat="server" DataField="Image"” Height="18@px"
Width="188px >
I<fpx:P)(ImageUplolader‘> I
</Template>
</px:PXFormViews (D)

</asp:Content>
00% ~ 4| m | »

Height 180px
runat SErVer

[s Design | O Split IIEI Source I EH<px:PXFormView#form>||<Template>| -:px:PXImageUpIoader#Image>| |E| R Soluti.. el n

Figure: Modifying the tag name of the .aspx page

By using the Layout Editor window, add the Image field (after setting optimal default Height
and width property values), along with all the other required fields, onto the appropriate area of
the page. (You shouldn't add the NotelD field onto the page.)

Image file extensions of files to be uploaded must be registered on the File Upload Preferences

= (SM.20.25.50) form. Navigate to the Configuration > Document Management > Configure >
File Upload Preferences form. If the required file types are not defined already, define them and
save your changes. On this form, you can also define the maximum size of an uploaded file (in
kilobytes), as shown in the following screenshot.

| Programming Tasks | 61

o ﬂcumatlca Organization Finance Distribution Configuration et 24(3) 412212013 4:11 AM admin
Commeon Settings | User Security | Row-Level Security Document Management | Email |
Document Management </ & MAIN - File Upload Preferences
Notes i izati -
Tvoe your query here — Files Customization Help
~
-~ Manage
Wiki Maximum File Upload Size 25000
Wiki Site Map _
Wiki Access By Role c + u ‘ |H| Y
Wiki Style Sheets & File Extension lcon URL Is Forbidden Is Image
~ Explore -cer] O
Search in Files .CsV ~llconsixls.gif O O
Schedul .dat ~llcons/binary.gif O O
v ~chedule .doc ~llcons/doc.gif O O
File Synchronization docx ~flconsidac gif O O
- Print exe ~flcons/binary.gif O O
Wiki Articles By Status .gif O O
Wiki Article Statistics ico ~ficonsfimage. gif O O
~ Configure .J.peg E E
Arg
External File Storage mdb ~flconsfmds.gif O O
File Upload Preferences e ~flconsimsi.gif 0 0
Lofx ~lconsi.gif O O
pdf ~flcons/pdf gif O O
ik] 1
> .png O O
pot ~ficonsippt.ait] [
pph ~llconsippt.gif O O
rar ~llconsirar.gif O O
if ~llcans/doc.gif O O
1 2

Figure: Making sure image file extensions are registered

Uploading Image Files and Managing Images

This section provides a simple example, by using the Products sample webpage, of uploading and
managing image files. To upload three images, proceed as follows:

1. Start the application, navigate to the Products webpage, and click Click here to upload image
in the upper webpage area, where you had placed the Image field. Click Browse and find the
required image file.

2. Select the desired file and click Upload. Notice the image under Click here to upload image,
as the screenshot below illustrates.

| Programming Tasks | 62

< Products Notes Activities Files Help ~
L + - ® IK £ > >l
* Product CD: IKURA Jo) Picture
* Product Name: lkura Click here to upload image...

Active

m

m

Product details | Supplier prices

Product details

+ Category Mame: EAFOOD o) £
= Stock Unit: 100 ml jars

Unit Price: 800.00

Units In Stock: 180.00

Units On Order: 0.00

Reorder Level: 25.00

Figure: The first uploaded image
To upload a second and third image, repeat the two previous instructions twice.

After you have uploaded the third image, ensure that the Next, Prev, and Select navigation
buttons in the upper right corner have become available.

By clicking Next or Prev, you can scroll through all images—those you uploaded and those that
—|] already existed.

Select the image to be displayed by default.

To adjust the selected image to be displayed by default, click Select; then click Save on the
form toolbar. Open another webpage or select another product, and then open the Products
webpage and select the product record to which you assigned the default image. Notice that the
default image is located where it was earlier.

Click the image to see the file image in its original scale.

2 Products
L + K~ ® I< £
* Product CD: IKURA o
+ Product Mame: lkura

Active

Product details | Supplier prices

Product details

Notes Activities

? 2l

| Programming Tasks | 63

Files {3) Help ~

Caviar_3.png [Edif]

Caviar_2.png [Edit]

Picture

Caviar_1.jpg [Edif]

Click here to upload image...
Select Prev Mext

Add file...

+ Category Name: SEAFOOD L
= Stock Unit; 100 ml jars

Unit Price: 800.00

Units In Stock: 180.00

Units On Order: 0.00

Reorder Level: 25.00

Figure: Opening the image file editor window

m

To replace any attached image file, click File and then click the Edit link (at the right of the name
of the image file, as shown in the screenshot above) to open the File Maintenance (SM.20.25.10)
form in a window. On the form toolbar of this form, click Upload New Version (see the
screenshot below), and then attach the file as described above in Instruction 2. After you have
replaced the file, you can see the new line in the table on the Versions tab; the appearance

of the new line means that the full uploading and replacement history data is available for any

uploaded image.

To delete the attachment of the image (or any version of the image file), just click Delete (to
—| delete the image file attachment) in the upper area or Delete Row (to delete a version of the
image file attachment) in the lower part of the File Maintenance form.

| Programming Tasks | 64

Z File Maintenance Help ~
L [} Check Out Upload New \ersion...
Synchronization -~
Get Latest Version Get Link
File: StudioDeveloperGuide/lmages/GettingStarted_Lesso [1s Hidden

Checked Out By:

Check Out Comment:

Versions | Aricles Entities Screens Access Rights Synchronization

C i' | View Selected Version Get Selected Version | |"'| Y -
E Version ID Created By Creation Time File Size Comment Original Hame (if different) :
’| 1 admin 21912013 4:20 AM 105.16 KB | 1
| T S

Figure: Replacing the attached image file

Adding Widgets to Dashboard
Possible widget types (parameters of the DashboardType attribute):
e 0 - Table (default)
e 1 - Wiki article
e 2 -Task

e 6 - Table with owner and workgroup
e 7 - Calendar

e 8 - Generic Inquiry

e 20 - Chart

Data Representation

In this chapter, you will get acquainted with the various aspects of a webpage representation, such as
how to configure and design a webpage layout, adjust lookup fields, filter webpage data, and use status
field.

Content
This chapter covers the following topics:

e Filtering Data on a Webpage

Filtering Data on a Webpage

This topic describes two filtering methods: setting selection criteria in the top (master) area of a
webpage to filter the details, and defining a reusable filter. The topic describes how you would create

a special inquiry webpage that enables the filtering of records; such a webpage uses the first filtering
method. The second method, defining a reusable filter, can be used with most processing webpages and
reports.

| Programming Tasks | 65

We illustrate the implementation of both methods and the appropriate testing steps by using an
example with a simple application, Rapid Byte. You should not perform any of the actions described
in this topic. These actions are provided to show a part of the development process while helping you

become acquainted with the filtering methods that can be used in applications developed with Acumatica
Framework.

A third filtering method, used for processing pages, is described in the last section of this topic.

Creating a DAC and a BLC for the Inquiry Webpage

In this section, the groundwork is laid for the first filtering method, for which you would create a
special inquiry webpage. This section describes the process of creating a data access class (DAC) and
a business logic container (BLC, also called a graph) for filtering webpage data. You can see the code
lines that implement the filtering logic for the first filtering method.

Suppose that you need to create a complex webpage based on the FormDetail template to filter and
sort products that the company sells or plans to sell. In the upper (master) area of this webpage, the
Category Name (of the product) and Supplier ID fields will be used as the filter conditions, while in
the lower (details) area, the table with the filtered products will be displayed.

For this method, first you would create a simple DAC for filtering conditions, and then you would create
a BLC to implement the filtering logic. To perform these steps, you would do the following: (Again, you
shouldn't perform these actions at this time; just analyze them.)

1. Manually create a new DAC, ProductFilter, that includes two DAC fields, CategoryName and
SupplierID, as shown below.

// public class ProductFilter : PX.Data.IBglTable
namespace RB.RapidByte

{

using System;

using PX.Data;

[System.SerializableAttribute ()]
public class ProductFilter : PX.Data.IBglTable
{

#region CategoryName

public abstract class categoryName : PX.Data.IBglField
{

[PXString (15, IsUnicode = true)]

[PXUIField (DisplayName = "Category Name")]
[PXSelector (typeof (Category.categoryName),

DescriptionField = typeof (Category.description))]
public virtual string CategoryName { get; set; }
#endregion

#region SupplierID
public abstract class supplierID : PX.Data.IBglField
{

[PXString (15, IsUnicode = true)]
[PXUIField (DisplayName = "Supplier ID")]
[PXSelector (typeof (Search<Account.accountID, Where<Account.companyType,
Equal<CompanyType.supplier>>>),
new Type[] {typeof (Account.accountID),
typeof (Account.companyName) ,
typeof (Account.country),
typeof (Account.contactName),
typeof (Account.contactTitle)
1)]
public virtual string SupplierID { get; set; }
#endregion

}

| Programming Tasks | 66

Because PXFilter contains a single DAC object that is always created during webpage
—| initialization and never saved to the database, there is no need to specify any key field within a DAC
exclusively used in the PXSelector<Table> data members.

2. Add the ProductInquiry.cs BLC file code, based on the PXGraph template, and modify it as
follows. (The + sign at the left of the code line means that this code line must be added, while
the - sign means that you should delete the code line because it is redundant.)

using System;

using System.Collections;

-using System.Collections.Generic;
using PX.Data;

using PX.SM;

namespace RB.RapidByte
{
public class ProductInquiry : PXGraph<ProductInquiry>
{
public PXCancel<ProductFilter> Cancel;
public PXFilter<ProductFilter> Filter;
[PXFilterable]
public PXSelectJoin<Product, LeftJoin<SupplierProduct, On
<Product.productID, Equal<SupplierProduct.productID>>>> ProductRecords;

+ 4+ + + +

public ProductInquiry ()

{
Cancel.SetCaption("Clear Filter");
this.ProductRecords.Cache.AllowInsert = false;
this.ProductRecords.Cache.AllowDelete false;
this.ProductRecords.Cache.AllowUpdate = false;

+ o+ o+ o+ o+

protected virtual IEnumerable productRecords ()
{
ProductFilter filter = Filter.Current as ProductFilter;
PXSelectBase<Product> cmd = new PXSelectJoinOrderBy<Product, LeftJoin
<SupplierProduct, On<Product.productID, Equal
<SupplierProduct.productID>>>, OrderBy<
Asc<Product.productName>>> (this) ;

+ o+ o+t

e

if (filter.SupplierID != null)
{

+ +

cmd.WhereAnd<Where<SupplierProduct.supplierID,
Equal<Current<ProductFilter.supplierID>>>> () ;
}
if (filter.CategoryName != null)
{

+ + + +

cmd.WhereAnd<Where<Product.categoryName,
Equal<Current<ProductFilter.categoryName>>>> () ;

a

}

return cmd.Select ()

b

+)

3. Build the project.

PXFilter always contains a single data record, which is created and inserted into an appropriate
PXCache object when the BLC is retrieving data. The pxFilterable attribute is used to allow the end
user to filter a PXGrid control's data (the records of a tab table or the details table of a webpage).

In the DAC code, the pxXFilter BQL statement blocks all logic associated with database operations,
neither attempting to read from the database nor persisting changed records. You use pxFilter for
storing and displaying records that are used in business logic and available on the user interface (UI)
but that you do not need to preserve. pPXFilter creates a unique record in a cache, and the values of

| Programming Tasks | 67

the record attribute depend on the current filtering conditions.The pXFilterable attribute activates the
preservable (reusable) filter on the details table so the user can save the current filtering settings as a
template filter.

The PXFilterable attribute enables the user to work with the second filtering method (described in
—| the next section), while all the other lines of the BLC file code are needed to implement the first filtering
method.

The Productinquiry BLC is not parameterized with the primary view type—that is, the BLC

class does not have the second parameter, as the following expression shows: public class
ProductInquiry : PXGraph<ProductInguiry>. The following table describes the programming
goals and the way the BLC code accomplishes them.

Programming Description
Goal

Add a button and | Because the standard navigation buttons should not be displayed on the form
define its name |toolbar for this webpage, you should add your own buttons. To add the Cancel
button, which clears the filter, insert the following code line.

public PXCancel<ProductFilter> Cancel;

Disable the The following code lines disable the update, insert, and delete functionality for
details table the details table. Because the application is stateless, these access rights must
be set each time data is needed for the user.

this.ProductRecords.Cache.AllowInsert = false;
this.ProductRecords.Cache.AllowDelete false;
this.ProductRecords.Cache.AllowUpdate = false;

Compose the The BQL library supports dynamic statement composition. The following code
BQL statement | |ines set up a new BQL command.

PXSelectBase<Product> cmd = new PXSelectJoinOrderBy<Product,
LeftJoin
<SupplierProduct, On<Product.productID, Equal
<SupplierProduct.productID>>>, OrderBy<
Asc<Product.productName>>> (this) ;

When the user inserts the SupplierID or CategoryName value as a filter
parameter, the base statement is dynamically modified, based on one or both
values of the filter parameters. The following code lines enable the user to
receive the filtered records.

if (filter.SupplierID != null)

{
cmd . WhereAnd<Where<SupplierProduct.supplierID,
Equal<Current<ProductFilter.supplierID>>>> () ;

}

if (filter.CategoryName != null)

{
cmd.WhereAnd<Where<Product.categoryName,
Equal<Current<ProductFilter.categoryName>>>> () ;

}

return cmd.Select ()

| Programming Tasks | 68

Creating an Inquiry Webpage

This section describes the creation of an inquiry webpage based on the DAC and BLC created in the
previous section. By using this webpage, an end user could use the first filtering method. Here are
the instructions you would perform (again, you shouldn't perform any of these actions at this time) to
create and refine an inquiry webpage to filter products:

1. In the Solution Explorer window, right-click Pages, select the folder of your solution, and
select Add New Item. Select the Visual C# node of the template tree, select the FormDetail
template, and enter the page name. Click Add to create the page.

2. Open the created page in design mode, refresh it, and specify the following control properties for
the ds control to link it to the created BLC:

e TypeName: RB.RapidByte.Productinquiry
e PrimaryView: Filter
3. Specify the following properties for the PXFormView control (form):
e Datasource: ds (has been automatically set by the system)
e DataMember: Filter
4. For the PXGrid control (grid), specify the following properties:
e Datasource: ds (has been automatically set by the system)
® DataMember: ProductRecords
e SkinID: DetailsWithFilter

5. By using the Layout Editor, generateand adjust two filtering fields and add the fields onto the
master area of the page, and then generate, adjust, and add all the necessary columns onto the
details table.

6. Build the solution.
Start the application and open the Product Inquiry webpage.

8. By using the Category Name lookup field, select a category name and watch the filtering of
the information in the details table (see the screenshot below). You can also select the supplier
by using the Supplier ID lookup field; again note the filtering of the information in the details
table.

< Product Inquiry Dashboard ~ Help v

[a £ Prev Category > Next Category Details New Product
Category Name COMNDIMENTS - Sweet and savory sauce: O | Supplier 1D: fe]
C Refresh New Product Details | |~|Adust [Export ¥ Filter x -
Category Na... Product CD Product Hame Stock ... Unit Price Ac... Supplier CD Supplie... Conve... Supplier... Reorde.. Min Order Qty
Y CONDIMENTS NORTHWQODS CRAN Northwoods Cranberry Sauce 12 ozjars 55.00 TOKYO TRADERS 12 o0zjars 1.0 40.00 30.00
() CONDIMENTS NORTHWQODS CRAN Morthwoods Cranberry Sauce 12 ozjars 55.00 GRANDMAKELLY § 12 0zjars 1.0 0.00 30.00
[CONDIMENTS NORTHWQODS CRAN Morthwoods Cranberry Sauce 12 oz jars 55.00 BOLIDO COMIDAS 48 oz jars 4.0 104.00 30.00
1] CONDIMENTE QUESO MANCHEGO Queso Manchego La Pastora 1kg pkgs 38.00 CACTUS COMIDAS 0.5kgp... 05 12.99 20.00

Figure: Analyzing the filtering effect

Filtering Data on the Webpage by Using Two Methods

This section demonstrates how users can filter data on the created webpage by using two methods:
specifying selection criteria in the top (master) area of the created page, and defining a reusable filter.
(Again, you shouldn't perform these actions.) To analyze both methods, you would proceed as follows:

| Programming Tasks | 69

Open the Product Inquiry webpage, which shows a variety of information for each product record
that already exists in the database, such as the stock and supplier unit of measure (Stock

Unit and Supplier Unit), sales and supplier price (Unit Price and Supplier Price), conversion
factor, and minimum order quantity.

To use the first filtering method, in the Category Name field, select a category. This filters data
by the selected category.

In the Supplier ID field, select a supplier to see data filtered by the specified category and
supplier.

Click the Cancel (Esc) button in the form toolbar to again display all product records.

Because these filtering conditions (selection criteria) cannot be saved for later use, the first
—| filtering method can be considered an ad hoc method.

To begin using the second filtering method (establishing a reusable filter), click the Filter icon

to bring up the Filter settings dialog. In the condition table, enter two conditions joined by the
AND logical operator, as shown in the screenshot below. To save this condition as a hamed filter
to make the filter conditions reusable, click Save, and enter the name of the filter (for instance,
1). Select the Default check box if you want these filter conditions to be applied automatically
when you open this page. (Each time you save a filter as the default for a page, this check box is
cleared automatically for any filter that was previously set as the default for the page.)

Filter settings —
ITl b | Default| [|shared System &
= [|Eradc&t:~:| #Property 4 «+Condition |'l.-'alue |5EEDI‘|L'.| Value |Bra|:ket.=;| Operator |

- Active Equals [l And

L Unit Price Is Greater Than Or Equal To 45 0 And

: : : — : J Record 2 of 2
[Clear Jl Save][Save As Jl Remove J l K][Cancel J [

Figure: Adding the filter conditions for the default filter

Click OK to exit the Filter Settings dialog. Notice that records are filtered based on the filter
you defined, as the screenshot below illustrates. The system displays only active products (that
is, products having the Active status) with unit price values that are greater than or equal to
$45.

Now you can use the filter any time you open this page. If you defined the filter as the default

—| filter for the page, the Filter action will be available (with the name of the default filter within

the unlabeled field, as the screenshot below shows). If you haven't defined a default filter, the
unlabeled field will be blank, and you can click the black arrow to open the list of filters available for
this form and select one to apply. To add another filter, click the Filter icon; in the Filter settings
dialog, click Clear, and add new condition lines. See also Using Reusable Filters.

C Refresh ‘ 4> New Product Details | || Adjust 2] Export Y Filter |1 X v

+Category Name + Product CD +Product Hame + Stock Unit JActive] Supplier CD Supplier Conversi Supplier Reorder
Unit Price Unit Factor Price Level

= DAIRY PRODUCTS GRAMNDMASBO Grandma's Boysenberry Spread 18 ozjars 45.00 GRAMDMAKELLY £ 18 oz jars 1.0 36.49 100.00
= DAIRY PRODUCTS GRANDMASBO Grandma's Boysenberry Spread 18 ozjars 45.00 CACTUS COMIDAS 18 ozjars 1.0 3590 100.00
= DAIRYPRODUCTS GRAMNDMASBO Grandma's Boysenberry Spread 18 ozjars 45.00 BOLIDO COMIDAS 18 oz jars 1.0 3250 100.00

SEAFQOD IKURA Ikura 100 ml jars| 800.00 CACTUS COMIDAS 200 ml jars 20 1,420.00 25.00

Figure: Viewing the filtered products

Select and manually remove the filter name so that the unlabeled field becomes blank. All the
product records will again be displayed.

| Programming Tasks | 70

8. Repeatedly click the Prev Category button and then the Next Category button. Watch how the
composition of product records changes in the details table based on the category.

You can use both filtering methods simultaneously. In this case, the filtering conditions are joined
—| with the AND logical operator. That is, you will see the product records that meet both sets of
filtering criteria.

Creating a BLC for Implementing Filtering of Processing Webpages

The third filtering method, which provides filtering of processing pages, works within a long-running
operation.

Analyze the RenewContracts BLC code fragment given below, which illustrates the third filtering
method. For the appropriate processing webpage, this code filters the contracts that are to be closed
because of expired contract dates. Further, these contracts will be processed to prepare bills for
customers and change the status of the contracts. The PXFilter<ExpiringContractFilter>
expression implements the filter based on expiring contracts that the user has selected for processing.

public class RenewContracts : PXGraph < RenewContracts >
{
public PXCancel<ExpiringContractFilter> Cancel;
public PXFilter<ExpiringContractFilter> Filter;
public PXFilteredProcessing<ContractsList,
ExpiringContractFilter> Items;
public RenewContracts ()
{
Items.SetSelected<ContractsList.selected> () ;
}
protected virtual IEnumerable items ()
{
ExpiringContractFilter filter = Filter.Current;
if (filter == null)
{
yield break;
}
bool found = false;
foreach (ContractsList item 1in Items.Cache.Inserted)
{
found = true;
yield return item;
}
if (found)
yield break;
PXSelectBase<Contract>
select = new PXSelectJoin<Contract, InnerJoin<ContractBillingSchedule,
On<Contract.contractID, Equal< ContractBillingSchedule.contractID>>,
InnerJoin<Customer, On<Customer.bAccountID,
Equal< Contract.customerID>>>>,
Where<Contract.isTemplate, Equal<boolFalse>,
And<Contract.baseType, Equal<Contract.ContractBaseType>,
And<Contract.expireDate, LessEqual<Current<ExpiringContractFilter.
endDate>>, And<Contract.type, NotEqual<ContractType.ContractUnlimited>,
And<Contract.status, NotEqual<ContractStatus.
ContractStatusCanceled>>>>>>>(this);
if (! string.IsNullOrEmpty (filter.CustomerClassID))
select.WhereAnd<Where<Customer.customerClassID, Equal<Current
<ExpiringContractFilter.customerClassID>>>> () ;
if (filter.TemplateID != null)
{
select.WhereAnd<Where<Contract.templatelID, Equal<Current
<ExpiringContractFilter.templateID>>>>() ;
}
/* Expiring Contracts has a hierarchical structure and we
need to show only the latest expiring node hiding all
of its original contracts %/
foreach (PXResult<Contract, ContractBillingSchedule, Customer>

| Programming Tasks | 71

resultSet in select.Select())

{
Contract contract = (Contract)resultSet;
ContractBillingSchedule schedule =
(ContractBillingSchedule) resultSet;

Customer customer = (Customer)resultSet;
bool skipItem = false;
if (contract.Type == ContractType.Expiring)

Contract child =
PXSelect<Contract, Where<Contract.originalContractID,
Equal<Required< Contract.originalContractID>>>>.Select
(this.contract.ContractID);
skipItem = child != null;
}
if (!skipItem)
{
ContractsList result new ContractsList () ;
result.ContractID = contract.ContractID;
result.Description = contract.Description;
result.Type = contract.Type;

result.ExpireDate = contract.ExpireDate;
result.CustomerID = contract.CustomerID;
result.CustomerName = customer.AcctName;

result.LastDate = shedule.lLastDate;
result.NextDate = schedule.NextDate;
result.ExpireDate = contract.ExpireDate;
result.TemplateID = contract.TemplatelD;
result.Status = contract.Status;
yield return Items.Insert (result);
}
}

Items.Cache.IsDirty = false;

Creating Lookup Fields

A lookup field represents one of the user interface (UI) elements, but unlike a text field and check
box, and along with a combo box that has a drop-down list, a lookup field has a pop-up window.
This window, called lookup window, is used for quick search of the required item, and may consist

of arbitrary number of named columns. Any lookup window is populated with data records retrieved
from the database or by using a special method declared in the code (the pxCustomSelector derived
attribute class).

Before adding the lookup field onto a page, you have to define the structure and content of the lookup
window.

You can also modify the type of an existing text or numbering field to make it a lookup field. In this case,
—| vyou will have to delete and add again this field onto the page after making the appropriate modification in
the field's definition code.

You can create the lookup window content through the data access class (DAC) or business logic
controller (BLC) code by using the pPXxSelector or your own PxCustomSelector derived attribute.
Columns and their order in the lookup window is defined as typeof parameters in an addition to the
special Search BQL expression, by using which you can restrict displaying data.

The primary DAC in a Search BQL expression is also used in definition of columns' structure and their
—| order. See below the The Rules for Defining Lookup Columns' Structure and Their Order section.

If the created lookup field is not a key field, after adding it onto the form area of the page, you can set
theCommitChanges property for this field to True, if it's necessary to immediately apply selected value
and force appropriate business logic execution.

| Programming Tasks | 72

Creating Lookup Columns by Using the PXSelector Attribute
By using this attribute, you can create a lookup field columns that are bound with a database,

So after choosing a field to change it to a selector field, you need to add the pXSelector attribute with
appropriate parameters for a DAC field. The first typical selector expression for the column list creation
is the following.

[PXSelector (typeof (Search<Accounts.accountCD>),
typeof (Accounts.accountCD),
typeof (Accounts.companyName) ,
typeof (Accounts.country),
typeof (Accounts.contactName) ,
typeof (Accounts.contactTitle)
)]

When you use the direct reference to the DAC class field, the first parameter of the PXSelector
attribute indicates the referred DAC, and the second one, after the period, indicates the DAC field. You
can refer to a DAC class type either directly or through a BQL statement. Only the first member of the
Search expression is employed as a DAC field. The first DAC in such an expression is named primary
DAC.

The simple search BQL expression defines that all the records of the Accounts database table will be
displayed on the lookup window. By using the additional typeof () expressions, we define columns and
their order in the lookup window.

e If you are going to use a Search statement without any search restriction section, and

= without any Join or OrderBy operation, you can replace that Search expression with the

typeof (MyDAC.MyField) expression. In this case, the common expression may be the following.
(Notice that the typeof (Accounts.accountCD) field is added twice: first, to define the

primary DAC name (that is name of the first DAC in the substituted Search expression as the

first parameter) and its field as the second parameter, and second, to allocate this column as the
leftmost. You could place the second typeof (Accounts.accountCD) field to the any needed
place to change the order of this field's column. Moreover, if you don't add the primary DAC's field in
the additional typeof () expression, this field anyway will be displayed, but its position will be the
rightmost. It doesn't matter, which notation you use—see the code fragment above or below.)

[PXSelector (typeof (Accounts.accountCD),
typeof (Accounts.accountCD),
typeof (Accounts.companyName) ,
typeof (Accounts.country),
typeof (Accounts.contactName),
typeof (Accounts.contactTitle))]

e If you use only the Search selection (or only the first typeof () parameter), all the fields that have
thePXUlVisibility.SelectorVisible value of the Visibility parameter for the PXUIField primary
DAC attribute are automatically included to the list of columns for the lookup window. You can
include as lookup columns only fields that are specified with thePXUIVisibility.SelectorVisible value of
the Visibility parameter in the primary DAC. To do so, use only the Search parameter or only
the first typeof () parameter. More details concerning the Visibility parameter you can see in
Using the Visibility Parameter. See also the The Rules for Defining Lookup Columns' Structure and
Their Order section.

Use a more complicated search expression, when it's necessary to restrict values of a primary DAC
field, join values of a few DACs, or change sort order of this field (from ascended to descended). As the
result, you get the restricted and sorted list of items in the pop-up window which can include columns
from several DACs. The user can select for the webpage only the attribute value of the field in the
Search expression, as the webpage's field is based the primary DAC's field.

| Programming Tasks | 73

This way implies mandatory adding the pXsSelector attribute with the search method as a parameter.
The search method gives you possibility to display data records of a lookup window which are restricted
by conditions specified in a BQL expression.

For instance, you can see the code fragment of the Account DAC below. The condition of displaying
companies in the lookup window is that each company must have the Supplier company type. (We
assume that all companies—suppliers, customers, and other companies—are located in one database
table . They are compatible as they have the similar set of fields.)

#region SupplierCD
public abstract class supplierCD : PX.Data.IBglField
{
}
[PXDBString (15, IsUnicode = true)]
[PXUIField (DisplayName = "Supplier CD")]
[PXSelector (typeof (Search<Account.accountCD, Where<Account.companyType,
Equal<CompanyType.supplier>>>),
{typeof (Account.accountCD),
typeof (Account.companyName) ,
typeof (Account.country),
typeof (Account.contactName),
typeof (Account.contactTitle) })]
public virtual string SupplierCD { get; set; }
#endregion

When it's needed to join several DAC data records, the common selector expression, in which the nore
compicated BQL statement is used, may be written as follows. (The typeof() additional expression isn't
used in this example. but the optional DescriptionField parameter is used.)

[PXSelector (typeof (Search2<VendorClass.vendorClassID,
LeftJoin<EPEmployeeClass, On<EPEmployeeClass.vendorClassID,
Equal<VendorClass.vendorClassID>>>>),

DescriptionField = typeof (VendorClass.descr))]

As a result, the lookup field with two columns is created, VendorClassID and Description. If
the vendorClass primary DAC comprises fields with the PXUIVisibility.SelectorVisible visibility
parameter value, all these fields will be displayed as columns of the created lookup field along with
the aforementioned two columns. Anyway, in this case the VendorClassID will be displayed as
the leftmost column, while the Description field—as the rightmost one. All the selector fields with
the PXUIVisibility.SelectorVisible Visibility value will be displayed as columns located between the
VendorClassID and the Description columns in order of their declaration.

You can create a selector whose columns comprise fied values of several DACs, and also define any
other column order. (See the following code fragment.)

[PXSelector (typeof (Search2<VendorClass.vendorClassID,
LeftJoin<EPEmployeeClass, On<EPEmployeeClass.vendorClassID,
Equal<VendorClass.vendorClassID>>>>),
typeof (EPEmployeeClass.paymentMethodID),
typeof (VendorClass.vendorClassID),
typeof (VendorClass.cashAcctID),
typeof (EPEmployeeClass.salesAcctID),

DescriptionField = typeof (VendorClass.descr))]

In this code, fields of two DACs, VvendorClass and EPEmployeeClass, have been included as columns in
the selector. The key field VendorClass.vendorClassID will be displayed not as the leftmost, but as
the second column from the right of the selector pop-up window,

The DescriptionField parameter, which is not a mandatory parameter, indicates the hint field
associated with the lookup field; this hint provides a description of the selected item, if applicable,

| Programming Tasks | 74

in the lookup window and within the field box. (The description field text is displayed both within the
webpage field and in a separate column of the lookup window.)

You can use the substituteKey parameter to replace the surrogate key with natural one to display
more informative key value, particularly, in the lookup window: instead of the surrogate key column,
the natural key column can be used. See Using Substitute Keys for details.

In the code fragment below, the example of usage the substituteKey parameter (along with the
DescriptionField parameter) is shown.

[PXSelector (typeof (Search2<FABook.bookID, InnerJoin<FABookBalance,
On<FABookBalance.bookID, Equal< FABook.bookID>>>,
Where<FABookBalance.depreciate, Equal<boolTrue>>>),
SubstituteKey = typeof (FABook.bookCode),
DescriptionField = typeof (FABook.description))]

As a result, the lookup field with minimum two columns is created: BookID and Description.

If the FABook primary DAC comprises fields with the PXUIVisibility.SelectorVisible visibility
parameter value, all these fields will be displayed as columns of the created lookup field along with the
aforementioned two columns.

Instead of the surrogate BookID key field, the BookCode key field will be displayed on the lookup
field.

Data in this lookup field is restricted with conditions that only FABook.bookID books are displayed,
which have the IDs in the FABookBalance book database table, and are to be depreciated, while
number of items equal the minimum number of the records containing such BookID values in the
FABookBalance or in the FABook database table, as we used the InnerJoin operator.

See the Adding Lookup Fields Onto a Form and Onto a Grid, where the consequent actions of adding
lookup fields onto the page are described.

The Rules for Defining Lookup Columns' Structure and Their Order

To properly construct required columns of a lookup field so that all the columns were placed in the
needed order and contain only the data necessary for users, you should stick to the following rules:

1. Any pPxSelector attribute's expression consist of a search statement (the mandatory part)
and additional typeof () part (the optional part). The mandatory part may be represented
by a search BQL statement or by a typeof (MyDAC.MyField) expression, where
MyDAC.MyField—the primary DAC's name (before the dot) and the name of this DAC's field
(after the dot).

2. If you are going to use a search statement without any search restriction section, and
without any Join and Order operation, you can replace that search BQL statement with a
typeof (MyDAC.MyField) expression.

3. Don't use the additional typeof () part of the selector expression to automatically display
the SelectorVisible fields of the primary DAC as the lookup field's columns; otherwise, these
fields are not displayed. The order of the columns straightly depends on the order of the fields
declaration in the primary DAC. The primary DAC's field of the Search expression (or in the first
typeof), or its suvstitute key field, will be displayed in any case.

4. If you use the additional typeof () part of the selector expression, notice that all the columns
to be displayed must be listed in this part, including primary DAC's field (or the field in the first
typeof) . Exception: the primary DAC field (or its substitute field), if this field is not listed in
the additional typeof () part of the selector expression, will ever be displayed as a lookup field's
column.

5. Define the order of columns (from the left to the right) by the corresponding order of the
additional typeof () part of the selector expression.

| Programming Tasks | 75

6. The primary DAC's field (or the field in the first typeof) will be displayed as the rightmost lookup
field's column, if it hasn't been listed in the additional typeof () of the selector expression.
Otherwise, this field will be displayed in order, in which it has been listed.

7. Ifthe DescriptionField is defined, and this field is not listed among the SelectorVisible fields or
in the additional typeof () part of the selector expression, the appropriate column will be added
to the right side of the lookup window, but as the second column at the right, if the primary
DAC's column is to be added as a rightmost column.

8. If the substituteKey parameter is used. the natural key field replaces the surrogate key value
in every case.

Creating Lookup Columns by Using the PXCustomSelector Attribute

By using this attribute, you can also create a lookup field columns. Instead of a search expression, the
GetRecords () method is used,

After generating the required DAC, you can add the pxCustomSelector attribute with appropriate
parameters to the DAC field code.

The first example illustrates development and use of the PxCustomSelector attribute of the lookup field
with an unbound lookup column. (See the code fragments below.)

[AttributeUsage (AttributeTargets.Property, AllowMultiple = false)]
public sealed class DaylightSelectorAttribute : PXCustomSelectorAttribute
{
public DaylightSelectorAttribute ()
: base (typeof (Year.nbr), typeof (Year.nbr))
{
}
public IEnumerable GetRecords ()
{
var currentYear DateTime.Today.Year;
const int range 30;
var start = currentYear - range;
var end = currentYear + range;
for (int i = start; i < end; i++)
yield return new Year { Nbr = i };

The DaylightSelector attribute defined as a class that inherits from the pxCustomSelector attribute,
has been created to provide a lookup field's column with the range of years. This range is defined by
using the for cycle, range constant, and value of the Year variable. The DaylightSelector class
derived from the PXCustomSelectorAttribute was created to provide a lookup field populated with a
list of years that are less or more by 30 than the current one.

The next code fragment illustrates attaching the paylightSelector attribute to the vear field of the
DaylightShiftFilter DAC.

[Serializable]
[PXCacheName (Messages.CalendarYear)]
public partial class DaylightShiftFilter : IBglTable
{
#region Year
public abstract class year : IBglField
{

[PXInt]

[PXUIField (DisplayName = "Year")]
[CurrentYearByDefault]
[DaylightSelector]

public virtual int? Year { get; set; }

| Programming Tasks | 76

#endregion}

The user will be able to select a year, that is less or more by 30 than the current one. In accordance

with this code example, the displaying year range will depend on the current client operational system
year.

The second example illustrates development and use of the PxCustomSelector attribute of the lookup
field with bound lookup columns. (See the code fragments below.)

public class CustomerPriceClassAttribute : PXCustomSelectorAttribute

{
public CustomerPriceClassAttribute ()

base (typeof (AR.ARPriceClass.priceClassID))
{

this.DescriptionField = typeof (AR.ARPriceClass.description) ;
}

protected virtual IEnumerable GetRecords ()

{

AR.ARPriceClass epc = new PX.Objects.AR.ARPriceClass();
epc.PriceClassID = AR.ARPriceClass.EmptyPriceClass;
epc.Description = Messages.BasePriceClassDescription;
yield return epc;

foreach (AR.ARPriceClass pc in PXSelect<AR.ARPriceClass>.
Select (this. Graph))
{

yield return pc;

The customerPriceClass attribute, which is also defined as a class that inherits from the
PXCustomSelector attribute, has been created to provide a lookup field's columns with the price class
and their descriptions, obtained from the ARPriceClass DAC by using the foreach cycle.

The next code fragment illustrates implementing the CustomerPriceClass attribute by adding it to the
SalesPriceFilter DAC code for the CustPriceClassID selector field.

[Serializable]
public partial class SalesPriceFilter : IBglTable({

#region CustPriceClassID

public abstract class custPriceClassID : PX.Data.IBglField
{

}

[PXDBString (10, InputMask = ">aaaaaaaaaa")]
[PXDefault (AR.ARPriceClass.EmptyPriceClass)]
[PXUIField (DisplayName = "Customer Price Class",

Visibility = PXUIVisibility.SelectorVisible)]
[CustomerPriceClass]

public virtual string CustPriceClassID { get; set; }
#endregion

While in the first example the explicitly defined columns are employed, in the second example the
SelectorVisible columns will be displayed in the pop-up window.

The user will be able to select the required customer price class from the lookup field after you add
this selector field onto the page and compile the project. In accordance with this code example, two

columns will be displayed in the selector field: PriceClassID and Description, as they have the
Visibility property set to SelectorVisible.

| Programming Tasks | 77

Adding Lookup Fields Onto a Form and Onto a Grid

A lookup (or selector) field is a standard user interface (UI) element that is used for quick search of
the required item value through a webpage field or details table column element. Searched items are
displayed on the popup window that includes one or more columns with data.

Before adding lookup fields, you should create them by modifying the code of the appropriate data
access class (DAC) or business logic container (BLC). Creating process of a lookup field and typical
selector expression structures are described in details in Creating Lookup Fields.

Adding a Lookup Field Onto a Form

Suppose that you have created the lookup field's code for the Employees webpage, which already has
UI elements, including the EmployeeCD simple text field that is to be transformed to a selector field.

In this case, your typical actions may be the following:

1. Open the Employees page, right-click any area of the page, and select Refresh.

If this page was already opened, the refresh procedure lets you retrieve the changes you have
—|] made during the first adding UI elements onto the page.

2. Point to the form control, open the smart tag associated with it, and select Edit Content
Layout.

3. On the left area of the Layout Editor that appears, delete the EmployeeCD field by clicking
Remove active item.

First you should do before adding a lookup (selector) field—remove the same field that existed
—|] before as a text or numeric field.

4. On the right area of the Layout Editor, select the Fields tab, and you can see the EmployeeCD
field, defined as a Selector control (that is, as a lookup field).

Select the check box for the EmployeeCD field and click Generate.

6. On the left area of the Layout Editor, move up by one position the restored EmployeeCD field to
place it in its original position.

7. On the Properties tab, open the drop-down list for the DisplayMode property to see the
options, but keep the Hint default value, as shown in the screenshot below.

The DisplayMode property defines the display format of the lookup field value on the webpage

—| and within the lookup window during run time. The property has the following settings: Value: If
you use this mode, you can see in the webpage field only the employee CD (the first 15 letters of
the employee's last name in this case), and in the lookup window you see two columns—one with
the employee CD, and for the other the DescriptionField property is used. Text: If you use this
mode, in the webpage field, you see only the description field's name, and in the lookup window,
you see two columns: one with the employee CD, and the other with the employee's description.
This mode is used when the field value is calculated, such as a numbered key value (defined as an
Identity field) or, for instance, the full name of an employee (as the description field). To allow the
user to add a calculated value for a non-nullable field, you must also set the TextMode property to
Editable. Hint: If you use this mode, on the webpage field box and in the lookup window, you can
see two values: the employee CD and the employee's full name.

a-' Layout Editor EI@
& + % X |5&LlayoutRule 53 Container » 53 Control =
=B form |Pro|:-erties | Fields
&1 Column
= FirstName
= TileOfCourtesy |Con‘|mitCl'|anges True |
2 BithDate Datalield EmployeeCD
= HireDate IDispIa:.'Mnde Hirt I
= Address Size
) City [TextMode Editable |
= Region 4 Behavior
2| PostalCode CliertIDMode Inherit
=2 Column ViewStateMode Inherit
- [E Courtry 4 BExd Property
= HomePhane AllowAddMew False
= Bxtension Allow Edit False
£ ReporsTo AutoAdjustColumns False
2| CrestedBylD > AutoCallBack
Z CreatedByScreenlD AutoGenersteColumns False
2| CrestedDateTime AutoRefresh False
2 LastModffiedBylD Enabled True
= lastModfiedByScreenlD FitterBy Al Ficlds False
= LastModfiedDateTime » GridProperties
LabelWidth
Parameters (Collection)
SuppressLabel
WalueField
[width 150px |
Base Property
Ok || cancel

Figure: Adjusting properties of the lookup field

8. For each lookup field, set the value of CommitChanges property to True.

9. Optional: Enter the optimal Width property value.
10. Click OK to close the Layout Editor window.

| Programming Tasks | 78

11. Select the source mode to see the .aspx code; notice that the EmployeeCD lookup field's tag
has been created—PXSelector— which contains entered property values. (See the screenshot

below.)

| Programming Tasks | 79

Client Objects & Events ~| (NoEvents) 'I EmployeeCD <PXSELECTOR> v
=l<asp:Content ID="cont2" ContentPlaceHolderID="phF" Runat="Server": S Al |J
= <px:PXFormView ID="form" runat="server"” DataSourceID="ds" Height="2@88px" o K
Style="z-index: 188" Width="188%" DataMember="EmployeeRecords" (D) EmployeeCD i
TabIndex="58@" ActivityIndicator="True" Caption="Employees" AllowAddMew False
FilesIndicator="True" LinkIndicator="True" NoteIndicator="True":» — AllowEdit False
T <Template> ‘jl AutohdjustColur False
<px:PXLayoutRule runat="server” ControlSize="SM" StartColumn="True": T
</px:PXLayoutRule> AutoGenerateCol =
= <px:PXselector ID="EmployeeCD" runat="server" DataField="Employee(D" AutoRefresh False
DataSourceID="ds" NullText = "<NEW>" CommitChanges="True" ClientiDMode Inherit
TextMode="Editable" Width="15@px" > CommitChanges True
e e Ty DataField EmployeeCD
<px:PXTextEdit ID="LastName" runat="server" DataField="LastName"> DisplayMode Hint
</px:PXTextEdits
<px:PXTextEdit ID="FirstName"” runat="server"” DataField="FirstName":> Enabled True
</px:PXTextEdits FilterByAllFields False
= <px:PXDropDown ID="TitleOfCourtesy"” runat="server” DataField="TitleOfCourtesy” LabelWidth
AllowEdit="True"> runat R =
</px:PXDropDown o
<px:PXDateTimeEdit ID="BirthDate" runat="server"” DataField="BirthDate": -
100% ~ < m | [
L3 Design | O Split IEI Source | EH<px:PXForm\-"iew#form>||<Template>|l<px:PXSeIector#EmployeeCD>| |E| e - Properties

Col14 Ch14

Figure: Analyzing the PXSelector tag's content

12. Start the application with the Employees webpage, open (or refresh the page if it's already
open), click Insert, and add another employee record. Click Save to save the entered record.
Click navigation buttons to select existing records and watch their attribute values. Notice that in
the Hint display mode (as in the Text mode), in the EmployeeCD field box, the employee CD is
displayed, followed by a hyphen and the employee's full name (the description field), as shown

in the screenshot below.

In the describing example, the system automatically capitalizes all letters entered in the
—| EmployeeCD field and trims all letters past the 15th letter on the right. Because blanks on the left
are never trimmed, we recommend that you not add blanks left of the EmployeeCD value.

13. Click the Magnifier icon of the EmployeeCD field. You see the drop-down list with the CDs and
full names of employees, as the screenshot below illustrates.

© Employees

- 4+ v W I< < b 2l

* EmployeeCD: | CALLAHAN - Ms. Laura [©] Country. US - United State: 0| &
+ Last Name: EmployeeCD O X (206) 555-1189
* First Name: Select c =] v 2344

Thie Of Courtesy. a EmployeeCD FullName | Dr Andrew Fuller L
* Birtn Date: > CALLAHAN Ms. Laura Callahan LI TITC
* Hire Date: FULLER Dr. Andrew Fuller RB.20.20.00

Address: JOHSON Mr. Edward Johnson 8122011 4-22 P

City: | " - admin - admin

Region: ,D| I< : 1D RBE.20.20.00

Postal Code: 93105 1 Last Modified Date and Time: 1111212012 4:27

Figure: Viewing the structure of the EmployeeCD lookup field

| Programming Tasks | 80

Adding a Lookup Field Onto a Grid

Calculations

In this chapter, you will get acquainted with the various types of calculations, including calculations by
using formulas, autonumbering, and calculation by using accumulator attributes. Topics of this chapter
also contain descriptions of how to handle concurrent and frequent field updates.

Content
This chapter covers the following topics:

e Calculating Values of UI Elements

Calculating Values of UI Elements
To implement the calculation of values, you use the following attributes:

e PxDBCalced, which creates an equation in a final T-SQL statement, is used for unbound data
access class (DAC) fields.

e PxDBScalar, which declares a sub-query in a final T-SQL statement, also is used for unbound DAC
fields.

e PxFormula performs various types of calculations, including totals, and is used for both database-
bound and unbound DAC fields.

e PXUnboundFormula is used for unbound DAC fields. It performs aggregate calculations depending
on one or more conditions and assigns results to one or more summary fields.

In many cases, the FieldSelecting event handler is raised when a DAC field value is being prepared to be
—| displayed on the UI. This event should be used to calculate database-unbound DAC field values whose
calculation methods can not be specified declaratively. For detailed information, see FieldSelecting Event.

Calculating With PXDBCalced

By using the pxDBCalced attribute, you can perform calculations with four standard arithmetical
operators: addition (Add), subtraction (Sub), multiplication (Mult), and division (Div). The attribute also
provides the Minus operator, which you can use to change a negative decimal result to a positive one
and a positive result to a negative one. You can see the list of all operands in PXDBCalced Attribute.

For example, see the following DAC code fragment, where the Discrepancy field is used to define
the quantity of products to be reordered. The second parameter is used to define the data type of the
result.

[PXDBCalced (typeof (Minus<Sub<Sub<ProductReorder.unitsInStock,
ProductReorder.unitsOnOrder>, ProductReorder.reorderLevel>>),
typeof (Decimal))]

Calculating With PXDBScalar

The pxDBScalar attribute declares a sub-query, which you can use to obtain the result of a BQL
statement.

By using the following DAC code fragment, you can obtain the quantity of the specified product in stock.

[PXDBScalar (typeof (Search<StockBalance.unitsInStock,
Where<StockBalance.productID, Equal<Products.productID>>>))]

| Programming Tasks | 81

By using the DAC code fragment that follows, you can get an array of the current product's Supplier
Price values of different suppliers, sort the values from the lowest to the highest price, and return the
value with the lowest price.

#region SupplierPrice
public abstract class supplierPrice : PX.Data.IBglField
{
}
[PXDecimal (2)]
[PXUIField (DisplayName = "Supplier Price")]
[PXDBScalar (typeof (Search<SupplierProduct.supplierPrice,
Where<SupplierProduct.productID, Equal<ProductReorder.productID>,
And<SupplierProduct.supplierPrice, Greater<decimal 0>>>,
OrderBy<Asc<SupplierProduct.supplierPrice>>>))]
[PXDBDefault (typeof (Search<SupplierProduct.supplierPrice,
Where<SupplierProduct.productID, Equal<Current
<ProductReorder.productID>>, And<SupplierProduct.supplierCD,
Equal<Current<ProductReorder.supplierCD>>>>>))]
public virtual decimal? SupplierPrice { get; set; }
#endregion

Calculating Column and Total Values With PXFormula

This section illustrates the pxFormula calculation attribute by using the Sales Orders webpage, which is
based on the FormDetails template.

PXFormula is used to declare various kinds of formulas for calculation of DAC field values, such as
discounts, extended prices, line totals, and other values you might need to calculate. The PXFormula
attribute provides calculations by using four standard arithmetical operators: addition (Add),
subtraction (Sub), multiplication (Mult), and division (Div). A few aggregate methods can be used by
the pxFormula attribute as a parameter: SumcCalc, CountCalc, MinCalc, and MaxCalc.

Three typical code examples with different structures are given below. The second and third examples
do not permit the user to add any value to the formula, since all the values are to be calculated. The
first example permits the user to enter values to pass them for calculations of aggregates.

The PXParent attribute, illustrated below, provides a master-details relationship between the upper and
lower areas of the webpage. The total field values in the master area change as lines in the details table are
inserted or updated, based on values in the columns of the details table.

[PXParent (typeof (Select<Order,Where<Order.orderID,
Equal<Current<OrderDetails.orderID>>>>))]

It doesn't matter on which field the PXParent attribute was declared. The first PXParent attribute found
will be used with the DAC defined for this aggregate. This attribute works only with the first and second
code examples showing the usage of the PXFormula attribute.

For the first example, shown below this paragraph, a simple expression with one parameter is
illustrated. It calculates only the aggregate value in the TotalQty field by using the pPXFormula
attribute; the total quantity of the current receipt is defined each time the user saves inserted or
updated data.

[PXFormula (null, typeof (SumCalc<Documents.totalQty>))].

The second example (shown below this paragraph) shows a more complicated expression with two
parameters. This formula, declared for the Extended Price column of the details table, updates the
Lines Total value in the form area of the webpage with the sum of the Extended Price column rows,
whose DAC field (ExPrice) is used as a parameter of the pxpParent attribute. (See the screenshot and
the note below.) The formula also updates for each row the Extended Price value, which is calculated
by multiplying the following numbers: the value of the Unit Price column, the value of the Quantity

| Programming Tasks | 82

column, and the result when the Discount column value (the percent divided by 100) is subtracted
from 1.

[PXFormula (typeof (Mult<Mult<OrderDetail.unitPrice,
Sub<DecimalOne, Div<OrderDetail.discount,
typeof (SumCalc<Order.linesTotal>))]

OrderDetail.quantity>,
DecimalHundred>>>),

Thus, if the unit price was $55.00, the quantity was 42.00, and the specified discount percent was
10.00, the extended price would be calculated as follows: $55.00 * 42.00 * (1 - 10.00/100) =
$2079.00, as the screenshot below illustrates.

» | & Sales Orders Notes Files Help ~
La + L - 4 < > >l Print
Order dsta Shipment data Audit data
= OrderID 00001) Shipped Date 812712012 Created By ID admin - admin
* Customer ID: HANARI CARMES - Har * Ship Via HANARI CARNES - Har Created By Screen|D RB.30.20.00
Description: Freight: 1,190.90 Created Date and Time: 812712012 2:07 P

Ship Name: Hanari Cames Last Modified By ID: admin - admin

+ Employee ID: CALLAHAN - Ms. Laura Ship Aderess: Rua do Pago, 67 LastModified By ScreeniD: RB.50.10.00

= Order Date: 8122/2012 Last Modified Date and Time: 8/27/2012 4:38 P

* Required Date 812472012 Ship City. Rio de Janeiro
Ship Region: RJ

Totals
Ship Postal Code 05454-876
LinesTotal:

13,22117

658.17

14,412.07

Ship Country:
Tax Total P " BR

Order Total

f

(Refresh | || Adjust Export ¥ Filter
Product ID UnitPrice Quantity Stock Unit Tax Discount | Extended Price | Created By ID Created By ScreenlD Created Date and Time Last Mo... Last Modified B... Las
IKURA 800.00 12.00 100mljars 456.00 5.00 9,120.00 | admin RB.20.20.00 8/27/2012 210 PM admin RE.30.20.00 8127
» NORTHWOODS CRAN 55.00 4200 12ozjars 101.08 10.00 2,079.00 | admin RB.20.20.00 812712012 211 PM admin RB.20.20.00 8127
QUESO MANCHEGO 38.00 5B.00 1kgpkgs 10111 825 2,022.17 | admin RB.20.20.00 8127/2012 211 PI admin RB.30.20.00 8127

1 [D

Units In Stock : 8.50 Units On Other Orders : 15.00

Figure: Calculation of sales order totals

In the code fragment shown in the second example, note the following:

e The DecimalOne and DecimalHundred classes represent the constants that equal 1 and 100,
respectively. These constants, declared earlier, are used in the PXFormula expression to calculate
the coefficient by which product costs are multiplied. Users enter discount values as percentages; the
entered discount percent is then divided by 100.

For the third example (shown below this paragraph), the simplest expression with one parameter is
illustrated, with the static formula, declared for the Order Total field. This formula updates the order
total amount with the sum of Lines Total and Freight. (See also the screenshot above.)

[PXFormula (typeof (Add<Order.linesTotal, Order.freight>))]

Calculating Aggregate Values With PXUnboundFormula

The PXUnboundFormula attribute, which is mostly used with the switch operator, lets you obtain
aggregate results and assign them to the respective summary webpage fields. As a first parameter
of this attribute, the BQL expression (usually with the switch operator) is used, while in the

second parameter, the SumCalc aggregate method is used along with the summary field name. The
PXUnboundFormula attribute may be added to any DAC field code, since the destination field does not
depend on the field chosen for this attribute. The destination summary field is specified in the second
parameter of the attribute, which is added after the sumcalc aggregate method.

| Programming Tasks | 83

You can see a DAC code fragment that uses the pPXUnboundFormula attribute below. Note that several
PXUnboundFormula attributes have been added to the Taxable Amount field definition. Also,
notice that the Taxable Amount field value does not depend on the results of the calculations of the
PXUnboundFormula attributes. These results will be entered to the summary fields that are defined in
the second parameter of each attribute.

#region CuryTaxableAmt
public new abstract class curyTaxableAmt : PX.Data.IBglField
{
}
PXDBCurrency (typeof (APTaxTran.curyInfolID), typeof (APTaxTran.taxableAmt))]
PXDefault (TypeCode.Decimal, "0.0")]
PXUIField (DisplayName = "Taxable Amount", Visibility = PXUIVisibility.Visible)]
PXUnboundFormula (typeof (Switch<Case<WhereExempt<APTaxTran.taxID>,
APTaxTran.curyTaxableAmt>, decimal0>),
typeof (SumCalc<APInvoice.curyVatExemptTotal>))]
[PXUnboundFormula (typeof (Switch<Case<WhereTaxable<APTaxTran.taxID>,
APTaxTran.curyTaxableAmt>, decimalO>),
typeof (SumCalc<APInvoice.curyVatTaxableTotal>))]
[PXUnboundFormula (typeof (Switch<Case<WhereExempt<APTaxTran.taxID>,
APTaxTran.curyTaxableAmt>, decimalO>),
typeof (SumCalc<AP.Standalone.APQuickCheck.curyVatExemptTotal>))]
[PXUnboundFormula (typeof (Switch<Case<WhereTaxable<APTaxTran.taxID>,
APTaxTran.curyTaxableAmt>, decimal0>), typeof (SumCalc<AP.Standalone.
APQuickCheck.curyVatTaxableTotal>))]
public override decimal? CuryTaxableAmt { get; set }
}

#endregion

[
[
[
[

Data Input

In this chapter, you will get acquainted with the specific singularities of data input support and various
types of data manipulation by using Acumatica Framework tools and facilities. Topics of this chapter
also contain descriptions of how to import data from external files, validate field values, add input
masks.

Content
This chapter covers the following topics:

e Managing Visibility of DAC Fields and UI Elements

Managing Visibility of DAC Fields and UI Elements

You can manage visibility of a DAC field in the appropriate section of the Layout Editor window, and a
user interface (UI) element—such as a field, combo box, check box—on a webpage.

Using the Visibility Parameter

In this section is described the managing of a data access class (DAC) field visibility in the appropriate
segment of the Layout Editor window (on the Fields tab).

Layout Editor is used to adjust each UI element properties and append them onto a page while working
in design mode. Each visible DAC field must have its PxUIField—DAC field attribute. This attribute
may have parameters, one of which predefines visibility of a DAC field in one of segments of the Layout
Editor window: Visible, Invisible, or Selector. The capability of splitting UI elements into different
segments facilitates creation of a webpage and enables the developer to quickly analyze correctness of
the DAC code (for instance, not to forget to define a DAC field in the DAC code as a selector (lookup)
field).

| Programming Tasks | 84

See below the Country DAC code fragment for an example of usage parameters of the PXUIField
attribute.

public abstract class country : PX.Data.IBglField

{

}

[PXDBString (2, IsKey = true, IsUnicode = true, IsFixed = true)]

[PXDefault ()]

[PXUIField (DisplayName = "Country", Visibility = PXUIVisibility.SelectorVisible)]
public virtual string Country { get; set; }

The PXUIField attribute denotes the appearance of the DAC field within appropriate segment of the
Layout Editor. The DisplayName parameter specifies the name of the UI element on the interface. The
Visibility parameter specifies the visibility scope of the UI element and has four possible values:

e PXUlVisibility.Visible: Indicates that the DAC field is to be included in the Visible segment of the
Layout Editor window. If the pPxUIField attribute is added for a field without the visibility
parameter, this DAC field becomes visible by default for Layout Editor.

e PXUlVisibility.Invisible: 1t means that the DAC field is to be included in the Invisible segment
of the Layout Editor window. If the PxUIField attribute is not added for a field, this field also is
included in the Invisible segment of Layout Editor.

e PXUlVisibility.SelectorVisible: Indicates that the DAC field is to be included in the Selector
segment of the Layout Editor window to use it for generation the selector (lookup) field or column.
You can use such fields as columns of a lookup field when this field has no explicit set of columns
specified.

e PXUlVisibility.Dynamic: It means that a DAC field bound to a grid control is not visible in any
section of the Layout Editor window. You can use such DAC fields to automatically display them in
a details table or tab table as columns of a webpage, if you add no columns onto the page and set
the AutoGenerateColumns property value to AppendDynamic.

Using the Visible Parameter
This is a static way of the UI element visibility management. The following code fragment of a business
logic container (BLC) code illustrates the use of this parameter.

#region DAC Overrides

[PXDBString (1, IsKey = true, IsUnicode = true, IsFixed = true)]
[PXUIField (DisplayName = "Company Type", Visible = false)]

[PXDefault (CompanyType.Supplier)]

public virtual void Accounts CompanyType CacheAttached (PXCache Sender) {}

You made the Company Type field invisible by adding Visible = false in the DAC Overrides
region of a BLC code.

The next code fragment of a DAC code illustrates making invisible of a special system grid column,
LastLineNumber, whose value is used by the appropriate BLC logic, but is not needed for the user's
work.

#region LastLineNbr

public abstract class lastLineNbr : PX.Data.IBglField
{

}

[PXDBInt ()]

[PXUIField (Visible = false)]

public virtual int? LastLineNbr { get; set; }
#endregion

| Programming Tasks | 85

fregion NotelID
public abstract class noteID : PX.Data.IBglField

The visible parameter has an alternative—Enabled parameter, which is used when instead of making
a UI element invisible, is necessary to make it visible, but non-editable.

Using the SetVisible Method
The PXUIField attribute class enables dynamic modification of PXUIField attribute parameters. Here,

the SetVisible method is used by the event handler to override the visible parameter when data is
selected from the DAC.

public class Employeelist : EmployeeMaint
{
public virtual void Employees RowSelected(PXCache cache,
PXRowSelectedEventArgs e)

if (e.Row != null)
PXUIFieldAttribute.SetVisible<Employees.employeeCD> (cache, e.Row, false);

The PXUIFieldAttribute.SetVisible method sets the visible parameter of the appropriate
PXUIField attribute to false at run time. If you don't supply a field name, this method affects all fields
of the DAC.

The PXUIFieldAttribute.SetVisible method overrides the default value of the Visible parameter
specified in the DAC. Therefore, if you apply this method to the entire DAC and must make invisible some
fields under certain conditions, you should explicitly make invisible these fields.

The next code fragment of the APInvoiceEntry BLC code illustrates making invisible of a form UI
elements and grid columns, CuryOrigDocAmt and Box1099, appropriately in the invoice (if the
RequireControlTotal property in the AP setup is set to False or the document has not been released),
and in the Transactions grid (if the Vendor1099 value is False).

protected virtual void APInvoice RowSelected

(PXCache cache, RowSelectedEventArgs e);

{

APInvoice doc = e.row as APInvoice;
PXUIFieldAttribute.SetVisible<APInvoice.curyOrigDocAmt> (cache,
doc, (bool)APSetUp.Current.RequireControlTotal || docreleased);
PXUIFieldAttribute.SetVisible<APTran.box1099>
(Transactions.Cache, null, Vendorl099);

Only the RowSelected handler on a PrimaryView DAC's BLC code or a BLC constructor are places where is
possibly to modify visibility through the code.

Validating UI Element Values

In this topic, the process of implementing a simple validation logic for user interface (UI) elements
is described. Validation logic is necessary to prevent entering wrong or inadmissible values to

user interface (UI) elements, as well as values that do not match the conditions that are specified
beforehand. As a rule, validation logic is implemented by using various kinds of event handlers.

Implementing a Simple Validation Logic
Suppose that you must restrict UI element values of your Employees webpage, whose General Info
tab includes data sections of more than one data access class (DAC). The Hire Date UI element (the

| Programming Tasks | 86

date type field) had been included in the EPEmployee DAC, while the Date Of Birth UI element (also
the date type field) had been included in the CRContact DAC (see the screenshot below). The Date
Of Birth field must have not null or empty (blank) values; values of the Hire Date must match the
condition: the age of the employee cannot be less than 16 years.

It doesn't matter, in a common or in different DACs are allocated UI elements that are to be bound by a
—| condition; the illustrated situation with different DACs is a bit more complicated, and nothing more.

Q Acumatica I finance Distribution Configuration * 24(3) 511312013 7:28 AM admin
Communication | Customer Management Projects Time & Expenses ‘Organization Structure |
» & MAIN - Employees Notes Activities Files Customization Help ~

B - + - ® K < > b

* Employee |0 EP00000001 - Michael Andrews , Mr. J] Status: Active -

~ Employee Name: Michael Andrews , Mr.

General Info | GL Accounts and Payment Settings ~ Mailings Customer Rates ContractLabor Classes Employee Cost Company Tree Member

Contact Info Employee Settings
Title: Mr. - Hire Date: 5/23/1998 - [Terminated
First Mame Andrews Termination Date:

Middle Name: Employee Ref. No.:

* LastName Michael = Employee Class EMPDEFAULT - Default Dl £
Phone 1 Type Home » | +1(777)458-2142 * Branch: MAIN - Mew York ol #£
Phone 2 Type Cell - + Position: CEQ - Cheaf Executive Officer Rl £
Phone 3 Type Busines: = * Department: ADMIN - Administration Ll L
Fax Type Home Fz = * Calendar. EST - Eastern Time (NY) Pl £
Email: Mandrews@Rapid-Byte.com x| Reports to LPl|£L
Web: =N Salesperson o £

Address info Employee Login: Andrews - Andrews, Michagl D £
Address Line 1: 1441 Broadway Currency IO usD Rl £ [] Allow Currency Override
Address Line 2: Curr. Rate Type : SPOT 0| & [] Allow Rate Qverride
City: Mew York Labor Class: PMANAGEMENT p

~ Country: US - UNITED STATES D £ Overtime Labor Class: PMANAGEMENT o]
State: MY - NEW YORK o # [¥] Route Emails
Postal Code: 10010 [T Time Card is Required

Fersonal info

Date Of Birth: 1141961 - |

Figure: The UI elements to be validated

(You shouldn't perform these instructions, just analyze the code lines.) To implement this validation
logic, proceed as follows.

1. Add to the EPEmployeeEvents region of the EP.EmployeeMaint business logic container (BLC)
code the following code lines.

#region EPEmployee Events
protected override void EPEmployee RowPersisting (PXCache sender,
PXRowPersistingEventArgs e)
{
PXDefaultAttribute.SetPersistingCheck<Contact.dateOfBirth>
(sender, e.Row, PXPersistingCheck.NullOrBlank) ;
DateTime birth = (DateTime)this.Contact.Current.DateOfBirth;
EPEmployee row = (EPEmployee)e.Row;
DateTime alloweddate = new DateTime (birth.Year + 16,
birth.Month, birth.Day);
DateTime hire = (DateTime)row.HireDate;
if (hire != null &&((DateTime)hire) < alloweddate)

| Programming Tasks | 87

throw new PXSetPropertyException ("The employee's hire date must be " +
"at least 16 years after his or her
birthdate.");
}

#endregion

Within the RowPersisting event code, two methods of a field validation are used: The

= PXDefaultAttribute.SetPersistingCheck method, which is used to remind the user to enter the
appropriate date of birth. (You can tweak the validation process by using the PXPersistingCheck
parameter values (Null, NullOrBlank, or Nothing.) The following code lines, which (along with

the PXSetPropertyException method) checks the condition to warn the user if the new employee
is younger than 16. These validation methods prevent a record from being saved if at least

one of the aforementioned conditions is true. If the date of birth is null or empty, the common
error message is displayed (such as Nullable object must have a value), but you can use the
PXSetPropertyException method to declare your own detailed error message by using the second
validation version.

2. Set the AutoCallBack properties for the Hire Date field as follows:
e Enabled: True (keep default)
e Target : form
¢ Command: Save

3. Build the solution.

Testing the Results
Now you can test the results of the implemented validation logic to ensure that the logic works properly.

(You shouldn't perform these instructions, just imagine the testing steps.) Perform the following
actions:

1. Return to the Employees form and try to add a new employee record without entering the Date
Of Birth value. Enter values for all the other required fields (allocated by the asterisk at the left
of the name).

2. Click Save: The error message appears that the not nullable object must have a value, and the
record is not saved.

As was mentioned in the hint in the previous section, to define a more exact error message, you
—| can add on your own a few more customization code lines to the EP.EmployeeMaint BLC code lines
that contain the appropriate condition check and error message text.

3. Enter the date of birth so that the difference between it and the hire date is less than 16 years,
and the second error message appears, as shown in the screenshot below. This is the message
text added by you to the event code as a parameter of the PXSetPropertyException method.

| Programming Tasks | 88

Q Acumatica [oIEIUEYM Finance Distribution Configuration % 24(3) 51312013 8:26AM admin
Communication | Customer Management Projects Time & Expenses Organization Structure |
» 2 MAIN - Employees Hotes Activities Files Customization Help ~

B - + - W < < > 2l

* Employee ID: JOHNSON L Status: Active -

= Employee Mame:

General Info | GL Accounts and Payment Settings Mailings CustomerRates ConfractLabor Classes Employee Cost Company Tree Member

Contact Info Employee Settings e ——

Title: M. - Hire Date: wmgyljkrminated
First Name: Edward The employee's hire date must be at least 16 years after
Middle Name: James his or her birthdate.

* Last Name: Johnson + Employee Class: EMPDEFAULT - Default o[£
Phone 1 Type: Home = + Branch: MAIN - New York LPl|£
Phone 2 Type: Cell - = Position: JRCONSULT - Junior Consultant O | 4
Phane 3 Type: Busines: = * Department: CONSULTING - Consulting o £
Fax Type: Home Fz - + Calendar: EST - Eastern Time (NY) D £
Email: izl Repaorts to: EPO0000006 - Bloom Todd, Mr. 0| | &
Web: =y Salesperson: ol £

Address info Employee Login ol £
Address Line 1 Currency 10: usD 2| £ |¥] Allow Currency Override
Address Line 2 Curr. Rate Type SPOT £ & [Allow Rate Override
City: Labor Class o

+ Country: US - UNITED STATES 2| £ Overtime Labor Class: o
State: FL - FLORIDA Dl £ Route Emails
Postal Code: [Time Card is Required

Personal info

Date Of Birth: 5151997 -

Figure: Entering a record with the not permitted Hire Date value

4. Make the hire date at least 16 years later than the date of birth, and click Save. The new record
has been saved.

Further in your practice, you will possibly have to implement more complicated validation logic: For
instance, logic which provides blocking of the user's data entering (in the multi-user mode) when one or
more dynamically changed values of a group of fields can disturb the defined threshold value (such as
the minimum number of units in stock). As a rule, you will use the one or more kinds of event handlers
to successfully resolve required problems.

Using Input Mask and Display Mask

This topic describes how to use the InputMask parameter of the PxDBString attribute to restrict
entering of text data for specified user interface (UI) elements of webpages. Value restrictions of Ul
elements can be of two types: content and structure.

In the first section is given the definition of the I1nputMask parameter and described the list of the
possible values of this parameter and their usage, while in the second section is given the simple
example of adding and using the InputMask parameter in the data access class (DAC) code.

You can use also the DisplayMask parameter: While the InputMask parameter enables the programmer
—| to get or set the value specifying how users will enter data, the DisplayMask parameter enables the
programmer to specifying how the UI element data will be displayed. The display mask has the same
settings.

| Programming Tasks | 89

The InputMask Parameter and Its Possible Values

The InputMask parameter is a pattern that indicates the allowed characters in a string value. As a
result, the application does not allow the user to enter other characters or more or less number of
characters than had been defined for the UI element.

The default value of the InputMask parameter for key fields: >AAAAAA.

The mask format follows C# conventions, including the following:
e C, & Any symbol
e A, a: Any letter or digit
e L, ?: Letter only
e #,0, 9: Digit only
e >: All of the following characters will be in uppercase
e <: All of the following characters will be in lowercase

Example of use:

InputMask = ">LLLLL"
InputMask = ">aaaaaaaaaa"
InputMask = ">CC.00.00.00"

Static methods to set the parameter at run time:

public static void SetInputMask (PXCache cache, Object data, String name, String
mask)

public static void SetInputMask<Field> (PXCache cache, Object data, String mask)
public static void SetInputMask (PXCache cache, String name, String mask)

public static void SetInputMask<Field> (PXCache cache, String mask)

Adding and Using an InputMask Parameter
Instructions below represent a simple example of creating and using the InputMask parameter. You
shouldn't perform any actions, just analyze them.

To add a mask for validating the home phone number, do the following:

1. Modify the HomePhone member of the Employee data access class (DAC), as shown below.
(Plus at the left of a code line means that this code line must be added while minus denotes
deleting a code line that is to be replaced with the next line marked by the sign of plus.)

public class Employee : PX.Data.IBglTable
{

#region HomePhone
public abstract class homePhone : PX.Data.IBglField
{
}
- [PXDBString (24, IsUnicode = true)]
+ [PXDBString (24, IsUnicode = true, InputMask = " (##4#) #HH##F-F###")]
[PXUIField (DisplayName = "Home Phone")]
public virtual string HomePhone { get; set; }
#endregion

| Programming Tasks | 90

2. Build the project.
3. Open the Employees page, right-click any area of the page, and select Refresh.

If this page was already opened, you must refresh it to retrieve the changes you have made.

4. Point to the form control, open the smart tag associated with it, and select Edit Content
Layout.

5. In the left area of the Layout Editor window that appears, expand the second column node and
delete the HomePhone field by clicking the Remove active item.

6. In the right window of the Layout Editor, click the Fields tab, and notice the HomePhone field,
which is defined now as a MaskEdit control.

Select the check box that precedes the HomePhone field, and click Generate.

8. In the left window of the Layout Editor, move up by one position the restored HomePhone field
to place it in its original position.

Formatting characters are not stored in the database or applied on the DAC level. For example, if
=1 a phone number is displayed in the UI as (999) 999-9999, the number is stored in the database as
9999999999. As a result, some existing data may be displayed incorrectly if, for instance, imported
data contained invalid characters or a different number of digits. In such cases, you need to restore
the appropriate value of this phone number manually or change the incorrect input mask.

9. Click OK to close the Layout Editor window, and save the page.

10. Start the application with the Employees webpage, open the webpage (or perform refresh
procedure, if it had been opened before), and explore the functionality of the masked field:
Insert a new employee record and add a phone number to ensure that you cannot add
more than ten digits to this field, and that the parentheses and hyphen are displayed in the

appropriate positions, in compliance with the mask definitions. (See the screenshot below.)

4 > 2
Country: U3 - United State: O | &
Home Phone: (206) 555-3412
Extension: 3355
Reports To: Dr. Andrew Fuller e

Figure: Exploring the HomePhone field with the InputMask value restrictions

You can specify input masks only for masked text edit fields. However, a simple text edit field has
—| thevalidateExp property, for which you can specify a regular expression that will be executed by
JavaScript when fields in a browser are validated.

Interaction With the Server

In this chapter, you will get acquainted with the singularity of interaction a webpage with the Server.

Content
This chapter covers the following topics:

e Confifuring Webpage UI Elements and Behavior of BLCs

| Programming Tasks | 91

Confifuring Webpage UI Elements and Behavior of BLCs

User interface (UI) elements have the commitChanges property for specifying dynamic webpage
behavior. This property indicates for the webpage when the client data needs to be sent to the server
for processing. The first section of this topic is devoted to the description of the CommitChanges
property while in the second section is illustrated the use of the autocallback group of properties,
which provides navigation buttons that can be employed for moving from one webpage to another one.

The CommitChanges Property

Navigation between records on the webpage is based on the key fields concept. When the user selects
key field on the webpage (for instance, to navigate to another product ID), the browser sends the keys
to the server to retrieve a new record based on the selected key values.

The some Ul element values may need to be sent to the server for processing (for instance, to respecify
possible values of the webpage's UI elements that depend on the added or updated field value). To
activate the system capability to provide interactive webpage behavior during data entry or update,

the developer should set the CommitChanges property to True for appropriate UI elements. These Ul
elements can be placed on the form control or in the grid control as table columns.

Depending on the implemented logic, changed values of UI elements (with the CommitChanges property
—| thatissetto True) can be send to the server at the moment of modifying their values or at the moment
of losing focus. UI element values are sent and refreshed only for UI elements with the CommitChanges
property set to True,

During execution of the CommitChanges property, data the user inserted on the web page is posted to
the server and submitted to the BLC to trigger the execution of the associated business logic.

Using AutoCallBack Properties to Add a Navigation Button on a Grid Toolbar

For an example, adding a navigation button on the grid toolbar of the List of Employees inquiry
webpage is illustrated. Users may click this button to open the Employees maintenance webpage, if
they want detailed information about the current employee.

Because this example illustrates only the design part of implementation of a navigation button, without
—| logic changes in the business logic controller (BLC) code, to describe the use of the AutoCallBack
properties, you shouldn't perform the instructions below.

To add the Employee Details navigation button, the developer must fulfill the following actions:

1. Open the Employees page in design mode and select the ds control. Select the
CallbackCommands property and click the button at the right. On the Callback Commands
window that appears, select the openEmployee command (that was defined in the appropriate
BLC code) and change the DependOnGrid property value to grid. Click OK.

| Programming Tasks | 92

@0 RB - Microsoft Visual Studio (Administrator) | = ” = ” £2 |

File Edit View Website Build Debug Team Data Format Tools Test Window Help
: j'J'LjH§|,‘; -.gj|-" - 'Jﬂ':$| 2 |Dehug 'HAnyCPU v||a§|TaxCatEgUry v|‘l—“§§_?ﬁ;
! Mew Workltem ~ Mew Query = _\fJ| M @Innal\WebComponents = L\.J_J| :‘-_.] £ Y = £ 2] ; /‘| ="_‘ ; ;
Pages/RapidByte/RE202010.aspx XH - Callback Commands EI@ HProper‘tles 0 x
Save Bl | Eterl ds PX.Web ULPXDataSource @
Cancel -
Insert CommitChange: False & g:i 4] | B # |J
Eulpgpaste DependOnGrid grid (Expressions)
elete DependOnTree
EmployeeCD First HideT, Fal D ds
LastMame Previous ideTed alse 5 CallbackCommands | (Collection) m
Mext Name openEmployee " - ChentEvents
Firsttame Last PopupComman:
;; L DataTrees (Cellection)
FullName TongRun PepupComman: 3 Height 26px
city ElapsedTime PopupPanel | PagelosdBehavior InsertRecord
Region PopupVisible False PrimaryView EmployeeRecords
PostData Page SlinID
FostalCode i
RepaintControls All ToolBarSkin
Country Sta.rtNewGrUup False TypeName RB.RapidByte.Employeelist
HomePhone Visible True i ViewStateMaode Inherit
£tet fommante Visible False
ReportsTo Visible T ‘?I
4 n Width 100%
O Split | B Source
CallbackCommands
Error List
@ 0Errors | 1\ 4 Warnings | (i) 1

Ready

Figure: Setting the DependOnGrid property

The DependOnGrid property specifies the grid control the action depends on. When the action
—| Dbutton is clicked, the data source posts the keys from the active grid control row to synchronize the
grid control column values with the current DAC reference before the action is executed.

Add the custom button on the grid toolbar, as the screenshot below illustrates. Select the
grid control and select the ActionBar > CustomItems property. On the PXToolBarItem
Collection Editor window that appears, add a new member by clicking Add in the lower left
area of the window. Modify the properties of the new button as follows:

e Text: Details

¢ AutoCallBackCommand: openEmployee

| Programming Tasks | 93

©a RB - Microsoft Visual Studio (Administrator)

File Edit View Website Build Debug Team Data Format Tools

eS| SR - - E-E b [Debug

! Mew Work ltem = MNew Query = _‘i’:g|

PXToolBaritem Collection Editor

Members:
LEET | +
+
I Add H ’ Remove

Test Window Help
~| [Any cPU ~| | # [Note
'| = @llnstaHWeb Components _ L\U| ;_; 5] VELE
@I Properties
ster| i - .
Details properties: 3 grid PX.Web ULPXGrid
= =2 A = P
-'H|J a-._AH /|J
4 Base Property - (Expressions)) -
Pl AutoCallBack Custom data GDJ_ grid ‘E‘I
ActiveBehavior False 4 ActanB.ar Custom data 1
» Actions
Argument il !
- ActionsText True
> Behavior = o :
I Command openEmpk}yeel BCt'DHSG'S' € C’“i]
Enabled True ottomGroups (Collection)
CanOverflow True
Handler = - e
[Target ds] _ e | CUStOI'ﬂItEI'I'ISG ((] ollection) | E
> Images Custom data D::tﬂlr'tl"lqter.”ﬂs roup
Menultems (Collection) ; EUA C.t'UnT =
NavigateParams (Collection) DEQEVGCt'DHS ext ; se
NavigateUrl agerlaroup i
PopupPanel i @ CustomItems
N - 7 The custom action bar items collection.
EI '5 Solution Explorer ﬁ Properties

Figure: Adding a custom button

After saving the page and building the solution; you can start application, open the List of
Employees webpage, select any row with an employee, and click the Employee Details button.
The Employees webpage opens, with more detailed information about the selected employee

(see the screenshot below).

| Programming Tasks | 94

» |& List of Employees Note Attach file Help ~ i
List of Employees
Formview == New Line W Delete Employee Details |~ Adjust Export 2
E s +Employee +LastMHame +First Nam«¢ Fulldame \ City Region Postal Code Cour Home 3
|> iy CALLAHAN Callahan Laura Ms. Laura Call&mn Seattle WA 98105 Us f-
i FULLER Fuller Andrew Dr. Andrew Fulle Tacoma WA 98401 uUs B =
Ly JOHSOM Johnson Edward Mr. Edward Johnsgn London UK i
» | & Employees | Attach file Activity Help =
= + B~ u I < > >l
* EmployeeCD: | CALLAHAN - Ms. Laura p| Country: US - United States O #
* Last Name: Callahan Home Phone: (206) 555-1189
* First Name: Laura Extension: 2344
Title Of Courtesy: Ms. - Reports To: Dr. Andrew Fuller D
= Birth Date: 1/91978 - Created By ID: admin - admin
* Hire Date: 3/5/1004 - Created By ScreenlD: RB.20.20.00
Address: 4726 - 11th Ave. N.E. Created Date and Time: 81212011 422 P
City: Spattle Last Modified By 1D: admin - admin
Region: WA, Last Maodified By ScreenlD: RB.20.20.00
Postal Code: 93105 Last Modified Date and Time: 111212012 497

Figure: Using the Employee Details button

Creating an Acumatica ERP Add-on Project

This article explains how to create a new project in Microsoft Visual Studio. You create the project
before you start to develop an add-on application integrated with Acumatica ERP.

Upload an Acumatica ERP Website

Before you begin, make sure that Acumatica Framework has been installed on your computer. Then
upload an Acumatica ERP website into Microsoft Visual Studio Solution by performing the following

actions:

1.

the screenshot below.

Start Microsoft Visual Studio. On the Files menu, select Open and then Web Site, as shown in

| Programming Tasks | 95

%] Start Page - Microsoft Visual Studio (Administrator)

File| Edit View Build Tools Test Window Help
‘ New A ERET-R-NY| - -|| (#% PersistingCheck
[Open *] 51| Analysis Services Database... i: | [FH (] T B | =
1 Close 1| Project/Solution... ~Ctrl+Shifts0
z | Close Solution B Web Site.. shift-Alt=0_ |
il | SaveSelectedltems Ctrl+S %5 Team Project..
Save Selected Items 5| File CrlsO

@ | savean Ctrl«ShifteS

Export Template...

Source Control »
| @ | Page Setup.

S| print.. Ctrl+P
Recent Files »
Recent Projects »
Bxit

Praject..
Project..

Open:
| cone

Getting Started

What's new in Visual C#7
Create Your First Application
How Do

Learn Visual C#
Download Additional Content
MSDN Forums

Visual C# Developer Center
Extend Visual Studio

MSDI

ual C# Headlines

Type Inference Rules in C#
Mon, 21 May 2012 22:21:30 GMT - Lear about the rules that govem type inference for
implicitly typed local variables and lambda expressions.

Code sample: Image slideshow in full screen mode

Wed, 16 May 2012 16:50:28 GMT - Run this sample code, which demenstrates how to
display an image slideshow in a Windows Forms application.

User Interface Updates in Visual Studio 11 RC

Mon, 14 May 2012 18:44:15 GMT - Read about changes to the Visual Studio 11 RC
interface on the Visual Studio blog.

Announcing Portable Library Tools 2 Beta for Visual Studio 2010

Mon, 14 May 2012 18:36:06 GMT - Creste libraries that can be reused, without

" i from .NET projects for various platforms.

No Java Required: Write Android Apps in C#

Mon, 14 May 2012 19:32:10 GMT - Read this Visual Studioc Magazine article about how
you can write Android apps in C2.

Caller Information in C#

Wed, 02 May 2012 17:29:28 GMT - Learn how to mare easily obtain information about
the caller of a method in this MSDN Library topic.

What's happening around Visual Studio

Mon, 30 Apr 2012 15:58:08 GMT - See what Jason Zander has to say about Async
Targeting Pack for Visual Studio, recommended blogs, more.

2| R G E R B

Solution Explorer

I
I

Output

Shouw output from:

=N

~ 3 x

|55 Evror List | =] Output [£2) History |

) Solution Explorer [Team Explorer [Class View

Ready

Figure: Starting to import a website

On the Open Web Site dialog box that appears, select the folder where the original Acumatica
ERP application instance had been installed, and click Open. The Acumatica ERP site structure is
imported into Microsoft Visual Studio as a new solution, as shown in the screenshot below.

2] Hairowk - Microsoft Visual Studio (Administrator)
File Edit Build Debug
A=A K- IR =Y R

|12 & &1 | ok |22 3 B3

View Website Tools

Test Window Help

- | [# PersistingCheck

J Debug -~ Any CPU

2
W | 2 ke |[H[F| S %S

=]

F R REER B

|~ Start Page Solution Explorer - CA...\Hairové\
o
g
2
= ’ Microsoft*
4 "o Visual Stu
5 3 Api
£ | (23 App_Browsers
5 " - [App_Data
g [Addon Type Inference Rules in C# & - [App_Themes
2] [Hairovl Man, 21 May 2012 22:21:30 GMT - Leam about the rules that goven type inference for - @ Bin
Elpure implicitly typed locsl variables and lsmbda expressions. - 3 Controls
Hre Code sample: Image slideshow in full screen mode - [CatDesigner
Zre Wed, 16 May 2012 16:50:28 GMT - Run this sample code, which demonstrates howto |5 | |2 - [CstPublished
e display sn image slideshow in a Windows Forms application £ Dashboards
User Interface Updates in Visual Studio 11 RC 3 Fromes
Open Prcject Mon, 14 May 2012 19:44:15 GMT - Read about changes to the Visual Studio 11 RC [Genericinquiy
interface on the Visual Studio blog.
. Project-. A ing Portable Library Tools 2 Beta for Visual Studio 2010 [dcons
nnouncing Portable Library Tools 2 Beta for Visual Studio 3 Masterpages
Mon, 14 May 2012 19:36:06 GMT - Creste libraries that can be reused, without
(3 Pages
recompilation, from .NET projects for various platforms. 5 Reports
No Java Required: Write Android Apps in C#
. [ReportsCustomized
i e o U2 Men, 14 May 2012 1:32:10 GMT - Read this Visual Studio Magazine article about how = " "
Creste Your First Application you can wiite Andraid apps in C3. earc
Sound
How Dol...?7 Caller Information in C# & g “‘::" g
iki
Learn Visual = Wed, 02 May 2012 17:28:28 GMT - Learn how to more easily obtain information sbout 7 e it
Download Additional Content the caller of a method in this MSDN Library topic.] st
MSDN Forums What's happening around Visual Studio *\j_J M"_ alasax
Visual C# Developer Center Mon, 30 Apr 2012 15:58:08 GMT - See what Jason Zander has to say sbout Async - ﬁﬂﬂ';‘ﬂ“pﬁ
e Visusl Studio Targeting Pack for Visual Studic, recommended blogs, more o -] Mainaspr.es
Web,config
- web_project x.config
Output -~ 3%
Show output from: RN E=RE YA
wor List| =] Output [£2) Histo roperties g Solution .. [} Team 255 View
3 Error List| =] Output [¢2) History Prop Solut Team Ex Class Vi

Ready

Figure: The imported website

Create an Add-on Project
Now you create a new project within the solution by doing the following:

1.
Project, as shown in the screenshot below.

| Programming Tasks | 96

In the Solution Explorer tree, right-click the solution name, and select Add and then New

] Hairovd - Microsoft Visual Studio (Administrator) =1
File Edit View Project Build Debug Tools Test Window Help
- G5 | % G]9 - - G- b Debug - Any CPU - | [PersistingCheck .| R G B,
3 G fone 20 ok | 2 &1 &2 ed |[H[F]| T B2
il Selution Explorer >0 x
g 2| 5 Fd) B @
a L 2 Microsoft* = luti
[y . : Build Solution
4l 7 o Visual Studio 2008 S RE
3 =] Rebuild Solution
| = Batch Build...
4 5 Configuration Manager...
E [AddOn Type Inference Rules in C# [Newrijec Add [
g
& | [EHairon1 Mon, 21 May 2012 22:21:30 GMT - Leam about the rules that govem type inferenc LIt
[Gpure implicitly typed local variables and lambda expressiens. Existing Project... Set StartUp Projects.
THre Code sample: Image slideshow in full screen mode New Web Site. (2| Add Solution to Seurce Control...
Hre Wed, 16 May 2012 16:50:28 GMT - Run this sample code, which demonstrates how d————
SRe display an image slideshow in a Windows Forms application. oS e | Paste
User Interface Updates in Visual Studio 11 RC New Item. Rename
Open: Prcject. Mon, 14 May 2012 19:44:15 GMT - Read about changes to the Visual Studio 11 RC Existing ltem... Properties
b o interface on the Visual Studio blog. New Saution Fold _—
reate: roject...
J Announcing Portable Library Tools 2 Beta for Visual Studio 2010 L] Mew soution “;'D
Man, 14 May 2012 19:36:06 GMT - Creste libraries that can be reused, without : d
g ! - [Pages
Getting Started r from .NET projects for various platforms O
cports
- No Java Required: Write Android Apps in C# ca B stomined
i e E T Mon, 14 May 2012 16:32:10 GMT - Read this Visual Studio Magazine article about how s P N
Create Your First Application you can write Android apps in C#, ca sare
Sound
HowDol..7 Caller Information in C# = e
) iki
Leam Visusl C# Wed, 02 May 2012 17:29:28 GMT - Learn how o more easily obtain information about T fle it
Download Additional Content the caller of a methad in this MSDN Library topic. =] G‘IEZ“
MSDN Forums What's happening around Visual Studio : adJ o
Visual C# Developer Center Mon, 30 Apr 2012 15:50:08 GMT - See what Jason Zander has to say about Async o E ﬁﬂ'aafm
Extend Visual Studio Targeting Pack for Visual Studio, recommended blogs, more. - = Main.aspx.cs
Web,config
- [web_project_x.config
Output - Ix
Show output from: IR E=REN e
(4 Error List |] Output [£3 History | 57 Properties| g Selution .. |53 Team Ex... [Class View
Ready

Figure: Adding a new project

In the Add New Project window that appears, select Visual C# as the project type and Class

Library as the project template. Type the name of the new project and select the folder where
the new project must be located, as shown in the second screenshot below. Click OK.

| Programming Tasks | 97

C:\Program Files (x86)\Acumatica ERP\Hairov4
73] Hairovd - Microsoft Visual Studio (Administrator)

[E=E=]
File Edit View Project Build Debug Tools Test Window Help
T-E-E -l Z3 (@]9 - - 53| b Debug + Any CPU - | [#% PersistingCheck RS HER B
G| 2 & S| o ol |53 31 B efe 30 80 M | 2 &P 22 ot el |G | B =0
|~ start Page, + x |[Solution Explorer I x
g2 [F= e
2
z [Solution 'Hairowd (1 project)
o C\.\Hairova\
: Add e P o | e
£ | 4 App_Browsers
% 98 Project types: Templates: NET Framework35 = L) App_Code
B a
E = Business Intelligence Projects Visual Studio installed templates L5 App_Data
g M A Windows Forms Application [Class Library = ';WT““”ES
[e Windows B ASP.NET Web Application 9, ASP.NET Web Service Application 3 C‘"t ‘
ontrols
R ‘S"'Ebw [WPF Application P WPF Browser Application = CtDesigner
mart Device
e Office ¥ Console Application (& Excel 2007 Workbook 5 Cotpublished
R Database (£ Qutlook 2007 Add-in BB WCF Service Application =3 Dashboards
Reporting i Word 2007 Document i Windows Forms Control Library 3 Frames
Open: SSIS_ScriptComponent % Dynamic Data Entities Web Application 5 Dynamic Data Web Application -3 Genericlnquiry
Creat SIS SeriptTask My Templates 3 Icons
L MasterP
Test @ Acumatica Project “HSearch Online Templates... S . astertages
WCF ages
m Workflow (L3 Reports
Whal Other Project Types [C3 ReportsCustomized
Crea Test Projects 3 Search
How L4 Sounds
3 wiki
Lean] A project for creating a C# class library (dll) (NET Framework 3.5) flesist
Dowi e
Global.zsax
y Mame: MyAddOn] 4
. [iyhooon} 2 Main sz
Visus
| =i [cProgram Fites @6\ Acumatics ERP\Hairowt - 2] Mainaspx.cs
o =
3 Web.config
=
£ web_project_x.config
Qutput L
Shouw outpTETomT: A=A

| & Error List | (=1 Output [¥2 History | |EFProperties | Solution ... [Team Ex... [Class View

Figure: Defining the project properties

= The project name must be unique within the Acumatica ERP installations that exist on the server or

! . on your PC (if you are installing the project locally).

[]

We recommend that you place the files of the new project within the Acumatica ERP application
—| solution folder so that you can easily locate them. (See the example on the screenshot above.)

Right-click the created project's name, and select Add and then New Folder, to create the DAC
folder within the project. Repeat these steps to create the Descriptor folder within the project.

Right-click References under the project's name and then select Add Reference, as the
screenshot below illustrates.

6.

| Programming Tasks | 98

ﬂ Hairovd - Micresoft Visual Studio (Administrator)

File Edit View Project Build Debug Data Tools Test Window Help
S-S @ 6 B9 S b Debug - AnyCPU
| 12 = W S R e 30 o | & & OS2 a2 | [T

R
Classl.cs| Start Page

=

- | [#% PersistingCheck

P = =

| RDE HEIR B
S ImpaieR=Rrpci-ga]
Solution Explorer - Solution "Hairovd' (2 projects) ~ & X

% MyAddOn.Classl -

& [F] A

B using System;

using System.Collections.Generic;
qujng System.Ling;

using System.Text;

E namespace MyAddOn
{

iy
)
g
2
]
o
5
5
%
E
]
g

public class Classl
1{
}

0 il

I

5 [Api

[Solution 'Hairowd' (2 projects)
P C\.\Hairovd\

(4 App_Browsers
(5] App_Code
[App_Data
[App_Themes
L Bin
[Controls
[CstDesigner
[CstPublished
[Dashboards
[Frames
[Genericlnguiry
- [leons
- [MasterPages
- [Pages
- [Reports
- [ReportsCustomized
- [Search
- [Sounds
L3 Wiki
4] fileslist
4] Global.asax
2] Main.aspx
] Main.aspxcs
i Web.config
3 web_project_x.config

Output

Shouw output from:

= (A MyAddOn
(=4 Properties

[3 Descriptor
] Classl.cs

Add Service Reference.

(4 Error List |] Output [£3 History |

AF Properties|] Solution ... [} Team Bx... [Class View

Ready

Figure: Starting to get references

In the Add Reference window that appears, select the Browse tab. Via the Look in search
box, find the folder where the original application is located, select its Bin subfolder, and select
the PX.Common.dll, PX.Data.dll, and PX.Objects.dll files. Then click OK to get references from

the original application. (See the screenshot below.)

O] Hairowk - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug Data Tools Test Window Help
G E-E @ $ @]9 -~ S| b Debug -~ Any CPU - | [Pemsistin
| Iz ok ul Sl B3 foee 2 e | 2 &7 24 &t |[H[F]| G B =00 %

Classl.cs| Start Page

gCheck

B

F R REER B
|3 & o 5 Sl
Solution Explorer - Solution ‘Hairovd" (2 projects)

3 el

% MyAddOn.Classl ~

B2

Eusing System:

[Solution 'Hairowd' (2 projects)
P CA\..\Hairov4\

&%) Add Reference

NET [COM | Projects| Browse | Recent|

using System.Ling:

Tsing System.Collections.Gens
using System.Text;

3 Api
4 App_Browsers
- [Z) App_Code

E namespace MyAddOn

=
o
g
E
T
E
5
s
¥
=
g
z
H

2]

< i

File name

| “PX Common dll" "PX Data dlI" "PX Objects dll" |

i Lookin: |, Bin -0 I > Er
public class Classl = -
{ Name Date modified Type =]
i (& PR.C dil 230520121108 Application &
* % PX.Data.dll 23.05.201211:09 Application]
% PX.DataSync.dll 230520121111 Application]
% PX.DataSync.XmiSerializers.dll 230520121141 Application e
% PX.Export.dll 23052012 11:08 Application &
% PX.FedExCarrier.dll 230520121111 Application &
%) PX.FedExCarrierXmiSerializers.dil 230520121141 Application e
% PX.GIROPaymentsExport.dil 230520021112 Application e
DY Oibiacte Al 2208 121111 .

Files of type: [Campunenl Files ("dl"lb;".0lb:".ocx.” exe " manfest)

- L App_Data
- [App_Themes
- L Bin
- [Controls
- [CstDesigner
- [CstPublished
[3 Dashboards
3 Frames
(23 Genericinguiry
3 Icons
[MasterPages
(3 Pages
[Reports
[ReportsCustomized
[Search
[Sounds
[Wiki

7] fileslist

) Global.asax
- [Z] Main.aspx
] Main.aspr.es
3 Web.config

<)

web._project_x.config

Output

Show output from: MR

- ([MyAddon
Properties

3 DAC
(23 Descriptor
] Classl.cs

3 Error List | 5] Output [{3) History |

5 Properties |cig Salution ... [Team Ex.

[E3 Class View

Creating project ‘MyAddOn'... project creation successful.

Figure: Getting references

Right-click the Bin folder and select Add Reference, as shown in the screenshot below.

8.

| Programming Tasks | 99

ﬂ Hairovd - Microsoft Visual Studio (Administrator)
File Edit View Website Build Debug
e E S E e
TErTE

Classl.cs| Start Page

Data

£ o | moe

9 - - L[| b Debug

Tools Test Window Help
+ Any CPU

LR |2 e HE S

L S By A |

- | [#% PersistingCheck -

f=lfe =

| FEFHERR B O
S ImpaieR=Rrpci-ga]
Solution Explorer - Solution ‘Hairovd' (2 projects) ~ & X

% MyAddOn.Classl

=R

Eusing System;

using System.Ling:
using System.Text;

E namespace MyAddOn
{

| xoai001 3¢ | se01d3 Janias g

public class Classl
1{
}

\‘ using System.Collections.Generic;

I

<

[Solution 'Hairowd' (2 projects) .
2 G\..\Hairova\

[Api

(4 App_Browsers

(5] App_Code

[App_Data

|4 App_Themes

= Co
3 st

[=]

Add Existing tem...

Mew Folder

3 Cst

Add Reference...

[Da
[Fra
3 Gen
- [Teor
- [Ma
- [Pag
- [Rep
- [Rep

& = Bl]

b

Refresh Folder

Cut
Copy.
Paste
Delete

Rename

- O Seal
- [Sou

L3 Wiki

4] fileslist

4] Global.asax

2] Main.aspx

] Main.aspxcs
i Web.config
3 web_project_x.config

Open Folder in Windows Explorer

Output

Shouw output from:

~ 3 x

A e

(ZA MyAddOn
(=4 Properties
| References

-3 PX.Common
-3 PX.Data
-3 PX.Objects

(4 Error List |] Output [£3 History |

AF Properties|] Solution ... [} Team Bx... [Class View

Creating project 'MyAddOn'... project creation successful,

Figure: Preparing to add the reference

In the Add Reference window that appears again, open the Projects tab. Select the
automatically created record with the new project's name from the list (which contains one
record in the illustrated case), and click OK, as shown in the screenshot below. The reference to
the created project is added to the Acumatica ERP website.

) Hairovd - Microsoft Visual Studio (Administrator)
File Debug
e ERar=A" N AN NN
= W= i v e AT

all i%
Oassl.cs| Start Page

Edit View Website Build Data

£ | oge

=

“ - - | b Debug

Tools Test Window Help
-~ Any CPU

W | 2472t |[H[F| G| ES

L b oA

- | [# PersistingCheck o
H = 2|0k

% MyAddOn.Classl

Eusing System:

==

| D F HE% B0
185
Solution Explorer - Solution ‘Hairovd’ (2 projects) ~ & X

3 el

[Solution 'Hairowd' (2 projects) -
P CA\..\Hairov4\

using System.Collections.Gen:
using System.Ling:
using System.Text;

E namespace MyAddOn
{

[xoa001 3¢ [1al0idxg samas

public class Classl
{
1

&%) Add Reference

NET_[com [Projects [Browse | Recent]

Project Name Project Directory

MyAddOn C:\Program Files (x86)\Acumatica ERP\Hairovd\MyAddOn

3 Api

4 App_Browsers
- [Z) App_Code
- [App_Dat
- [App_Themes

- [Controls

- [CstDesigner

- [CstPublished
[3 Dashboards
3 Frames
(23 Genericinguiry
3 Icons
[MasterPages
(3 Pages
[Reports
[ReportsCustomized
[Search
[Sounds
[Wiki
7 files.list
4] Global.asax

- =] Main.aspx

] Main.aspr.es

<

] Gl |

Output

Show output from:

YT

- 3 Web.config

- 3 web_project x.config
- (@ MyAddOn

[(24 Properties

[+ [References

-3 PX.Commaon

-3 PX.Data

-3 PX.Objects

3 Error List | 5] Output [{3) History |

& Properties| & Solution ... [} Team Ex...” [Class View

Creating project ‘MyAddOn'... project creation successful.

Figure: Adding the reference from the original application

In the Solution Explorer, right-click the Class1.cs file in the root of the project, and select Delete
to remove this redundant file, as shown in the screenshot below.

| Programming Tasks | 100

2] Hairovd - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug Data Tools Test Window Help
- E -S| % G| S E | b Debyg + Any CPU - | [# PersistingCheck R Y P = R
LIz o e 30 o M | 2 & B2 el |[H[F] S| F S e S 0PSB BB.
ClassLes| Start Page + x Solution Explorer - Solution 'Hairovd' (2 projects) + & X
2| &= e
@ MyAddOn.Classl - S22 EIEA
Husi Syst + [[1 CstDesigner -
using Systenm;
\‘usjng System.Collections.Generic; - [CstPublished

| T ok |2

using System.Ling: [Dashboards
using System.Text; 3 Frames
(23 Genericinguiry
[namespace MyAddOn g Icons.
{ MasterPages
public class Classl 4 Pages
[[Reports
} [ReportsCustomized
i = [Search
[Sounds
[Wiki
3 files.list
«] Global.asax
o E] Main.aspx
] Main.aspr.es
- 3 Web.config
L - [web_project x.confin
- (F MyAddon | [§ | Open
- [l Propertie Open With...
[Referenc
arxc &
-3 PXDe [F]
POl 2
-3 Syste
z -3 Syste
-3 Systel ¥ | Cut
Output TIx 'g Sste) 33| copy
Show output from: AR = o o X_pelae]
[3 DAC
[Descriptg Properties
Classl.cs| <]
[Error List | =] Qutput [£2) History | 57 Praperties | Solution .. [Team Ex... |5 Class View

Creating project ‘MyAddOn'... project creation successful.

| xoai001 3¢ |sa01dx3 saas

!

Refresh
View Code
View Class Diagram

Exclude From Project

4 i »

Rename

Figure: Deleting the originally created file

On the File menu, select Save all. Select the full path to the new project, and type the name
(or keep the default name) of the solution file, as shown in the screenshot below, to save the
created project within its solution.

) Hairovd - Microsoft Visusl Studio (Administrator)
File Edit View Project Build Debug Dsta Tools Test Window Help
i | b Debug - Any CPU - | @ PersistingCheck LR E RER B -
H e 3 o W | 2 AT & et | [[F]] 98 %] =10
= « x [Solution Explorer - Solution ‘Hairovd' (2 projects) ~ & X
g 233
] [3 Controls B
g‘ 3 CstDesigner
5 @7:)4 | « System (C:) b Program Files (x86) » Acumatica ERP b Hairovd » = [43]| Search Hairova o [3 CstPublished
2 | 23 Dashboards
% Organize v New folder - @ - B3 Frames
g - = A = - [Genericlnquiry
E |/ Program Files Mame Date modified Type . [Teons
P Files (486) —
= Ji Program Files (6) || App_Code 24.05.2012 16:07 File fold— | & [MasterPages
| Acumatics ERP
W Acumatica || App_Data 24.05.2012 1 File fold| - [Pages
Addor - [Report
, " i App_Themes 24.05.2012 11 File fold] [Reports)
|/ BackUp _| | & 3 ReportsCustomized
. Bin 24052012 16:07 File fold =
|/ Customization 3 Search
N [)i controls 200520121607 Filefold 3 Sounds
] itz -
= |\ CstDesigner 24052012 16:07 Fill fold| [Wiki
. Datab; =
shahese Il CstPublished 24052012 16:07 File fold |7 files.list
L Fil
= | Deshboards 24.05.2012 1 Fill fold %dj Globelasax
b H | Main.
Aoy)i Frames 24.05.2012 16:07 File fold ain-aspx
|\ Hairovl % Main.aspres
— . GenericInquiry 240520121607 Filefold 3 Web.config
| Hairo
—r . Icons 24052012 1 Fill fold £ web_project_x.config
Wi Report Designer 240590171607 Filetntd 7 || (3 MyAddOn 3
| Snapshots -] . | r 4 Properties
File name: [C\Program Files (8)\Acumatic ERP\Hairovd\MyAddOn sin - | References
-3 PX.Common
Save as type: |UTF-B Solution File *sin) - o P D
+ -3 PX.Objects
= Hide Folders Save 3 System
L] - -3 System.Core
Output 3 wn < System.Data
- - -3 System.Data DataSetExtensions
Sl (LA leS =IE -3 SystemXml
-3 SystemXml.Ling
3 DAC
(23 Descriptor I
3 Error List | 5] Output [{3) History | & Properties| & Solution ... [} Team Ex...” [Class View
— @

Figure: Saving the add-on project

On the Build menu, select Build Solution. At this point, the new solution (with the new add-on
project) should be built without errors. The screenshot below illustrates the build process.

| Programming Tasks | 101

] MyAddOn - Microsoft Visual Studio (Administrator)
File Edit View Project Debug Data Tools Test Window Help

Microsoft*

L

& MyAddOn
[Eaddon
[l Hairovl
[Fpure
[Ere

| xoai001 3¢ |sa01dx3 saas

Open:
Create:

Project..
Project...

Getting Started

What's new in Visual C#7
Create Your First Application
How Dol...?

Learn Visual C#

Download Additional Content
MSDN Forums

i RAEE RN = NP WEENEN - &~ 2 b [pebug -|[any cPU <]\ [PersistingCheck
E NN N N = - o £ & et I

Visual Studio 2008

MSDN: Visual C# Headlines

Type Inference Rules in C# -
Mon, 21 May 2012 22:21:30 GMT - Lear about the rules that govem type inference for
implicitly typed local variables and lambda expressions.

Code sample: Image slideshow in full screen mode

Wed, 16 May 2012 16:50:28 GMT - Run this sample code, which demenstrates how to
display an image slideshow in a Windows Forms application.

User Interface Updates in Visual Studio 11 RC

Mon, 14 May 2012 18:44:15 GMT - Read about changes to the Visual Studio 11 RC
interface on the Visual Studio blog.

Announcing Portable Library Tools 2 Beta for Visual Studio 2010

Mon, 14 May 2012 18:36:06 GMT - Creste libraries that can be reused, without
recompilation, from .MET projects for various platforms

No Java Required: Write Android Apps in C#

Mon, 14 May 2012 19:32:10 GMT - Read this Visual Studioc Magazine article about how
you can write Android apps in C2.

Caller Information in C#

Wed, 02 May 2012 17:29:28 GMT - Learn how to mare easily obtain information about
the caller of a method in this MSDN Library topic.
What's happening around Visual Studio o

Visual C# Developer Center

StrtPage < Solution Explorer - Solution MyAddOn' (2 projec.. ~ & X

EEmEREREO-

Output

Show output from: Build =]

Building directory
Building directory
Building directory
Building directory
Building directory
gl]

) Error List| [=] Output [¥2 Histo
= t9History

' /Hairovd/DPages/AB/' .
' /Hairovd/Dages/AR/".
' /Hairovd/DPages/CA/" .
' /Hairovd/Dages/CH/ " .
' fHairovd/Dages/CR/’ .

b

f=lfe =

B|®
<[] MicrosoftWindowsAzure.StorageClient.d «
%) MyAddOn.di
| MyAddOn.pdb
&) MyvH.l
] MyVH.pdb
PX,Bulklnsert.dll
PX,CCProcessing.dl
PX,Common.dil
PX.Data.dll
+] PX.Datasxml
PX.DataSync.dil
PX.DataSync.XmiSerializers.dll
PX Export.dil
PX FedExCarrier.dll
PX.FedExCarrier XmlSerializers.dil
PX.GIROPaymentsExport.dll
PX.Objects.dll
PX.Objects.xml
5] PX Reports.ARm.dll
<[] PXReports.dl
-] PX.UpsCarrier.dll
PX,UspsCarrierdll
PX.Web. Controls.dll
PXWeb.Customization.dll
PXWeb.Customization MSILEdit.dll
PXWeb.Objects.dll
PXWeb.Ul Design.dil
PXWeb.ULdl
4] System.Web.DataVisualization.dll
[Controls
[CstDesigner
[CstPublished
[Dashboards

<[- i v

m

P EEEE R EEEE

]
]
]
]
]
]
i}

|EFProperties | Solution ... [Team Ex... [Class View
5

[uild stared..|

Figure: Building the entire solution

Summary

By executing the instructions in this article, you have learned to do the following:

e Upload the original Acumatica ERP site into Microsoft Visual Studio and create the new solution for
developing a new integrated product.

e Create the new project and file structure within this solution for development of an add-on
application. The new project area can be used for implementing business logic within that add-on
application.

e Create references between the Acumatica ERP website and the new project. This enables the use
of Acumatica ERP objects in your project and adds the reference to the new project within the
original Acumatica ERP website.

e Add the configuration file to provide automatic mapping of the Acumatica ERP application

attributes to the corresponding database fields.

Implementing a Credit Card Processing Plug-in

With Acumatica ERP, you can process credit card payments through third-party authorization centers.
In the system core, only the processing through Authorize.Net is supported, but it can be implemented
for other authorization service providers. This may be done in the future versions of Acumatica ERP

or even by the Acumatica ERP client development team. Usually, access to the authorization service

service requires certain prerequisites from the client:

e Must have an Internet Merchant Account (IMA)
e Must provide an SSL connection to the authorization center, so must have valid SSL certificate.
e Must have a contract with the corresponding authorization center.

| Programming Tasks | 102

Implementation of Credit Card Processing

Generally, a credit card authorization center has its own communication protocol: specific rules to send
required data (card number, amount, CCV code, and so on) and to receive and interpret its response.
Normally, the protocol includes the following functions:

e Authorize CC Payment: Checks if the requested sum may be taken from credit card and locks
it on the credit card account. Usually, if authorization is not captured or voided, it expires after 30
days.

e Capture CC Payment: Actually takes the previously authorized amount from the card.
¢ Authorize And Capture (optional): Performs the previous two actions in one transaction.

e Void: Reverses the authorized or captured transaction. This may be done during a certain period
of time after the transaction (such as 24 hours).

e Credit: Returns money back to the card.
¢ Void Or Credit (optional): Tries a void first and then performs a credit if voiding failed.
So we need only to implement this protocol and the communication with the core of Acumatica ERP.

The object must implement the following interface:

// This class implements the interaction with the authorization center
public abstract class ICCPaymentProcessing
{
abstract public void Initialize(
IProcessingCenterSettingsStorage aSettingsReader,
ICreditCardDataReader aCardDataReader,
ICustomerDataReader aCustomerDataReader,
IDocDetailsDataReader aDocDetailsReader) ;
abstract public void Initialize(
IProcessingCenterSettingsStorage aSettingsReader,
ICreditCardDataReader aCardDataReader,
ICustomerDataReader aCustomerDataReader) ;
abstract public bool DoTransaction (CCTranType aType,
ProcessingInput alInputData,
ProcessingResult aResult) ;
abstract public bool IsSupported(CCTranType aType) ;
abstract public void ExportSettings (IList<ISettingsDetail> aSettings) ;
abstract public void ExportSettings (
IList<ISettingsDetail> aSettings,
CCProcessingSettingsType settingsType) ;
abstract public CCErrors ValidateSettings (ISettingsDetail setting);
abstract public void TestCredentials (APIResponse apiResponse) ;

}

// Types of transactions
public enum CCTranType
{

AuthorizeAndCapture, //Authorize And Capture as one transaction

AuthorizeOnly, //Authorize only

PriorAuthorizedCapture, //Capture previously authorized transaction

CaptureOnly, //Capture manually authorized transaction

Credit, //Return of the previously authorized transaction

Void, //Void the previously authorized transaction

VoidOrCredit, //Try to Void, if failed - Credit previously authorized
transaction

}

// Supplementary interface to read processing center settings
// from the Acumatica ERP core

public interface IProcessingCenterSettingsStorage

{

void ReadSettings (Dictionary<string, string> aSettings, string aCenterID);

| Programming Tasks | 103

// Supplementary interface to read credit card data from the
// Acumatica ERP core
public interface ICreditCardDataReader
{
void ReadData (Dictionary<string, string> aData);
string Key CardNumber { get; }
string Key CardExpiryDate { get; }
string Key CardCVvV { get; }
string Key PMCCProcessingID { get; }
}

// Supplementary interface to read customer data from the Acumatica ERP core
public interface ICustomerDataReader
{
void ReadData (Dictionary<string, string> aData);
string Key CustomerCD { get; }
string Key CustomerName { get; }
string Key Customer FirstName { get; }
string Key Customer LastName { get; }
string Key Customer CCProcessingID { get; }
string Key BillAddr Country { get; }
string Key BillAddr State { get; }
string Key BillAddr City { get; }
string Key BillAddr Address { get; }
string Key BillAddr PostalCode { get; }
string Key BillContact Phone { get; }
string Key BillContact Fax { get; }
string Key BillContact Email { get; }
}

// Supplementary interface to read specific document (bill, payment)
// item's data from the Acumatica ERP core
public interface IDocDetailsDataReader
{
void ReadDate (List<DocDetailInfo> aData);
}

// Supplementary class to store document line information
public class DocDetaillInfo
{
public string ItemID;
public string ItemName;
public string ItemDescription;
public decimal Quantity;
public decimal Price;
public bool? IsTaxable;
}

// Supplementary class to receive data of the specific transaction
// from the Acumatica ERP core.
// Not all the fields may be used, depending on the type of the transaction.
public class ProcessingInput
{

public int TranID;

public int PMInstancelID;

public string CustomerCD;

public string DocType;

public string DocRefNbr;

public string OrigRefNbr;

public string CuryID; //ISO Code

public decimal Amount;

public bool VerifyCVV;
}

// Supplementary class to return the result of authorization
// center transaction to Acumatica ERP
public class ProcessingResult

{
public int TranID;

| Programming Tasks | 104

public CCTranStatus TranStatus;

public bool isAuthorized;

public string PCTranNumber;

public string PCResponseCode;

public string PCResponseReasonCode;

public string PCResponse;

public string PCCVVResponse;

public string AuthorizationNbr;

public string PCResponseReasonText;

public string ErrorText;

public int? ExpireAfterDays;

public CcvVerificationStatus CcvVerificatonStatus;
public CCErrors.CCErrorSource ErrorSource = CCErrors.CCErrorSource.None;

The central object for the implementation is the 1cCPaymentProcessing class; the rest just describes
interfaces to communicate with the Acumatica ERP core.

abstract public bool DoTransaction (CCTranType aType, ProcessingInput alnputData,
ProcessingResult aResult);

This is the main function of the object, which is called by Acumatica ERP to perform a request to the
authorization center. So it must implement all of the main functions described above.

abstract public bool IsSupported(CCTranType aType) ;

Called by the core to determine if the operation is supported by the authorization center (useful for the
optional types).

abstract public void Initialize(
IProcessingCenterSettingsStorage aSettingsReader,
ICreditCardDataReader aCardDataReader,
ICustomerDataReader aCustomerDataReader,
IDocDetailsDataReader aDocDetailsReader) ;

abstract public void Initialize(
IProcessingCenterSettingsStorage aSettingsReader,
ICreditCardDataReader aCardDataReader,
ICustomerDataReader aCustomerDataReader) ;

These functions are called by the core when the object is created to provide a communication interface
for the required data pulling (used in the DoTransaction () function) .

abstract public void ExportSettings (IList<ISettingsDetail> aSettings) ;

Used to export required for the processing settings keys (such as account login, password, and
communication definitions). This function is used in the processing center configuration interface. These
settings may be entered manually, but it's more convenient to import the key for them from the object.

Transaction Input and Output

Input When the DoTransaction () method is called, the Acumatica ERP core provides the
following information:

e public int TranID internal unique transaction identifier (in the Acumatica
ERP database)

e public int PMInstanceID internal unique identifier of the credit
card in Acumatica ERP. Card information may be obtained using the
ICreditCardDataReader reference.

e public string CustomerCD; unique identifier of the customer in Acumatica
ERP.

| Programming Tasks | 105

e public string DocType; public string DocRefNbr; - unique
internal payment document identifier. Document information may be obtained
using IDocDetailsDataReader interface.

e public string OrigRefNbr;
e public string CuryID; ISO Code for the currency of transaction
e public decimal Amount; Amount of the transaction

e public bool VerifyCVvVv; Defines if CCV (credit card verification code)
verification is required.

Output Result of the transaction is returned to the Acumatica ERP core by using the
ProcessingResult reference. The fields are as follows:

e public int TranID; Internal unique transaction identifier (in the Acumatica
ERP database), which must be the same as in input.

e public CCTranStatus TranStatus; The status of the transaction, which
must be one of the following

public enum CCTranStatus
{
Approved, //The transaction is approved
Declined, //The transaction is declined
Error, //There is an error in the transaction processing
(usually, in the processing center)
HeldForReview, //The transaction is held for review
Unknown //Unknown - for example, there is no answer or the
answer can't be interpreted.

}

e public bool isAuthorized; The transaction was authorized, for
convenience

e public string PCTranNumber; The transaction number assigned by the
authorization center. It is needed to reference this transaction, for example, if you
want to capture the authorized transaction.

e public string PCResponseCode; The raw response code of the
authorization center.

e public string PCResponseReasonCode; The raw response reason code, a
more detailed code from the authorization center.

e public string PCResponse; The complete raw response from the
authorization center.

e public string PCCVVResponse; Additional code of the CCV verification from
the authorization center (part of the complete response).

e public string AuthorizationNbr;

e public string PCResponseReasonText; The text of the response reason
from the authorization center (part of the complete response). This text will be
displayed in the credit card payment processing interface.

e public string ErrorText; The description of the error if it happens in the
object itself. For example, some settings are missing or the request to processing
center can't be done.

e public int? ExpireAfterDays; The period in days after which the
transaction is automatically expired (for authorization transactions).

| Programming Tasks | 106

e public CcvVerificationStatus CcvVerificatonStatus; The CCV
verification status, which must be one of the following:

public enum CcvVerificationStatus

{

Match, //CCV code is correct

NotMatch, //CCV code is wrong

NotProcessed, //CCV code 1s not processed
ShouldHaveBeenPresent, //CCV code was not provided, but is

required for the authorization

IssuerUnableToProcessRequest, //Card issuer is not able to verify
the code

RelyOnPreviousVerification, //CCV code has been verified before
(by the Acumatica ERP core) -

//this flag is never set by the Credit Card Processing module.

Unknown //Other

e public CCErrors.CCErrorSource ErrorSource =
CCErrors.CCErrorSource.None; In the case of error, indicates its source,
which may be one of the following:

public enum CCErrorSource

{

None,

Internal, //Internal error of object

ProcessingCenter, //Processing center reported an error

Network, //Network error - for example, request time-
outed

}

It is the implementation's responsibility to perform a request to the authorization center
and interpret the result of the request. Although Acumatica ERP will receive the AC
response, it will rely on the TransStatus and IsAuthorized in the application payment
logic.

How It works

On the Acumatica ERP side, the description of the credit card processing object is configured using the
processing center configuration interface:

» & MAIN ~ Processing Centers Notes

- |+ | D& KK < ? 2l

* Proc. Center ID: AUTHDOTMET o

* Name: Authorize. Net
* Cash Account: 106000 - HSBC 001-100-0 0 | &
| Active

Payment Plug-in (Type): PX.CCProcessing.AuthorizeMNetF ©

Transaction Timeout (Se... 300

Settings | Payment Methods

c + ¥ | I~
1] Description

DELIMETER Delimiter, used in request to Service Provider (system para...

LOGINID Your Login
TESTMODE Sets testing mode on/off
TRANKEY Your Password

» URLCOMNMECT URL for connecting to Service Provider
VERSIONMNBR Version of protocol used (system parameter)

Figure: Configuration Screen

In this interface, the user must provide:

Activities Files Customization Help

Import Settings from Processing Type

Value

P T

1
hitps:/itest authorize net/gatewayitransact.dll
31

| Programming Tasks | 107

e The ID of the processing center and its description. This ID will be passed to the object when the

Initialize () method is called.

e The full name of the credit card processing class.

e The set of default parameters for payment methods. This parameters are stored as key-value
pairs. Keys may be imported from the objects if the ExportSettings () method is implemented

properly in the class.

e The processed transaction open period; see the Warning for details.

On the second tab of configuration screen, the user can configure payment method types, which will be
processed using the selected processing center. The card must be marked as active and the default in
order to be processed through the processing center.

Specific card data is entered in the customer definition screen and stored encrypted in the database
(unless tokenized processing is used). Sensitive data, such as the CCV code for the card, is stored
encrypted until the first authorization is successfully made. After that, the data is deleted from the
database and the following transactions are done without verification of the CCV code in the processing
center. So, they will have CcvVerificationStatus = RelyOnPreviousVerification.

To perform actual credit card processing, the user should use the Finance > Accounts Receivable >
Work Area > Payments and Applications page.

| Programming Tasks | 108

s» & MAIN - Payments and Applications Hotes Activities Files Hotifications Customization Help ~
o I B~ § 1€ L4 > b Release Actions ~ Inquiries ~ Reports ~
Capture CC Payment
Type: Payment - » CustomerID: [BOULDERCR - Boulder Couriers D L J 106.70
Reference NDI: 000403 © * Location MAIN - Primary Location Authorize GG Payment 0.00
Status: Balanced Payment Method: | yigA - visa Credit Card 106.70 L
Hold PM Identifier: YIS s g 3] 06T
= Application Date: | 1/15/2009 - * Cash Account 106000 - HSBC 001-100-09876-01 Record CC Payment
= Application Peri__. | 12-2008] Currency: usD 1.00 View b Extern. Authorized CC Payment
* Payment Ref ABC 04 Description: PaAyment for Mail Subscription (Credit Card Processing)
Documents to Apply Application History ~ Financial Details | Credit Card Processing Info
c | I 4
Tran. ... Proc. Cen... Tran. Type Tran. Status Tran. Amo... Referenc... Proc. Center... Proc.Cen... PC Response Reason

Figure: Credit Card Payment

The payment is entered as usual. If the customer has credit cards configured as the methods of
payment, one of them may be selected as the payment method (if one is configured as the default
for the customer, it will be selected automatically). In this case, the following options on the Card
Processing menu will be available:

e Capture: To authorize and capture amount of this payment document. If the authorization center
supports Authorize And Capture, this will be done in one transaction. Otherwise, two separate
transactions will be performed. If the document already has the authorization transaction, only
the Capture will be done.

e Authorize: To do the Authorize transaction only.

e Void: To Void/Credit Authorized or Captured Transaction. In some cases, voiding of the document
is required.

If the Integrated CC Processing check box on the Accounts Receivable Preferences form is selected,

successful capturing of the payment will automatically release the payment document. Otherwise, releasing
the document is the user's responsibility.

When a user presses the one of the CC Processing buttons, the system creates an instance of the
CCPaymentProcessing class, which is responsible for credit card transactions handling.

public class CCPaymentProcessing : PXGraph<CCPaymentProcessing>,
IProcessingCenterSettingsStorage,
ICustomerDataReader,
ICreditCardDataReader,
IDocDetailsDataReader

public bool Authorize (int aPMInstancelID, bool aCapture, string aCuryID,
decimal aAmount, string aDocType, string aRefNbr,
ref int aTranNbr)
public bool Capture (int aPMInstanceID, int aAuthTranNbr, string aCuryID,
decimal aAmount, ref int aTranNbr)
public bool Void (int aPMInstanceID, int aRefTranNbr, ref int aTranNbr)
public bool VoidOrCredit (int aPMInstancelID,int aRefTranNbr,
ref int aTranNbr)
public bool Credit (int aPMInstanceID, int aRefTranNbr,string aCuryID,
decimal? aAmount, ref int aTranNbr)

The requested function is then called:
e Does preliminary validation of the credit card, checking the expiration date.

¢ Finds the authorization center configured to process this card.

| Programming Tasks | 109

e Creates an instance of the card processing object (which implements the 1cCpPaymentProcessing

interface).

try

{
Type processorType = BuildManager.GetType (aProcCenter.ProcessingTypeName, true);
processor = (ICCPaymentProcessing)Activator.Createlnstance (processorType) ;

}
catch (HttpException)
{
throw new PXException (Messages.ERR ProcessingCenterTypelsInvalid,
aProcCenter.ProcessingTypeName,
aProcCenter.ProcessingCenterID) ;
}
catch (Exception)
{
throw new PXException (Messages.ERR ProcessingCenterTypelInstanceCreationFailed,
aProcCenter.ProcessingTypeName,
aProcCenter.ProcessingCenterID) ;

}

It then calls its ITnitialize function, which does the following:
e Detects if CCV code for the card was verified, and sets the VerifyCVV flag to true, if not.

e Creates and commits to the database a transaction record; its unique identifier will be passed to
the card processing object.

e C(Calls the DoTransaction () method of the object.

try
{
hasError = !processor.DoTransaction(aTranType, inputData, result);
}
catch (WebException webExn)
{
hasError = true;
result.ErrorSource = CCErrors.CCErrorSource.Network;
result.ErrorText = webExn.Message;
}
catch (Exception exn)

{

hasError = true;
result.ErrorSource = CCErrors.CCErrorSource.Internal;
result.ErrorText = exn.Message;

throw new

PXException (String.Format (Messages.ERR CCPaymentProcessingInternalError,aTranNbr,
exn.Message)) ;

}
finally

{

this.EndTransaction (aTranNbr, result, (hasError ? CCProcStatus.Error
CCProcStatus.Finalized)) ;

}

e After the transaction completion, it updates (closes) the transaction record based on the returned
result (or error handling procedure). Note that errors are stored in a separate field in the
database rather than in the pCrResponseText field (if the error happens on our side). For an
authorization transaction, it also stores the expiration date if the processing object provides a
value for it in the result.

A protection mechanism prevents the user from starting two transaction for the same document in parallel
= 4 (for example, from another window or computer). Before starting, the system checks if there is an open
transaction for the document and rejects the action if so. In some conditions, such as server crash or
hardware malfunction, the result of the transaction processing may be lost by the system so it will open
forever. To avoid locking of the system, open transactions are made auto-expiring: when they start, an

| Programming Tasks | 110

open period length is defined for them. If the processing result is lost, this transaction is considered as
expired after this period and the user can start another one. This period length is defined in the processing
center configuration interface as Open Transaction Timeout (sec). Unfortunately, there is no way to
synchronize an expired transaction with the authorization server automatically (it may be successful there);
it will require user interaction to prevent double-charges.

e If transaction is successful and credit card processing is synchronized with document state
handling, it may be released (or voided) after the processing.

Void Transactions Processing

In Acumatica ERP, a released AR document can't be deleted from the system. When you need to void
such a document, the system actually creates another one that is reversing the original transaction.
This document has the same number as original document, but another DocType, Void. If the original
transaction has been paid by credit card, this payment has to be voided or refunded. To do this
processing correctly, all of the credit card transactions made for the original document are also attached
to the voiding document (so credit card processing transactions are shared between the original and the
voiding document). The system tries to void the transaction first and if the transaction is declined by
the authorization center (a void is possible after a rather short period of time), it tries to refund it. The
transaction is processed the same way as described above.

Using Substitute Keys

This article explains the use of surrogate keys in Acumatica Framework.

In the table defined below:

CREATE TABLE [dbo].[Ledger] (
[CompanyID] [int] NOT NULL,
[LedgerID] [int] IDENTITY(1,1) NOT NULL,
[LedgerCD] [varchar] (10) NOT NULL,
[BalanceType] [char] (1) NOT NULL,
[BaseCuryID] [varchar] (5) NOT NULL,
[Descr] [nvarchar] (60) NULL,
[tstamp] [timestamp] NULL,
[CreatedByID] [uniqueidentifier] NOT NULL,
[CreatedByScreenID] [char] (8) NOT NULL,
[CreatedDateTime] [smalldatetime] NOT NULL,
[LastModifiedByID] [uniqueidentifier] NOT NULL,
[LastModifiedByScreenID] [char] (8) NOT NULL,
[LastModifiedDateTime] [smalldatetime] NOT NULL,
CONSTRAINT [Ledger_PK] PRIMARY KEY CLUSTERED
(
[CompanyID] ASC,
[LedgerID] ASC
))

CREATE UNIQUE NONCLUSTERED INDEX [Ledgerl] ON [dbo].[Ledger]
(

[CompanyID] ASC,

[LedgerCD] ASC
)

LedgerID is a surrogate key and LedgerCD is a native or natural key associated with this record.

Let's assume that we have Batch record that references Ledger record by surrogate key LedgeriD.
In this case user expects to see LedgerCD value in applicaiton UI. But at the same time Batch record
stores LedgerID value for referencing Ledger record. For such situations, Acumatica Framework
provides Substitute Key feature that substitutes surrogate key with natural key on presenting data in
User Interface.

| Programming Tasks | 111

Use of surrogate allows to significantly reduce the space that is used by database for referencing and at
the same time provide user with convenient data entry mechanism and generic functionality for renaming
natural keys that are presented to the user in interface at a single dictionary.

In order use substitute key functionality following declaration is required:

1: Modify class Ledger by removing IsKey named parameter from LedgerID member, and add IsKey
named parameter to LedgerCD member as below:

[System.SerializableAttribute ()]

public class Ledger : PX.Data.IBglTable
{

#region LedgerID

public abstract class ledgerID : PX.Data.IBglField
{
}

protected Int32? LedgerID;

= [PXDBIdentity (), IsKey=true]
[PXDBIdentity ()]
[PXUIField (DisplayName = "Ledger ID", Visibility = PXUIVisibility.Visible,

Visible = false)]
public virtual Int32? LedgerID
{
get
{
return this. LedgerID;

this. LedgerID = value;

}
}
#endregion
#region LedgerCD
public abstract class ledgerCD : PX.Data.IBglField
{
}

protected string LedgerCD;

- [PXDBString (10)]
[PXDBString (10, IsKey=true)]
[PXUIField (DisplayName = "Ledger", Visibility =

PXUIVisibility.SelectorVisible)]
public virtual string LedgerCD
{
get
{
return this. LedgerCD;

this. LedgerCD = value;
}
}

#endregion

}

1: Use parameter SubstituteKey in PXSelector attribute definition for LedgerID member of Batch class
as specified below:

public class Batch : PX.Data.IBglTable
{

#region LedgerID

public abstract class ledgerID : PX.Data.IBglField
{

}

protected Int32? LedgerlID;

| Programming Tasks | 112

[PXDBInt ()]
[PXDefault (typeof (GLSetup.ledgerID))]
[PXUIField (DisplayName = "Ledger ID", Visibility =

PXUIVisibility.SelectorVisible)]

[PXSelector (typeof (Search<Ledger.ledgerID, Where<Ledger.balanceType,
NotEqual<BudgetLedger>>>),

SubstituteKey =
typeof (Ledger.ledgerCD))]
public virtual Int32? LedgerID
{
get
{
return this. LedgerID;

this. LedgerID = value;
}
}

#endregion

}

With such declaration Field Schema Editor Wizard will replace LedgerID with LedgerCD on adding
LedgerID member from Batch class on application form. During runtime system will automatically

substitute LedgerID with LedgerCD on providing data to UI and convert it back on passing data from UI
to DAC.

With marking LedgerCD with IsKey parameters in class Ledger you must add parameter SubstituteKey
=—| to all Data Access Classes that references class Ledger by LedgerID.

Calling a New PXSmartPanel

How does the Copy Order (or any similar) action know to call the PXSmartPanel, that is, for the copy
order (or another webpage used as a printable document), that is, how the programmer or customizer

can get a new PXSmartPanel to display when he or she clicks the OK button? (See the screenshot
below.)

| Programming Tasks | 113

O Acumatlca Organization Finance Distribution Configuration z 24(3) 41212013 T:32 AM admin
Inventory | Sales Orders Purchase Orders Purchase Requisitions |
»| & MAIN -~ Sales Orders Hotes Activities Files MNotifications Customization Help -~
[o =+ (PR 1€ £ > > Actions B Reports ~
= Order Type: 30 0 * Customer: 5000000003 Create Shipment Ordered iy 200
Order Mbr: ¢ Lien Tknn TR T s | MAIN - Primar Create Receipt VAT Exempt Total: 0.00
Copy To X T
Status usoD 1 Jpen rae AT Taxable Total: 0.00
* Date: i *OrderNbr. | <NEW= % - Non-Projet Email Sales Order/Quote Order Total: 30.00
* Requested (["]Recalculate Discounts 50003-02-16 Re H
Customer O Prepare Invoice
Customer R, oK .
Document De, ¢ [n | v Setlings Paym Cancel Orde Discount Details Totals it
c 7 Flace c | 1=l Y
= Branch Inventory ID Subitem Free ltem Warehouse UO| Open Qty. Unit Price Discoun
>0 MAIN 50000001... 0-] RETAIL PC 200 2.00 0.00 15.0000 0.00000C
0] MAIN 50000000... 0- RETAIL PC 1.00 1.00 0.00 0.0000 0.00000C
4 | i | 3
On Hand 46.00 PC, Avai 46.00 PC, Avai for Shipping 46.00 PC

Figure: Calling a Smart Panel

Here is the explanation. To define a smart panel in the .aspx page, you should specify the Key property
for it making this property equal to one of the view names in your business logic container (BLC, called
also as graph). Then you should append a button to the panel with expected dialog result.

<px:PXSmartPanel ID="panelCopyTo" runat="server"

Height="135px" Width="300px" Style="z-index: 108; left: 351px;
position: absolute; top: 99px;" Caption="Copy To" CaptionVisible="true"
DesignView="Content" LoadOnDemand="true"

Key="copyparamfilter"
AutoCallBack-Enabled="true"AutoCallBack-Target="formCopyTo"
AutoCallBack-Command="Refresh" CallBackMode-CommitChanges="True"
CallBackMode-PostData="Page">

<px:PXButton ID="PXButton9" runat="server" DialogResult="OK" Text="OK"
Width="63px" Height="20px" TabIndex="102" CommandName="CheckCopyParams"
CommandSourceID="ds"> </px:PXButton>

Then in the button delegate, which will process copy order request, perform a call to AskExt method of
the view specified as a Key:

public virtual IEnumerable CopyOrder (PXAdapter adapter)

{
if (copyparamfilter.AskExt () == WebDialogResult.OK &&
string.IsNullOrEmpty (copyparamfilter.Current.OrderType) == false)
{

When the user clicks the Copy Order (or another document) menu item, the execution will interrupt on
the AskExt call and a pop-up window will be displayed. After user clicks the OK button in the panel, the
system will call the CopyOrder method for the second time, and this time AskExt will return required
dialog result.

| Debugging Applications | 114

Debugging Applications

This article explains how to link the Acumatica Framework application site to the database and start the
Acumatica Framework application in the debug mode.
Linking the Acumatica Framework Application Site to the Database

1. Locate the RB.s1n file on C:\Program Files (x86)\Acumatica Framework\RB\RB.sIn and double-
click it to open the solution.

2. Locate the web.config file inside the website project, and open it for editing.

3. Modify the connection string by specifying the credentials to your development database as
shown below.

Use the credentials database name and company IDs you created. If login fails because of

—| database connection errors, you can verify the connection settings in the Web.config file under
the connectionStrings section. You can use the following examples as a reference. For a locally
installed SQL Server that uses SQL Server authentication:

connectionString ="data source=(local);Initial Catalog=Northwindl; User
Id=USERID; Password=PASSWORD"

For a locally installed SQL Server that uses Windows authentication:

connectionString="data source=(local);Initial Catalog=Northwindl; Integrated
Security=yes"/>

For a remote SQL Server that uses SQL Server authentication:

connectionString ="data source=MSSQLSERVER; Initial Catalog=Northwindl; User
Id=USERID; Password=PASSWORD"

4. Setthe Main.aspx page in the root of the website project as a project starting point.

5. Run the application from the Visual Studio. It will start the development server and run the
application in Debug mode.

If you created a new database, use the credentials below for the first login:

e Login: admin

e Password: setup

When you run your project in Debug mode, code execution may suspend at certain points with
warning or error messages such as SecurityException was unhandled by user code. These warnings,
artifacts of the debugging environment in which the project is executing, will not occur when

the project is deployed to a production IIS server. You can safely ignore them and continue code
execution by simply pressing F5 or clicking the Run/continue button on the debugging toolbar in
Visual Studio. Alternatively, you can avoid the error messages during debugging by commenting out
the security restriction section of the Web.config file, as shown below:

==
<securityPolicy>
<trustLevel name="ProjectX" policyFile="web_ project_x.config"/>
</securityPolicy>
<trust level="ProjectX" originUrl=""/>
-—>

» The web.config file is allowed for check-out but not allowed for check-in.

| Debugging Applications | 115

Debugging the Acumatica Framework Application Under 1IS Server

In many cases the developer, instead of running the Acumatica Framework application from the Visual
Studio development server, finds it more convenient to run it from IIS. Below are the steps that are
required to register Acumatica Framework with the IIS server and attach it to the application with the
debugger:

1. Register the Acumatica Framework application site under IIS as follows:

a. Open the Internet Information Server (IIS) Manager application.

To locate this application, in the search area of the windows start menu, type IIS.

b. In the IIS Manager, focus on Default Web Site and from the content menu, select Add
Application.... The Add Application menu will appear.

c. In the Add Application menu, specify the website alias, application pool and physical path
of the site. Use the example below as a reference:

e Alias: RB

e Application Pool: Defaul tAppPool

e Local Path: C:\Program Files (x86)\Acumatica Framework\RB\Site\
d. Click Add to create the new website.

e. Go to the created site and set the Main.aspx page as a default document for this site.
f. Make sure that site works by accessing it as http://localhost/RB.

2. Openthe C:\Program Files (x86)\Acumatica Framework\RB\RB.sln solution in
Visual Studio.

If you have user access control activated on your computer, make sure that you run Visual Studio
—|] as an Administrator.

Edit the web.config file like: <compilation debug="true" ... >...</compilation>
4. Once the project is opened in the Visual Studio, go to the Debug->Attach to Process menu.

In the Attach to Process pop-up window, select the Show processes from all users and
Show processes from all sessions check boxes. Locate the process named w3wp.exe and
click Attach.

6. Accept the warning and the debug session will start. Now you can access the website from
http://localhost/RB and intercept the break points set in the code from Visual Studio.

. Note that your local path might differ from the path specified if you mapped the solution to the different
£ '_1 location on the local file system or building different branch.

| API Reference | 116

API Reference

This reference describes the application programming interface (API) of the Acumatica Framework.
The following sections correspond to the specific components of the framework API:

e BQL

e Event Model Overview

e Core Classes

o Attributes

Event Model

The Acumatica Framework provides its own event model. By implementing event handlers, application
developers can add business logic for the manipulation of data within business logic controllers (BLCs).

The following chapters describe different ways of adding event handlers, provide detailed diagrams
for common data manipulation scenarios, and include complete reference information on all events,
including code samples demonstrating common usage and classes and enumerations related to these
events:

e Fvent Model Overview
e Scenarios

e Fvents

Event Model Overview

The Acumatica Framework provides its own event model. An application developer can define event
handlers, methods invoked by the Acumatica Framework once the corresponding events are raised,

to add business logic related to the manipulation of business logic controller (BLC) data. This business
logic includes validation and calculation of field values, management of related data records (inserting,
updating, or deleting), checks for duplicate records, and implementation of user interface (UI)
presentation logic.

Data Manipulation Scenarios

Events related to the manipulation of data records and data fields are raised in a particular order within
certain scenarios. For descriptions of these data manipulation scenarios, see the Scenarios section.

All Events

For reference information about all events, see Events.

Event Handlers Types
Two types of event handlers are associated with each event:

e Graph event handlers are defined as methods in a BLC class for a particular data access class
(DAC) or a particular DAC field. See the reference topic of each event for an example of a graph
event handler declaration.

o Attribute event handlers are defined as methods in attribute classes. The corresponding
logic is attached to all DAC objects or data fields annotated with these attributes. The
attribute in which an attribute event handler is implemented must be derived from

| API Reference | 117

the PXEventSubscriberAttribute class and must implement the interface of the
IPXEventNameSubscriber form, as shown in the following example.

// The attribute implements handlers for the FieldVerifying

// and RowPersisting events

public class MyAttribute : PXEventSubscriberAttribute,
IPXFieldVerifyingSubscriber,
IPXRowPersistingSubscriber

public virtual void FieldVerifying (PXCache sender,
PXFieldVerifyingEventArgs e)
{

}

public virtual void RowPersisting (PXCache sender,
PXRowPersistingEventArgs e)

{
}

Event Handlers Execution

All event handlers executed for a particular event share the same pxcache instance that has raised this
event. A PxCache instance is created to control the modified data records of a particular DAC type. The
PXCache instance is always available as the first argument in an event handler. The second argument
provides specific data corresponding to the event.

Once an event is raised, the order in which associated event handlers are executed may differ.

For some events, the chain of graph event handlers is executed before attribute event handlers, which
are executed only if the cancel property of the event arguments doesn't equal true after execution of
the graph event handlers.

For other events, the attribute event handlers are executed first, and the graph event handlers are
executed afterwards. The reference topic for each event includes a diagram showing the order in which
the system invokes handlers for a particular event..

Adding Event Handlers Dynamically

A BLC includes collections of graph event handlers for all events except CacheAttached. Each such
collection holds event handlers for a particular event and has the same name as the event . By using
the methods of these collections, you can add and remove graph event handlers in code at run time.

A method added as an event handler must have the signature of a graph event handler, but doesn't
need to follow the naming convention for graph event handlers. If you want to add a method as an
event handler, invoke the AddHandler<> () method on the corresponding collection. For example, if
the event is related to a row, it is invoked as follows.

RowEventName .AddHandler<DACName> (MethodName) ;

The event is invoked as follows if it is related to a field.
FieldEventName.AddHandler<DACName. fieldName> (MethodName) ;

To remove a handler, you should invoke the RemoveHandler<> () method in exactly the same way.

On invocation of AddHandler<> (), event handlers are added to either the beginning or the end of the
collection:

e Event handlers are added to the beginning of the collection for any event whose name ends with
ing, except the RowSelecting event.

| API Reference | 118

e Event handlers are added to the beginning of the collection for any event whose name ends with
ed and for the RowSelecting event.

Scenarios

Most events are raised within common scenarios related to the manipulation of data records. The
scenarios are invoked by Acumatica Framework on certain user actions in the user interface (UI), on
the corresponding requests to the Web Service API, and on the execution of special methods within the
business logic controller (BLC).

For details on how Acumatica Framework processes the basic data operations, see the following topics:
e Inserting a Data Record
e Updating a Data Record
e Deleting a Data Record
e Displaying a Data Record
e Saving Changes to the Database

Inserting a Data Record

The sequence of events raised during the insertion of a data record is illustrated in the figure below.

®

Row is a new record

to be inserted

e.Row = Row

[FieldDefaulting(PXCache sender,

PXFieldDefaultingEventArgs e) I

I
Graph Handlers Chain

Repeated for each DAC field

J e.Row = Row

I-FieIdUpdating(PXCache sender,

I
I | |
I (sender, €) |
[I | PXFieldUpdatingEventArgs) |
I | : Graph Handlers Chain I
| No Yos | (sender, e) |
| A 4 I I |
[| Attribute Handlers(sender,) | | | ‘@ |
|
I N I | ves 4 I
| ° | | I Attribute Handlers(sender, €) I |
_______ _ o — — —
_________ e.Row = Row
| FieldVerifying(PXCache sender, N
PXFieldVerifyingEventArgs e
: I B gse) | + e.Row = Row
| Grapirﬂi’;ﬂfr:)cr‘a'" I | FieldUpdated(PXCache sender, I
ieldUpdatedEventArgs e
| : I | PXFieldUpdatedEventA)|
i [! I |
I | [I Attribute Handlers(sender,) I |
No | [|
| L .
| | Attribute Handlers(sender, e) I Graph Handlers Chain |
3 [I (sender, e) I
______________ L e —————— |
e.Row = Row e.Row = Row
_______ L —

PXRowlnsertingEventArgs e)

Graph Handlers Chain

(sender, €)
Yes No
A 4

| Attribute Handlers(sender, e) |

o

e

Yes

PXRowlnsertedEventArgs e)
|

I
I
I
I Attribute Handlers(sender, e) I |
I
I
I

Graph Handlers Chain
(sender, e)
e.Row = Row
| RowSelected(PXCache sender, _l'

PXRowSelectedEventArgs e)
I

I
I
I
| Attribute Handlers(sender, €) | [
I
I
I

Graph Handlers Chain
(sender, e}

Figure: Inserting a data record

| API Reference | 119

The system inserts a data record—as an instance of a data access class (DAC)—when a user creates
a new data record in the user interface (UI), a request is sent to the Web Service API, or, in code, the
Insert () method of a data view is called. The data record is actually inserted into the pxCache object

| API Reference | 120

that corresponds to the DAC of the data record. An inserted data record has the Inserted status and is
available through the Inserted and Dirty collections of the pxCache object.

When a data record is inserted, data field events are raised for each data field in the following order:
e FieldDefaulting
e If the e.Cancel property equals true, FieldUpdating
e FieldVerifying
e FieldUpdated
Next, the following data record events are raised:
e RowlInserting
e Ifthe e.Cancel property dosn't equal true:
e RowInserted
e RowSelected
The instance of the inserted data record is available in the e .Row property of event arguments.

Updating a Data Record

The sequence of events raised during the update of a data record is illustrated in the figure below.

*

NewRow holds updated data
OldRow is the original data
record
1

J e.Row = NewRow

rFieIdUpdating(PXCache sender, I
PXFieldUpdatingEventArgs e)

‘ Graph Handlers Chain

Called if updating is

Repeated for each DAC field

e.Row = NewRow

h 4
‘ Attribute Handlers(sender, €)

|
| |
| |
| (sender,) ! [FieldVerifying(PxCache sender, |
l —— | > PXFieI:iVerifyingEventArgs o) |
| S e.Cancel e | [
I T | Graph Handlers Chain |
| No l | (sender, e) |
Yes x | i
| l Attribute Handlers(sender, e) ‘ T |
| [= eCancel =
| T
______________ y | ;,ITo Yes |
| |
| |
|

initiated in the ylor [lﬁ— ______ 1
via the Web
Service APl __ _ _ _ _ _ _ * . — — . e.Row = NewRow
| FieldUpdated(PXCache sender. -
ieldUpdatedEventArgs e
| PXFieldUpdatedEventA E |
| l |
| ‘ Attribute Handlers(sender, €) ‘ |
[I
| Graph Handlers Chain [
| (sender, €) |
e — — — — — — e — — — — — — —
.Row = NewRow
6.Row = OldRow £
v ©NewRow = NewRow * culdnn = el
rRowUpdating(PXCache sender, I | | RowUpdated(PXCache sender, l [
| PXRow%deatingEventArgs e | | PXROWl[deatEdE"emArgs e) |
| : | I [
| Graph Handlers Chain | | ‘ Attribute Handlers(sender, e) |
| (sender, e) | |
I I :
[q_:’ eCancel ———— | | Graph Handlers Chain |
| /—“' — S — | | (sender, &) |
Yes No - - _ _ -
| - v | e.Row = NewRow
| l Attribute Handlers(sender, e) ‘ I I,
| | [RowSelected(PXCache sender, t |
| | | PXRowSelectedEventArgs e) |
= eCancel = ———em——No I I
: — :_ | ‘ Attribute Handlers(sender, e) ‘ |
L :I _______ J | |
Yes [Graph Handlers Chain |
| (sender, e) |
A
> @

Figure: Updating a data record

| API Reference | 121

A data record is updated when a user modifies the data record on the user interface (UI), the request is
sent through the Web Service API, or the Update () method is invoked on the data view. Updated data
records, which the system gives the Updated status, are later available through the Updated and Dirty

collections of the appropriate pxcache object.

| API Reference | 122

The RowUpdating and RowUpdated events are fired before the update happens and after the update
happens, respectively. The developer can handle these events and has access to the updated data
record and the previous version of the data record that is kept in the PXCache object. The actual update
happens between these two events when the data record is copied to the pxCache object.

When a data record is updated, the following data field events are raised for each updated data field:
e FieldUpdating
e FieldVerifying
e FieldUpdated

Next, data record events are raised as follows:

e RowUpdating is raised. At this moment, in the e variable representing event data, e.Row holds
the data record version from the cache, while e . NewRow holds the updated data record. You can
still stop updating by throwing a PXxException instance.

e If e.Cancel doesn't equal true:

e RowUpdated is raised. e.Row now holds the updated instance, while the e.01dRow holds
a copy of the old data record with old values.

e RowSelected is raised. Only the updated data record can be accessed through e.Row.

Deleting a Data Record

The sequence of events raised during the deletion of a data record is illustrated in the figure below.

Row is the record to

Graph Handlers Chain
(sender, e}
I

—— eCancel
g
No
>

‘ Aftribute Handlers(sender, e)

‘ Attribute Handlers(sender, e) ‘

Graph Handlers Chain
(sender, e}

I—RcawDeIeti ng(PXCache sender,
PXRowDeletingEventArgs e)

Graph Handlers Chain
(sender, e)

—~—_ eCancel __—

—
No
)

‘ Attribute Handlers(sender, e)

PXRowDeletedEventArgs e)
\

‘ Aftribute Handlers(sender, e) ‘

Graph Handlers Chain
(sender, e}

. — — e.Row=NULL

J

I Attribute Handlers(sender, €)

Graph Handlers Chain
(sender, e)

be deleted e.Row = Row
Repeated for [gq,qupdating(PxCache sender, I
each DAC PXFieldUpdatingEventArgs e
key field

PXRowSelectedEventArgs e I
|

|

|

|

| Called if deleting
| is initiated in the
|— Ul or via the Web
| Service API

|

|

e.Row = Row
[I
PXFieldUpdatedEventArgs e) |

| Called if deleting

' is initiated in the
I Ul or via the Web
| Service API

1

Figure: Deleting a data record

| API Reference | 123

A data record is deleted when a user deletes the record on the user interface (UI), the request is sent
through the Web Service API, or the Delete () method of a data view is invoked in code. As a result
of the deletion, the data record gets the Deleted status, if it already exists in the database, or the

| API Reference | 124

InsertedDeleted status, if the record has just been inserted into the pxcache object and the deletion
from the database is not required. The data record is later available through the Deleted and Dirty
collections of the pxcache object.

If the deletion has been initiated by a user on the UI or through the Web Service API, first, the following
field events are raised for each key data field:

e FieldUpdating
e FieldUpdated
Next, data record events are raised as follows:

e RowDeleting is raised. At this point, the developer can still stop the deleting by throwing a
PXException instance. In the e variable representing event data, e .Row holds the data record
being deleted.

e If e.Cancel doesn't equal true:
e RowDeleted is raised, and e.Row still holds the data record.
e RowSelected is raised, and e .Row equals NULL.

Displaying a Data Record

Each time a data record is displayed in the user interface (UI) or retrieved through the Web Service
API, the RowSelected event is raised, as well as the FieldSelecting event, for each data field. For
both events, the e .Row property of event arguments holds the data record that is being displayed or
retrieved.

This process is illustrated in more detail in the diagram below.

Row is being prepared

Yes

‘ Attribute Handlers(sender, e)

for displaying
e.Row = Row Repeated for each DAC field

| RowSelected(PXCache sender, P | | p—=——————— e Row = Row

| PXRowSelectedEventArgs) | FieldSelecting(PXCache sender, ‘ |

| | | | PXFieldSelectingEventArgs e) |

| Attribute Handlers(sender, e) | | Graph Handlers Chain l

| | | l (sender, e) |

| Graph Handlers Chain | | [|
| (sender, e) | | ———— eCancel —— |
| _-_________'1"____-______

o __I______ S - |
I - |
| |
I

Figure: Displaying a data record

Saving Changes to the Database

The sequence of events raised during the saving of a data record is illustrated in the figure below.

| API Reference | 125

e

Row is the record to
be stored

o T _¢ _______ 1
|—Rc:anersmtmg(P><Cache sender,
PXRowPersistingEventArgs e) e.Row = Row

Graph Handlers Chain
(sender, e)

|

|

|

| — —

| ———=__ eCancel _—
No

|

|

|

¥

Yes
Attribute Handlers(sender, e) ‘

— eCancel
No

rRowPersisted(PXCache sender, K e.Row = Row
PXRowPersistedEventArgs e)+
[
‘ Attribute Handlers(sender, e) :
|
‘ Graph Handlers Chain ‘ |

e.TranStatus = Open

(sender, e)

[RowPersisted(PXCache sender, | LR = Ly

PXRowI[DersistedEventArgs e) e.TranStatus = Completed
or
Attribute Handlers(sender, e) I e.TranStatus = Aborted
|
|

Graph Handlers Chain

(sender, &)

7 N
>@
Figure: Committing a data record to the database

While a user is inserting, updating, or deleting a data record, no changes are committed to the
database. The system stores the modified data records in the session, and you can access them
through the appropriate pxcache object. The system commits the changes to the database when
the user presses Save in the user interface (UI), the request is sent through the Web Service API, or
Actions.PressSave () is invoked on the business logic controller (BLC) instance.

During the process of saving changes to the database, events are raised as follows:

e RowPersisting is raised. By this moment, a database transaction has already been opened.
If any of the handlers sets e.Cancel to true, the process will be canceled for the currently
processed data record, without an error being reported to the user. To cancel the whole process

| API Reference | 126

of committing changes and indicate the error to the user, you should throw an instance of
PXException.

e If e.Cancel doesn't equal true:

Events

RowPersisted is raised. The committing operation for the current data record

(available through e.Row in the handler) is completed, but the transaction is still open:

e.TranStatus equals Open.

RowPersisted is raised one more time, either with e. TranStatus equal to Completed
(if all changes have been saved successfully) or with e. TranStatus equal to Aborted if

an error occurred and all changes have been canceled.

This section includes reference information on all events as well as on classes and enumerations related

to only one particular event (such as the event arguments class).

See below for the lists, by categories, of all events:

e Data field events:

FieldDefaulting Event
FieldVerifying Event
FieldUpdating Event
FieldUpdated Event
FieldSelecting Event

¢ Data record events:

RowSelected Event
Rowlnserting Event
RowlInserted Event
RowUpdating Event
RowUpdated Event
RowDeleting Event

RowDeleted Event

e Database-related events:

CommandPreparing Event
RowSelecting Event
RowPersisting Event

RowPersisted Event

e Exception-handling event:

e Event for overriding DAC field attributes:

ExceptionHandling Event

CacheAttached Event

FieldDefaulting Event

The FieldDefaulting event is triggered:

| API Reference | 127

e When a user's action on the user interface (UI) or a Web Service application programming
interface (API) call causes insertion of a new record into the pxcache object.

e When any of the following methods of the pxcache class initiates assigning a field its default
value:

e Insert()

e Insert (object)

e TInsert (IDictionary)

e SetDefaultExt (object, string)
e SetDefaultExt<Field> (object)

The FieldDefaulting event handler is used to generate and assign the default value to a data access
class (DAC) field.

PXFieldDefaultingEventArgs e)
|
Graph Handlers Chain

(sender, &)
1

|
|

|
|

|
|

|
| . |
| —— eCancel |
| T~

|
| |
| |
| |

No Yes
) 4

Figure: Execution order for FieldDefaulting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName FieldDefaulting(
PXCache sender,
PXFieldDefaultingEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXFieldDefaultingEventArgs e

The instance of the PXFieldDefaultingEventArgs type that holds data for the FieldDefaulting
event

Examples of Use

The code below generates the default value for a DAC field.

public class POOrderEntry :

PXGraph<POOrderEntry,

| API Reference | 128

POOrder>,

PXImportAttribute.IPXPrepareltems

{

protected virtual void POOrder ExpectedDate FieldDefaulting(

PXCache sender,
PXFieldDefaultingEventArgs e)

POOrder row = (POOrder)e.Row;

Location vendorLocation = this.location.Current;
if (row != null && row.OrderDate.HasValue)

{

int offset = (vendorLocation != null ?
(int) (vendorLocation.VLeadTime 2?2 0) : 0);
e.NewValue = row.OrderDate.Value.AddDays (offset);

Related Types
e PXFieldDefaultingEventArgs Class
PXFieldDefaultingEventArgs Class

Provides data for the FieldDefaulting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldDefaultingEventArgs

Properties
e public object Row
Gets the current DAC object.
e public object NewValue
Gets or sets the default value for the DAC field.

e public bool Cancel

: CancelEventArgs

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
FieldDefaulting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldVerifying Event

The system triggers the Fieldverifying event for each data access class (DAC) field of a data record
that is inserted or updated in the pxCache object in the process of:

e Insertion or update initiated in the user interface (UI) or through the Web Service application

programming interface (API).

| API Reference | 129

e Any of the following methods of the pxCcache class initiates the assignment of the default value to
the DAC field:

e Insert()
e Insert (object)
e Insert (IDictionary)
e SetDefaultExt (object, string)
e SetDefaultExt<Field> (object)
e A DAC field update that is initiated by any of the following methods of the pxcCache class:
e Update (object)
e Update (IDictionary, IDictionary)
e SetValueExt (object, string, object)
e SetValueExt<Field> (object, object)

e Validation of a DAC key field value when the validation is initiated by any of the following methods
of the pxcCache class:

e TLocate(IDictionary)
e Update(IDictionary, IDictionary)
The Fieldverifying event handler is used to:

e Implement the business logic associated with validation of the DAC field value before the value is
assigned to the DAC field.

e Cancel the assigning of a value by throwing an exception of PxSetPropertyException type—if the
value does not fit the requirements.

e Convert the external presentation of a DAC field value to the internal presentation and implement
the associated business logic. The internal presentation is the value stored in a DAC instance.

PXFieldVerifyingEventArgs e)

Graph Handlers Chain
(sender,)

|

|

|

) B |
~ eCancel |
|

|

|

|

Yes No
v

Attribute Handlers(sender, e)

| e

Figure: Execution order for FieldVerifying event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName FieldVerifying(

| API Reference | 130

PXCache sender,
PXFieldVerifyingEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXFieldVerifyingEventArgs e
The instance of the PXFieldVerifyingEventArgs type that holds data for the FieldUpdating event

Examples of Use
The code below validates the new value of a DAC field.

public class APPaymentEntry : APDataEntryGraph<APPaymentEntry, APPayment>
{

protected virtual void APPayment AdjDate FieldVerifying(

PXCache sender,
PXFieldVerifyingEventArgs e)

if ((bool) ((APPayment)e.Row) .VoidAppl == false &&
vendor.Current != null && (bool)vendor.Current.Vendorl099)
{
string Yearl099 = ((DateTime)e.NewValue) .Year.ToString()
AP1099Year year = PXSelect<
AP1099Year,

Where<AP1099Year.finYear,
Equal<Required<AP1099Year.finYear>>>>.
Select (this, Yearl1099);
if (year != null && year.Status != "N")
throw new PXSetPropertyException (
Messages.AP1099 PaymentDate NotIn OpenYear,

PXUIFieldAttribute.
GetDisplayName<APPayment.adjDate> (sender)) ;

The code below validates the external presentation of a DAC field value and converts it to the internal
presentation if it is acceptable.

[TableAndChartDashboardType]
public class CAReconEng : PXGraph<CAReconEng>

{

protected virtual void CashAccountFilter CashAccountID FieldVerifying(

PXCache sender,
PXFieldVerifyingEventArgs e)

CashAccountFilter createReconFilter = (CashAccountFilter)e.Row;
if (!e.NewValue is string) return;
CashAccount acct =
PXSelect<CashAccount,
Where<CashAccount.accountCD,
Equal<Required<CashAccount.accountCD>>>>.

| API Reference | 131

Select (this, (string)e.NewValue);

if (acct !'= null && acct.Reconcile != true)
throw new PXSetPropertyException (Messages.CashAccounNotReconcile);
e.NewValue = acct.AccountID;

Related Types
e PXFieldVerifyingEventArgs Class
PXFieldVerifyingEventArgs Class

Provides data for the FieldVerifying event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldVerifyingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the current DAC object.
e public object NewValue
Gets or sets the new value of the current DAC field.
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
Fieldverifying event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

e public bool ExternalCall

Gets the value specifying if the new value of the current DAC field has been received from the UI
or through the Web Service API.

FieldUpdating Event

In the following cases, the FieldUpdating event is triggered for a data access class (DAC) field before
the field is updated:

e For each DAC field value received from the user interface (UI) or through the Web Service
application programming interface (API) when a data record is being inserted or updated.

e For each DAC key field value in the process of deleting a data record when the deletion is initiated
from the UI or through the Web Service API.

e While any of the following methods of the pxCache class initiates assigning a field its default
value:

e TInsert ()
e Insert (object)

e TInsert(IDictionary)

| API Reference | 132

e SetDefaultExt (object, string)
e SetDefaultExt<Field> (object)
e While any of the following methods of the pxCcache class initiates updating a field:
e Update (IDictionary, IDictionary)
e SetValueExt (object, string, object)
e SetValueExt<Field> (object, object)
e SetValuePending (object, string, object)
e SetValuePending<Field> (object, object)

e During conversion of the external DAC key field presentation to the internal field value, initiated
by the following pxCache class methods:

e TLocate(IDictionary)
e Update (IDictionary, IDictionary)
e Delete(IDictionary, IDictionary) methods
The FieldUpdating event handler is used when either or both of the following occur:

e The external presentation of a DAC field (the value displayed in the UI) differs from the value
stored in the DAC.

e Value storage is spread among several DAC fields (database columns).

In both cases, the application should implement both the FieldUpdating and FieldSelecting events.

PXFieldUpdatingEventArgs e) |

‘ Graph Handlers Chain

(sender, e)
Yes No
h 4

Attribute Handlers(sender, e)

h 4

|

|

|

| — —

| —— eCancel —
|

|

|

|

Figure: Execution order for FieldUpdating event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName FieldUpdating(
PXCache sender,
PXFieldUpdatingEventArgs e)

| API Reference | 133

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXFieldUpdatingEventArgs e
The instance of the PXFieldUpdatingEventArgs type that holds data for the FieldUpdating event

Examples of Use

The code below spreads the external presentation of a field among multiple DAC fields.

protected void Batch ManualStatus FieldUpdating (PXCache sender,
PXFieldUpdatingEventArgs e)
{
Batch batch = (Batch)e.Row;
if (batch != null && e.NewValue != null)
{
switch ((string)e.NewValue)
{
case "H":
batch.Hold = true;
batch.Released = false;
batch.Posted = false;
break;
case "B":
batch.Hold = false;
batch.Released = false;
batch.Posted = false;
break;
case "U":
batch.Hold = false;
batch.Released = true;
batch.Posted = false;
break;
case "P":
batch.Hold = false;
batch.Released = true;
batch.Posted = true;
break;

}

protected void Batch ManualStatus FieldSelecting(PXCache sender,
PXFieldSelectingEventArgs e)
{

Batch batch = (Batch)e.Row;
if (batch != null)
{
if (batch.Hold == true)
{
e.ReturnValue = "H";
}
else if (batch.Released != true)
{
e.ReturnValue = "B";
}
else if (batch.Posted != true)
{
e.Returnvalue = "U";
}
else

{

e.ReturnValue = "P";

}

Related Types
e PXFieldUpdatingEventArgs Class
e PXEntryStatus Enumeration

PXFieldUpdatingEventArgs Class
Provides data for the FieldUpdating event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldUpdatingEventArgs :

Properties
e public object Row
Gets the current DAC object.
e public object NewValue
Gets or sets the internal DAC field value.

e public bool Cancel

| API Reference | 134

CancelEventArgs

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
FieldUpdating event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldUpdated Event

In the following cases, the FieldUpdated event is triggered after a data access class (DAC) field is

actually updated:

e For each DAC field value received from the user interface (UI) or through the Web Service
application programming interface (API) when a data record is inserted or updated in the pXCache

object

e For each DAC key field value in the process of deleting a data record from the pxCache object
when the deletion is initiated from the UI or through the Web Service API

e While any of the following methods of the pxCache class initiates assigning a field its default

value:
e TInsert ()
e Insert (object)
e TInsert (IDictionary)
e SetDefaultExt (object, string)

e SetDefaultExt<Field> (object)

e While a field is updated in the pxcache object, initiated by any of the following methods of the

PXCache class:

e Update (object)

| API Reference | 135

e SetValueExt (object, string, object)
e SetValueExt<Field> (object, object)

e During validation of the DAC key field value initiated by any of the following pPxCcache class
methods:

e Locate(IDictionary)
e Update (IDictionary, IDictionary)
e Delete(IDictionary, IDictionary)

The FieldUpdated event handler is used to implement the business logic associated with changes to
the value of the DAC field in the following cases:

e Assigning the related fields of the data record containing the modified field their default values or
updating them

e Updating any of the following:
e The detail data records in a one-to-many relationship
e The related data records in a one-to-one relationship
e The master data records in a many-to-one relationship
| FieldUpdated(PXCache sender, |
PXFieIcliUpdatedEventArgs e) |
I

Attribute Handlers(sender, €)

Graph Handlers Chain |
(sender, e)

Figure: Execution order for FieldUpdated event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName FieldUpdated (
PXCache sender,
PXFieldUpdatedEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXFieldUpdatedEventArgs e
The instance of the PXFieldUpdatedEventArgs type that holds data for the FieldUpdated event

Examples of Use

| API Reference | 136

The code below updates the related field values of the current data record, assigns them the default

values, or performs both actions.

public class APInvoiceEntry : APDataEntryGraph<APInvoiceEntry,
APInvoice>,
PXImportAttribute.IPXPrepareltems

protected virtual void APTran UOM FieldUpdated (
PXCache sender,
PXFieldUpdatedEventArgs e)
APTran tran = (APTran)e.Row;
sender.SetDefaultExt<APTran.unitCost> (tran) ;

sender.SetDefaultExt<APTran.curyUnitCost> (tran) ;
sender.SetValue<APTran.unitCost> (tran, null);

The code below updates the related data records.

public class ARCashSaleEntry : ARDataEntryGraph<ARCashSaleEntry,
ARCashSale>

{

protected virtual void ARCashSale ProjectID FieldUpdated (
PXCache sender,
PXFieldUpdatedEventArgs e)
ARCashSale row = e.Row as ARCashSale;

foreach (ARTran tran in Transactions.Select ())
Transactions.Cache.SetDefaultExt<ARTran.projectID> (tran) ;

Related Types
e PXFieldUpdatedEventArgs Class
e PXEntryStatus Enumeration

PXFieldUpdatedEventArgs Class
Provides data for the FieldUpdated event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldUpdatedEventArgs : CancelEventArgs

| API Reference | 137

Properties
e public object Row
Gets the current DAC object
e public object 0Oldvalue
Gets the previous value of the current DAC field
e public bool ExternalCall

Gets the value specifying whether the new value of the current DAC field has been changed in the
UI or through the Web Service API

FieldSelecting Event
The FieldSelecting event is triggered:

¢ When the external representation—the way the value should be displayed in the user interface
(UI)—of a data access class (DAC) field value is requested from the UI or through the Web
Service application programming interface (API).

e When any the following methods of the pxCache class initiates assigning a field its default value:
e Insert()
e Insert (object)
e Insert(IDictionary)

e While a field is updated in the pxcache object, initiated by any the following methods of the
PXCache class:

e Update (object)
e Update (IDictionary, IDictionary)
e While a DAC field value is requested through any of the following methods of the pxCcache class:
e GetValuelnt (object, string)
e GetValuelInt<Field> (object)
e GetValueExt (object, string)
e GetValueEkExt<Field> (object)
e GetValuePending (object, string)
e ToDictionary (object)
e (GetStateExt (object, string)
e GetStateExt<Field> (object)
The FieldSelecting event handler is used to:

e Convert the internal presentation of a DAC field (the data field value of a DAC instance) to the
external presentation (the value displayed in the UI).

e Convert the values of multiple DAC fields to a single external presentation.

e Provide additional information to set up a DAC field input control or cell presentation.

|—Fit‘-}*ldSt‘-}Ilel:ting(F')(Cisu:,he sender,
F'XFieIT:ISeIectingEventArgs e)

Graph Handlers Chain
(sender, e)

|

|

|

|

1 |
e

I

I

I

I

NID Yes

h 4

Aftribute Handlers(sender, e) I

I
I
|
| N
| —— e.Cancel
I
I
I
I

|
L
Figure: Execution order for FieldSelecting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName FieldSelecting(
PXCache sender,
PXFieldSelectingEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event

e (required) PXFieldSelectingEventArgs e

| API Reference | 138

The instance of the PXFieldSelectingEventArgs type that holds data for the FieldSelecting

event.

Examples of Use

The code below converts the DAC field value to its external presentation.

public class PXTimeSpanLongAttribute : PXIntAttribute
{

public override void FieldSelecting (PXCache sender,
PXFieldSelectingEventArgs e)
{
if (AttributelLevel == PXAttributelLevel.Item || e.IsAltered)
{
string inputMask = this.inputMask ??
_inputMasks[(int) this. Format];
int lenght = this.inputMask != null ? maskLenght
_lengths[(int) this. Format];
inputMask = PXMessages.LocalizeNoPrefix (inputMask) ;
e.ReturnState = PXStringState.CreateInstance (
e.ReturnState,
lenght,
null,

| API Reference | 139

_FieldName,
_IsKey,
null,
String.IsNullOrEmpty (inputMask) ? null : inputMask,
null, null, null, null);
}

if (e.ReturnValue != null)
{
TimeSpan span = new TimeSpan (0, 0, (int)e.ReturnvValue, 0);
int hours =
(this. Format == TimeSpanFormatType.LongHoursMinutes) 2
span.Days * 24 + span.Hours : span.Hours;

e.ReturnValue = string.Format (outputFormats[(int)this. Format],
span.Days, hours, span.Minutes);

The example related to FieldUpdating demonstrates the conversion of multiple DAC field values into
external presentation in a single field.

The code below calculates the external value of a DAC field.

[TableAndChartDashboardType]
public class RevalueAPAccounts : PXGraph<RevalueAPAccounts>

{

protected virtual void RevalueFilter TotalRevalued FieldSelecting(
PXCache sender,
PXFieldSelectingEventArgs e)

if (e.Row == null) return;
decimal val = Om;

foreach (RevaluedAPHistory res in APAccountList.Cache.Updated)
if ((bool)res.Selected)

val += (decimal)res.FinPtdRevalued;
e.ReturnvValue = val;
e.Cancel = true;

The code below defines the mask for the input control or cell presentation of a DAC field.

[AttributeUsage (AttributeTargets.Property | AttributeTargets.Parameter |
AttributeTargets.Class | AttributeTargets.Method)]
public class PXDBStringWithMaskAttribute : PXDBStringAttribute,
IPXFieldSelectingSubscriber

{

public override void FieldSelecting (PXCache sender,
PXFieldSelectingEventArgs e)
{

if (e.Row == null) return;

string mask = this.FindMask (sender, e.Row);
if (!string.IsNullOrEmpty (mask))
e.ReturnState = PXStringState.Createlnstance (e.ReturnState,
_Length,
null,
_FieldName,

| API Reference | 140

_IsKey,
null,
mask,
null, null, null,
null);
else
base.FieldSelecting (sender, e);

The code below defines precision for a DAC field input control or cell presentation.

public class LSSOShipLine
LSSelect<
SOShipLine, SOShipLineSplit, SOShipLineSplit.uOM,
Where<SOShipLineSplit.shipmentNbr,
Equal<Current<SOShipLine.shipmentNbr>>,
And<SOShipLineSplit.inventoryID,
Equal<Current<INLotSerialStatus.inventoryID>>,
And<SOShipLineSplit.sitelID,
Equal<Current<INLotSerialStatus.siteID>>,
And<SOShipLineSplit.subItemlD,
Equal<Current<INLotSerialStatus.subItemID>>,
And<SOShipLineSplit.locationID,
Equal<Current<INLotSerialStatus.locationID>>,
And<SOShipLineSplit.lotSerialNbr,
Equal<Current<INLotSerialStatus.lotSerialNbr>>>>>>>>>

protected virtual void OrigOrderQty FieldSelecting(
PXCache sender,
PXFieldSelectingEventArgs e)

e.ReturnState =
PXDecimalState.CreateInstance (
e.ReturnState,
((INSetup) Graph.Caches[typeof (INSetup)].Current) .DecP1Qty,
_OrigOrderQtyField,
false,
0,
decimal.MinValue,
decimal .MaxValue) ;
((PXFieldState)e.ReturnState) .DisplayName =
PXMessages.LocalizeNoPrefix (Messages.OrigOrderQty) ;
((PXFieldState)e.ReturnState) .Enabled = false;

The code below defines lists of values and labels for the PxDropDown input control of the DAC field.

[AttributeUsage (AttributeTargets.Property | AttributeTargets.Class |
AttributeTargets.Parameter | AttributeTargets.Method)]
[PXAttributeFamily (typeof (PXBaseListAttribute))]
public class PXStringListAttribute : PXEventSubscriberAttribute,
IPXFieldSelectingSubscriber
{

public virtual void FieldSelecting (PXCache sender,
PXFieldSelectingEventArgs e)
{
if (AttributelLevel == PXAttributelLevel.Item || e.IsAltered)

| API Reference | 141

string[] values = AllowedValues;

e.ReturnState = PXStringState.CreateInstance (
e.ReturnState, null, null, FieldName,
null, -1, null, values, AllowedLabels,
_ExclusiveValues, null);

Related Types
e PXFieldSelectingEventArgs Class
e PXFieldState Class
e PXStringState Class
e PXSegmentedState Class
e PXSegment Class
e PXDoubleState Class
e PXFloatState Class
e PXDecimalState Class
e PXDateState Class
e PXIntState Class
e PXGuidState Class
e PXLongState Class
e PXUlVisibility Enumeration
e PXErrorLevel Enumeration
e PXErrorHandling Enumeration

PXFieldSelectingEventArgs Class

Provides data for the FieldSelecting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldSelectingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the current DAC object.
e public object ReturnState
Gets or sets the data used to set up DAC field input control or cell presentation.

e public bool IsAltered

| API Reference | 142

Gets or sets the value indicating whether the ReturnsState property should be created for each
data record.

e public object ReturnValue
Gets or sets the external presentation of the value of the DAC field.
e public bool ExternalCall

Gets the value specifying if the current DAC field has been selected in the UI or through the Web
Service API.

e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
FieldSelecting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

PXFieldState Class

Provides data to set up a DAC field input control or cell presentation.

Inherits

IDataSourceFieldSchema, ICloneable

Syntax

public class PXFieldState : IDataSourceFieldSchema, ICloneable

Properties
e public virtual Type DataType
Gets the type of data stored in the field.
e public virtual bool Identity
Gets the value indicating whether the field is mapped to an identity column in a database table.
e public virtual bool IsReadOnly
Gets the value indicating whether the field is read-only.
e public virtual bool IsUnique
Gets the indication of a uniqueness constraint on the field.
e public virtual int Length
Gets or sets the storage size of the field.
e public virtual string Name
Gets the name of the field.
e public virtual bool Nullable
Gets the value indicating whether the field can store the nul1 value.
e public virtual int Precision
Gets the maximum number of digits used to represent a numeric value stored in the field.
e public virtual int Scale

Gets the number of digits to the right of the decimal point used to represent a numeric value
stored in the field.

| API Reference | 143

public virtual bool? Required

Gets or sets the value indicating whether the value of the field is required.
public virtual object Value

Gets or sets the value stored in the field.

public virtual string Error

Gets or sets the error text assigned to the field.

public virtual bool IsWarning

Gets or sets the value indicating whether the field is marked with the warning sign.
public virtual PXErrorLevel ErrorLevel

Gets or sets the error level assigned to the field.

public virtual bool Enabled

Gets or sets the value indicating whether the current field input control or cell will respond to a
user's interaction.

public virtual bool Visible

Gets or sets the value indicating whether the current field input control or column is displayed.
public virtual string DisplayName

Gets or sets the display name for the field.

public virtual string DescriptionName

Gets or sets the name of a DAC field displayed in the pxselector control of the field if the
DisplayMode property is set to Text. If the DisplayMode property is set to Hint, the name is
displayed in the valueField - DescriptionName format. By default, DisplayMode is set to Hint.

public virtual PXUIVisibility Visibility
Gets or sets the pxUIVisibility object for the field.
public virtual object DefaultValue

Gets or sets the default value that is displayed in the field's cell for a new record that is not yet
committed to the PxGraph instance.

public virtual string ViewName
Gets or sets the name for the pxview object bound to the pxselector field control.
public virtual string[] FieldList
Gets or sets the array of DAC fields for the pxselector field control.
public virtual string[] HeaderList
Gets or sets the array of field display names for the pxselector field control.
public virtual string ValueField
Gets or sets the name of a DAC field, which is:

e Displayed in the pxselector field control on focus.

e Used to locate the selected record in the pxSelector field control.

e Displayed in the pxSelector field control when the pDisplayMode property is set to value.
public virtual bool PrimaryKey

Gets the value indicating whether the field is marked as a key field.

| API Reference | 144

Methods
e public void SetFieldName (string)
Sets the name of the field.

e public static PXFieldState CreateInstance (object value, Type dataType,
bool? isKey, bool? nullable, int? required, int? precision, int? length,
object defaultValue, string fieldName, string descriptionName, string
displayName, string error, PXErrorLevel errorLevel, bool? enabled, bool?
visible, bool? readOnly, PXUIVisibility visibility, string viewName,
string[] fieldList, object value)

Creates an instance of the pxFieldstate class.

e public PXFieldState Createlnstance (Type dataType, bool? isKey,
bool? nullable, int? required, int? precision, int? length, object
defaultValue, string fieldName, string descriptionName, string
displayName, string error, PXErrorLevel errorLevel, bool? enabled, bool?
visible, bool? readOnly, PXUIVisibility visibility, string viewName,
string[] fieldList, Type dataType)

Creates an instance of the pxFieldstate class.

e public static string GetStringValue (PXFieldState state, string fFormat,
PXFieldState state)

Returns the string representation of the field's value.
Parameters:
e state
The pxXFieldState object of the field.
e fFormat
The format for a numeric value.
e dFormat
The format for a DateTime value.
e public static PXFieldState[] GetFields (PXGraph, Typel[], PXGraph)

Returns the pxFieldstate objects for the specified PxGraph instance and the array of DAC
objects.

PXStringState Class

Provides data to set up the segstringmented DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXStringState : PXFieldState

Properties
e public virtual string InputMask
Gets or sets the value specifying how users enter data and how data is displayed

e public virtual string[] AllowedValues

| API Reference | 145

Gets or sets the list of values for the pPxDropbown field input control
e public virtual string[] AllowedLabels
Gets or sets the list of labels for the pPXDropDown field input control
e public virtual string[] AllowedImages
Gets or sets the list of images for the pxDropDown field input control
e public virtual bool ExclusiveValues
Gets a value that enables or disables editing of the value in the pPXDropbown field input control
e public virtual bool IsUnicode
Gets or sets a value indicating whether Unicode string content is supported
e public Dictionary

Gets the collection of values and labels for the field PXDropDown input control.

Methods

e public static PXFieldState CreatelInstance (object value, int? length,
bool? isUnicode, string fieldName, bool? isKey, int? required, string
inputMask, string[] allowedValues, string[] allowedLabels, bool?
exclusiveValues, object wvalue)

Creates an instance of the PXStringState class

PXSegmentedState Class

Provides data to set up the segmented DAC field input control or cell presentation.

Inherits

PXStringState

Syntax

public class PXSegmentedState : PXStringState

Properties
e public PXSegment[] Segments
Gets or sets the list of segments for the segmented field input control or cell presentation
e public bool ValidCombos

Gets or sets the value indicating whether the segmented field input control displays a single
lookup or a separate lookup for each segment

e public string Wildcard

Gets or sets the collection of characters allowed to be specified within each segment in addition to
the Mask property of PXSegment

Methods

e public static PXFieldState CreateInstance (object wvalue, string
fieldName, PXSegment|[] segments, string viewName, bool? validCombos,
object wvalue)

Creates an instance of the PxSegment class

| API Reference | 146

PXSegment Class

Provides data to set up a single segment of a segmented field input control or cell presentation.

Syntax

public class PXSegment

Methods

e public PXSegment (char editMask, char fillCharacter, short length,
bool validate, short caseConverter, short align, char separator, char
editMask)

Creates an instance of the pPxsegment class

Fields
e public readonly char EditMask
Gets the input mask for the segment:
® (! MaskType.Ascii
® a: MaskType.AlphaNumeric
® 9! MaskType.Numeric
e ?! MaskType.Alpha
e public readonly short Length
Gets the number of characters in the segment
e public readonly bool Validate
Gets the value indicating whether the new specified segment value should be validated
e public readonly short CaseConvert

Gets the value that specifies whether the letters in the segment are converted to uppercase or
lowercase:

e (! NotSet
e 1: Upper
e 2! Lower
e public readonly short Align
Gets the text alignment type in the segment:
e 1:Left
e 2! Right
e public readonly char Separator
Gets the character used to separate the segment from the previous one
e public readonly bool ReadOnly
Gets the value indicating whether the contents of the segment can be changed
PXDoubleState Class

Provides data to set up the decimal DAC field input control or cell presentation.

| API Reference | 147

Inherits

PXFieldState

Syntax

public class PXDoubleState : PXFieldState

Properties
e public virtual double MinValue
Gets or sets the minimum value that can be set in the field input control
e public virtual double MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

e public static PXFieldState CreatelInstance (object value, int? precision,
string fieldName, bool? isKey, int? required, double? minValue, object
value)

Creates an instance of the PxDoubleState class
PXFloatState Class

Provides data to set up the f1oat DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXFloatState : PXFieldState

Properties
e public virtual double MinValue
Gets or sets the minimum value that could be set in the field input control.
e public virtual double MaxValue

Gets or sets the maximum value that could be set in the field input control.

Methods

e public static PXFieldState CreatelInstance (object value, int? precision,
string fieldName, bool? isKey, int? required, float? minValue, object
value)

Creates an instance of the PXFloatState class
PXDecimalState Class

Provides data to set up the decimal DAC field input control or cell presentation.

Inherits

PXFieldState

| API Reference | 148

Syntax

public class PXDecimalState : PXFieldState

Properties
e public virtual double MinValue
Gets or sets the minimum value that can be set in the field input control
e public virtual double MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

e public static PXFieldState CreatelInstance (object value, int? precision,
string fieldName, bool? isKey, int? required, decimal? minValue, object
value)

Creates an instance of the PxbDecimalState class
PXDateState Class

Provides data to set up the DateTime DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXDateState : PXFieldState

Properties
e public virtual string InputMask
Gets or sets the value specifying how users enter data
e public virtual string DisplayMask
Gets or sets the value specifying how data is displayed
e public virtual DateTime MinValue
Gets or sets the minimum value that can be set in the field input control
e public virtual DateTime MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

e public static PXFieldState CreateInstance (object value, string
fieldName, bool? isKey, int? required, string inputMask, string
displayMask, DateTime? minValue, object value)

Creates an instance of the PxDateState class
PXIntState Class

Provides data to set up the integer DAC field input control or cell presentation.

| API Reference | 149

Inherits

PXFieldState

Syntax

public class PXIntState : PXFieldState

Properties
e public virtual int MinValue
Gets or sets the minimum value that could be set in the field input control
e public virtual int MaxValue
Gets or sets the maximum value that could be set in the field input control
e public virtual string[] AllowedValues
Gets or sets the list of values for the field input control of the PXDropDown type
e public virtual string[] AllowedLabels
Gets or sets the list of labels for the field input control of the pxDropDown type
e public virtual string[] AllowedImages

Gets or sets the list of images for the field input control of the PxDropDown type

Methods

e public static PXFieldState CreateInstance (object value, string
fieldName, bool? isKey, int? required, int? minValue, int? maxValue,
int[] allowedValues, string[] allowedLabels, Type dataType, object
value)

Creates an instance of the PxIntState class
PXGuidState Class

Provides data to set up the Guid DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXGuidState : PXFieldState

Methods

e public static PXFieldState Createlnstance (object value, string
fieldName, bool? isKey, object wvalue)

Creates an instance of the PxGuidState class
PXLongState Class

Provides data to set up the 1long DAC field input control or cell presentation.

Inherits

PXFieldState

| API Reference | 150

Syntax

public class PXLongState : PXFieldState

Properties
e public virtual double MinValue
Gets or sets the minimum value that could be set in the field input control
e public virtual double MaxValue

Gets or sets the maximum value that could be set in the field input control

Methods

e public static PXFieldState CreateInstance (object value, string
fieldName, bool? isKey, int? required, long? minValue, long? maxValue,
long[] allowedValues, string[] allowedLabels, object value)

Creates an instance of the PxLongState class
RowSelected Event
The RowSelected event is triggered in the process of:
e Displaying a data record in the user interface (UI).
e Execution of the following methods of the pxcache class:
e Locate(IDictionary)
e Insert()
e Insert (object)
e Insert(IDictionary)
e Update (object)
e Update (IDictionary, IDictionary)

e Delete(IDictionary, IDictionary)

Avoid executing BQL statements in a RowSelected event handler, because this execution may cause
— | performance degradation because of multiple invocations of the RowSelected event for a single data
record.

The RowSelected event handler is used to:
e Implement the UI presentation logic.

e Set up the processing operation on a processing screen (a type of Ul screen that allows the
execution of a long-running operation on multiple data records at once).

| API Reference | 151

PXRowSelectedEventArgs e)
|

Attribute Handlers(sender, e)

Graph Handlers Chain |
(sender, €)

Figure: Execution order for RowDeleted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowSelected(PXCache sender,
PXRowSelectedEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowSelectedEventArgs e

The instance of the PXRowSelectedEventArgs type that holds data for the RowSelected event

Examples of Use

The code below sets UI properties for input controls at run time.

public class VendorMaint
BusinessAccountGraphBase<VendorR, VendorR,
Where<BAccount.type, Equal<BAccountType.vendorType>,
Or<BAccount.type, Equal<BAccountType.combinedType>>>>

protected virtual void Vendor RowSelected (PXCache sender,
PXRowSelectedEventArgs e)
{
Vendor row = (Vendor)e.Row;
if (row == null) return;

bool isNotInserted = ! (sender.GetStatus (row) ==
PXEntryStatus.Inserted) ;

PXUIFieldAttribute.SetVisible<VendorBalanceSummary.depositsBalance> (

VendorBalance.Cache, null, isNotInserted);
PXUIFieldAttribute.SetVisible<VendorBalanceSummary.balance> (

VendorBalance.Cache, null, isNotInserted);
PXUIFieldAttribute.SetEnabled<Vendor.taxReportFinPeriod> (

sender, null,

row.TaxPeriodType != PX.Objects.TX.VendorTaxPeriodType.FiscalPeriod) ;
PXUIFieldAttribute.SetEnabled<Vendor.taxReportPrecision> (

sender, null, row.TaxUseVendorCurPrecision != true);

| API Reference | 152

The code below sets UI properties for actions.

public class APAccess : PX.SM.BaseAccess

{

protected virtual void RelationGroup RowSelected(PXCache sender,
PXRowSelectedEventArgs e)

{
PX.SM.RelationGroup group = e.Row as PX.SM.RelationGroup;
if (group != null)
{
if (String.IsNullOrEmpty (group.GroupName))

{
Save.SetEnabled (false);
Vendor.Cache.AllowInsert = false;

}

else

{
Save.SetEnabled (true) ;
Vendor.Cache.AllowInsert = true;

The code below sets up the processing operation on a processing screen.

[TableAndChartDashboardType]
public class APIntegrityCheck : PXGraph<APIntegrityCheck>

{

protected virtual void APIntegrityCheckFilter RowSelected(
PXCache sender,
PXRowSelectedEventArgs e)

APIntegrityCheckFilter filter = Filter.Current;

APVendorList.SetProcessDelegate<APReleaseProcess> (
delegate (APReleaseProcess re, Vendor vend)

{
re.Clear (PXClearOption.PreserveTimeStamp) ;
re.IntegrityCheckProc(vend, filter.FinPeriodID) ;

Related Types
e PXRowSelectedEventArgs Class
PXRowSelectedEventArgs Class

Provides data for the RowSelected event.

| API Reference | 153

Inherits

EventArgs

Syntax

public sealed class PXRowSelectedEventArgs : EventArgs

Properties
e public object Row
Gets the DAC object that is being processed

RowlInserting Event

The RowInserting event is trigged before the new data record is inserted into the pxCache object as a
result of:

e Inserting initiated in the user interface (UI) or through the Web Service application programming
interface (API).

¢ Invocation of the following methods of the pxcache class:
e Insert ()
e Insert (object)
e TInsert (IDictionary)
The RowInserting event handler is used to:
e Evaluate the data record that is being inserted.
e Cancel the insert operation by throwing an exception (see Examples of Use).

e Assign the default values to the fields of the data record that is being inserted.

I_Rowl nserting(PXCache sender,
PXRowl|nserting EventArgs e)

Graph Handlers Chain
(sender, e)

|

|

|

|

L |
|

I

I

I

I

I

I

I

| I
| —— eCancel
I

I

I

I"-ID Yes
Y

Attribute Handlers(sender, €)

Figure: Execution order for RowInserting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowInserting (PXCache sender,
PXRowInsertingEventArgs e)
{

| API Reference | 154

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowInsertingEventArgs e

The instance of the PXRowlnsertingEventArgs type that holds data for the RowInserting event

Examples of Use

The code below evaluates the data record that is being inserted and cancels the insert operation.

public class CashAccountMaint : PXGraph<CashAccountMaint>
{

protected virtual void PaymentMethodAccount RowInserting(
PXCache sender,
PXRowInsertingEventArgs e)

PaymentMethodAccount row = (PaymentMethodAccount)e.Row;
if (row.PaymentMethodID != null)
foreach (PaymentMethodAccount it in Details.Select())
if (!object.ReferenceEquals (row, it) &&
it.PaymentMethodID == row.PaymentMethodID)

throw new PXException (
Messages.DuplicatedPaymentMethodForCashAccount,
row.PaymentMethodID) ;
if (row.APIsDefault == true &&
String.IsNullOrEmpty (row.PaymentMethodID))
throw new PXException (ErrorMessages.FieldIsEmpty,
typeof (PaymentMethodAccount.
paymentMethodID) .Name) ;

The code below assigns the default field values to the data record that is being inserted.

public class MyCaseDetailsMaint : PXGraph<MyCaseDetailsMaint>
{

protected virtual void EPActivity RowInserting(PXCache sender,
PXRowInsertingEventArgs e)
{
EPActivity row = e.Row as EPActivity;
if (Case.Current != null)
{
row.StartDate = PXTimeZoneInfo.Now;
row.RefNoteID = Case.Current.NotelD;
row.ClassID = CRActivityClass.Activity;
row.IsExternal = true;

Related Types
e PXRowlnsertingEventArgs Class
e PXEntryStatus Enumeration

PXRowInsertingEventArgs Class

Provides data for the Rowlnserting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowInsertingEventArgs

Properties
e public object Row
Gets the DAC object that is being inserted.

e public bool Cancel

| API Reference | 155

: CancelEventArgs

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
RowInserting event handlers specified within DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

e public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object is being inserted from the UI or

through the Web Service API.

Rowlnserted Event

The RowInserted event is triggered after a new data record has been successfully inserted into the

PXCache object as a result of:

e Insertion initiated in the user interface (UI) or through the Web Service application programming

interface (API).

e Invocation of any of the following pxCache class methods:

e TInsert()
e Insert (object)

e Insert(IDictionary)

The RowInserted event handler is used to implement the business logic for:

e Inserting the detail data records in a one-to-many relationship.

e Updating the master data record in a many-to-one relationship.

e Inserting or updating the related data record in a one-to-one relationship.

PXRowlnsertedEventArgs e)
|

|

|

‘ |
Attribute Handlers(sender, e) |
I

I

I

Graph Handlers Chain
(sender, e)

Figure: Execution order for RowInserted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowInserted(PXCache sender,
PXRowInsertedEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event

e (required) PXRowInsertedEventArgs e

| API Reference | 156

The instance of the PXRowlInsertedEventArgs type that holds data for the RowInserted event

Examples of Use

The code below inserts the detail data records in a one-to-many relationship.

public class VendorClassMaint : PXGraph<VendorClassMaint>
{

public virtual void VendorClass RowInserted(PXCache sender,
PXRowInsertedEventArgs e)
{
VendorClass row = (VendorClass)e.Row;
if (row == null || row.VendorClassID == null) return;

foreach (APNotification n in PXSelect<
APNotification,
Where<APNotification.sourceCD,
Equal<APNotificationSource.vendor>>>.
Select (this))

NotificationSource source = new NotificationSource() ;
source.SetupID = n.SetuplD;
NotificationSources.Insert (source) ;

The code below updates the master data record in a many-to-one relationship.

public class InventoryItemMaint : PXGraph<InventoryItemMaint>

{

protected virtual void POVendorInventory RowInserted (
PXCache sender,
PXRowInsertedEventArgs e)

POVendorInventory current = e.Row as POVendorInventory;
if (current.IsDefault == true && current.VendorID != null &&
current.VendorLocationID != null && current.SubItemID

this.Item.Current.PreferredVendorLocationID !=
current.VendorLocationID)

InventoryItem upd = Item.Current;
upd.PreferredVendorID = current.IsDefault == true ?

current.VendorID

null;
upd = this.Item.Update (upd) ;

upd.PreferredVendorLocationID = current.IsDefault ==

true ? current.VendorLocationID : null;
Item.Update (upd) ;

Related Types
e PXRowlnsertedEventArgs Class
e PXEntryStatus Enumeration

PXRowInsertedEventArgs Class

Provides data for the RowlInserted event.

Inherits

EventArgs

Syntax

public sealed class PXRowInsertedEventArgs : EventArgs

Properties
e public object Row
Gets the DAC object that has been inserted

e public bool ExternalCall

!'= null &&

| API Reference | 157

Gets the value indicating, if it equals true, that the DAC object has been inserted in the UI or

through the Web Service API

RowUpdating Event

The RowUpdating event is triggered before the data record is actually updated in the pxCache object

during an update initiated:

e In the user interface (UI) or through the Web Service application programming interface (API).

| API Reference | 158

e By invocation of the following methods of the pXcache class:
e Update (object)

e Update (IDictionary, IDictionary)

Updating of a data record is executed only when there is a data record with the same values of the DAC
—| key fields in either the PXCache object or the database. Otherwise, the process of inserting the data record
is started.

The RowUpdating event handler is used to evaluate the data record that is being updated and cancel
the update operation if the data record does not fit the business logic requirements.

PXRowUpdatingEventArgs e)

Graph Handlers Chain

(sender, e)
———=— eCancel —
Yes No
v

Attribute Handlers(sender, e)

A 4

Figure: Execution order for RowUpdating event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowUpdating (PXCache sender,
PXRowUpdatingEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowUpdatingEventArgs e
The instance of the PXRowUpdatingEventArgs type that holds data for the RowUpdating event

Examples of Use

The code below evaluates the data record that is being updated, cancels the update operation, and
shows a message box.

public class APPaymentEntry : APDataEntryGraph<APPaymentEntry, APPayment>
{

protected virtual void APAdjust RowUpdating (PXCache sender,
PXRowUpdatingEventArgs e)
{

| API Reference | 159

APAdjust adj = (APAdjust)e.Row;
if (_IsVoidCheckInProgress == false && adj.Voided == true)
{

throw new PXException (ErrorMessages.CantUpdateRecord) ;

}

The code below evaluates the data record that is being updated, cancels the update operation, and
shows the warning or error indication near the input control for one field or multiple fields.

protected virtual void INLotSerClass RowUpdating (PXCache sender,

PXRowUpdatingEventArgs e)
{

INLotSerClass row = (INLotSerClass) e.NewRow;
if (row.LotSerTrackExpiration != true &&
row.LotSerIssueMethod == INLotSerIssueMethod.Expiration)

{
sender.RaiseExceptionHandling<INLotSerClass.lotSerIssueMethod> (
row, null,
new PXSetPropertyException (
Messages.LotSerTrackExpirationInvalid,
typeof (INLotSerClass.lotSerIssueMethod) .Name)) ;
e.Cancel = true;

Related Types
e PXRowUpdatingEventArgs Class
e PXEntryStatus Enumeration

PXRowUpdatingEventArgs Class
Provides data for the RowUpdating event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowUpdatingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the original DAC object that is being updated.
e public object NewRow
Gets the updated copy of the DAC object that is going to be merged with the original one.
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
RowUpdating event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

| API Reference | 160

Fields
e public bool ExternalCall

Gets the value indicating, if it equals true, that the update of the DAC object has been initiated
from the UI or through the Web Service API

RowUpdated Event

The RowUpdated event is triggered after the data record has been successfully updated in the pxCache
object as a resulf of:

e An update initiated in the user interface (UI) or through the Web Service application programming
interface (API).

e Invocation of the following methods of the pxcache class:
e Update (object)

e Update (IDictionary, IDictionary)

Updating of a data record is executed only when there is a data record with the same values of the data
— | access class (DAC) key fields, either in the PXCache object or in the database. Otherwise, the process of
inserting the data record is started.

The RowUpdated event handler is used to implement the business logic of:
e Updating the master data record in a many-to-one relationship.
e Inserting or updating the detail data records in a one-to-many relationship.
e Updating the related data record in a one-to-one relationship.

| RowUpdated(PXCache sender, |

PXRowlLlpdatedEventArgs e)

Attribute Handlers(sender, e)

Graph Handlers Chain |
(sender, e)

Figure: Execution order for RowUpdated event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowUpdated (PXCache sender,
PXRowUpdatedEventArgs e)

{
}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowUpdatedEventArgs e

The instance of the PXRowUpdatedEventArgs type that holds data for the RowUpdated event

Examples of Use

The code below updates the detail data records in a one-to-many relationship.

public class DraftScheduleMaint
{

PXGraph<DraftScheduleMaint, DRSchedule>

protected virtual void DRSchedule RowUpdated (PXCache sender,
PXRowUpdatedEventArgs e)
{

DRSchedule row
if

e.Row as DRSchedule;
(!sender.ObjectsEqual<DRSchedule.documentType, DRSchedule.refNbr,
DRSchedule.lineNbr, DRSchedule.bAccountID,
DRSchedule.finPeriodID,

DRSchedule.docDate> (e.Row, e.0l1dRow))

foreach

{

(DRScheduleDetail detail in Components.Select())

detail.Module

row.Module;

detail.DocumentType = row.DocumentType;
detail.DocType = row.DocType;
detail.RefNbr = row.RefNbr;
detail.LineNbr = row.LineNbr;
detail.BAccountID = row.BAccountID;
detail.FinPeriodID = row.FinPeriodID;
detail.DocDate = row.DocDate;

Components.Update (detail) ;

The code below updates the master data record in a many-to-one relationship.

public class ARInvoiceEntry ARDataEntryGraph<ARInvoiceEntry,

PXImportAttribute.IPXPrepareltems

ARInvoice>,

{

protected virtual void ARTran RowUpdated (PXCache sender,
PXRowUpdatedEventArgs e)
{

ARTran row (ARTran)e.Row;
ARTran oldRow (ARTran)e.OldRow;
if (Document.Current null &&

IsExternalTax == true &&

!'sender.ObjectsEqual<ARTran.
ARTran.

ARTran

ARInvoice copy
copy.IsTaxValid false;
Document .Update (copy) ;

Related Types
e PXRowUpdatedEventArgs Class

accountID, ARTran.inventoryID,
tranDesc,

.tranAmt, ARTran.tranDate,
ARTran.

taxCategoryID> (e.Row, e.0ldRow))

Document.Current;

| API Reference | 161

| API Reference | 162

e PXEntryStatus Enumeration
PXRowUpdatedEventArgs Class

Provides data for the RowUpdated event.

Inherits

EventArgs

Syntax

public sealed class PXRowUpdatedEventArgs : EventArgs

Properties
e public object Row
Gets the DAC object that has been updated
e public object OldRow
Gets the copy of the original DAC object before the Update operation

Fields
e public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been updated from the UI or
through the Web Service API

RowDeleting Event

The RowDeleting event is triggered for a data record that is being deleted from the pxcache object
after its status has been set to Deleted or InsertedbDeleted, but the data record can still be reverted
to the previous state by canceling the delete operation (see Examples of Use). The status of the data
record is set to Deleted Or InsertedDeleted as a result of:

e Deletion initiated in the user interface (UI) or through the Web Service application programming
interface (API).

¢ Invocation of the following methods of the pxcache class:
e Delete (object)

e Delete(IDictionary, IDictionary)

When a data record is deleted that has already been stored in the database (and, hence, exists in both the
—| database and the PxCache object), the status of the data record is set to Deleted. For a data record that
has not yet been stored in the database but was only inserted in the PXCache object, the status of the data
record is set to InsertedDeleted.

The RowDeleting event handler is used to evaluate the data record that is marked as Deleted or
InsertedDeleted and cancel the delete operation if it is required by the business logic.

| API Reference | 163

PXRowDeletingEventArgs e)

‘ Graph Handlers Chain

(sender, e)
Yes No
h 4

Attribute Handlers(sender, e)

A 4

| |
| |
| |
|) — |
| — eCancel —— |
| |
| |
| |
| |

Figure: Execution order for RowDeleting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowDeleting (PXCache sender,
PXRowDeletingEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowDeletingEventArgs e

The instance of the PXRowDeletingEventArgs type that holds data for the RowDeleting event

Examples of Use

The code below evaluates the data record that is being deleted and cancels the delete operation by
throwing an exception.

public class VendorMaint : BusinessAccountGraphBase<
VendorR, VendorR,

Where<BAccount. type,
Equal<BAccountType.vendorType>,
Or<BAccount. type,

Equal<BAccountType.combinedType>>>>

protected virtual void Vendor RowDeleting (PXCache sender,
PXRowDeletingEventArgs e)
{

Vendor row = e.Row as Vendor;

TX.Tax tax = PXSelect<
TX.Tax,
Where<TX.Tax.taxVendorID,
Equal<Current<Vendor.bAccountID>>>>.

| API Reference | 164

Select (this) ;
if (tax != null)
throw new PXException (Messages.TaxVendorDeleteErr) ;

Related Types
e PXRowDeletingEventArgs Class
e PXEntryStatus Enumeration

PXRowDeletingEventArgs Class

Provides data for the RowDeleting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowDeletingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the DAC object that has been marked as Deleted.
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
RowDeleting event handlers specified within DAC field attributes should be invoked. The handlers
will not be invoked if the property is set to true.

e public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been marked as Deleted in
the UI or through the Web Service API.

RowDeleted Event

The RowDeleted event is triggered for a data record that is being deleted from the pxCache object—that
is, a data record whose status has been successfully set to Deleted or InsertedDeleted as result of:

e Deletion initiated in the user interface (UI) or through the Web Service application programming
interface (API).

¢ Invocation of the following methods of the pxcache class:
e Delete (object)

e Delete(IDictionary, IDictionary)

When a data record is deleted that has already been stored in the database (and, hence, exists in both the
—| database and the PxCache object), the status of the data record is set to Deleted. For a data record that
has not yet been stored in the database but was only inserted in the PXCache object, the status of the data
record is set to InsertedDeleted.

The RowDeleted event handler is used to implement the business logic of:

¢ Deleting the detail data records in a one-to-many relationship.

| API Reference | 165

e Updating the master data record in a many-to-one relationship.
e Deleting or updating the related data record in a one-to-one relationship.
| RowDeleted(PXCache sender, I
PXRowDeletedEventArgs e)
|

I
I
Attribute Handlers(sender, e) |
I
I
I

Graph Handlers Chain |
(sender, e)

Figure: Execution order for RowDeleted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowDeleted (PXCache sender,
PXRowDeletedEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowDeletedEventArgs e

The instance of the PXRowDeletedEventArgs type that holds data for the RowDeleted event

Examples of Use

The code below deletes detail data records in a one-to-many relationship.

public class CashTransferEntry : PXGraph<CashTransferEntry, CATransfer>
{

public virtual void CATransfer RowDeleted (PXCache sender,
PXRowDeletedEventArgs e)
{

foreach (CATran item in TransferTran.Select())
TransferTran.Delete (item) ;

The code below updates the master data record in a many-to-one relationship.

public class INSiteMaint : PXGraph<INSiteMaint, INSite>
{

protected virtual void INLocation RowDeleted(PXCache sender,

| API Reference | 166

PXRowDeletedEventArgs e)

INLocation 1 = (INLocation)e.Row;

if (site.Current == null || 1 == null ||
site.Cache.GetStatus (site.Current) == PXEntryStatus.Deleted)
return;

INSite s = site.Current;

if (s.DropShipLocationID == 1l.LocationID)
s.DropShipLocationID = null;

if (s.ReceiptlLocationID == 1l.LocationID)
s.ReceiptLocationID = null;

if (s.ShipLocationID == 1l.LocationID)
s.ShipLocationID = null;

if (s.ReturnLocationID == 1l.LocationID)

s.ReturnLocationID = null;
site.Update (s) ;

Related Types
e PXRowbDeletedEventArgs Class
e PXEntryStatus Enumeration

PXRowDeletedEventArgs Class

Provides data for the RowDeleted event.

Inherits

EventArgs

Syntax

public sealed class PXRowDeletedEventArgs : EventArgs

Properties
e public object Row
Gets the DAC object that has been marked as Deleted
e public bool ExternalCall
Gets the value indicating, if it equals true, that the DAC object has been marked as Deleted in
the UI or through the Web Services API
CommandPreparing Event

The commandPreparing event is triggered each time the Acumatica Data Access Layer prepares

a database-specific SQL statement for SELECT, INSERT, UPDATE, or DELETE operation. This

event is raised for every data access class (DAC) field placed in the pxCache object. By using the
CommandPreparing event subscriber, the application developer can alter the property values of the
PXCommandPreparingEventArgs.FieldDescription object that is used in the generation of an SQL
statement.

The CommandPreparing event handler is used to:
e Exclude a DAC field from a SELECT, INSERT, or UPDATE operation

e Replace a DAC field from a SELECT operation with a custom SQL statement

| API Reference | 167

e Transform a DAC field value submitted to the server for INSERT, UPDATE, or DELETE operation

PXCache sender,
PXCommandPreparingEventArgs e)

Graph Handlers Chain

(sender, e)
Yes No
h 4

Attribute Handlers(sender, e)

h J

|

|

|

|

| i

| eCan eI-
|

|

|

|

Figure: Execution order for CommandPreparing event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName CommandPreparing (
PXCache sender,
PXCommandPreparingEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXCommandPreparingEventArgs e

The instance of the PXCommandPreparingEventArgs type that hold data for the
CommandPreparing event

Examples of Use

The code below excludes a DAC field from the UPDATE operation.

public class APReleaseProcess : PXGraph<APReleaseProcess>

{

protected virtual void APRegister FinPeriodID CommandPreparing (
PXCache sender,
PXCommandPreparingEventArgs e)

if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Update)
{

e.FieldName = string.Empty;

e.Cancel = true;

The code below replaces a DAC field with a custom T-SQL statement.

[PXAttributeFamily (typeof (PXDBFieldAttribute))]
public class BillContactFullNameAttribute : PXDBFieldAttribute
{
public override void CommandPreparing (PXCache sender,
PXCommandPreparingEventArgs e)
{
if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Select)
{
BglCommand search = new Search<SOContact.fullName,
Where<SOContact.contactID,
Equal<SOOrder.billContactID>>> () ;
StringBuilder text = new StringBuilder();
BglCommand.Selection selection = new BglCommand.Selection();
search.Parse (sender.Graph, new List<IBglParameter> (),
new List<Type> (),
null, null, text, selection);

e.BglTable = BqglTable;

Type field = ((IBglSearch)search) .GetField();

Type table = BglCommand.GetItemType (field) ;

e.FieldName = BglCommand.SubSelect +
selection.Get (table.Name + "." +

field.Name) + text.ToString() + ")";

}

public partial class SOOrder : PX.Data.IBglTable, PX.Data.EP.IAssign,
IFreightBase, ICCAuthorizePayment,
ICCCapturePayment, IInvoice

#region BillContactFullName

public abstract class billContactFullName : PX.Data.IBglField
{

}

[PXString (255, IsUnicode = true)]
[BillContactFullNameAttribute]

[PXUIField (DisplayName = "Business Name", IsReadOnly = true)]
public virtual String BillContactFullName { get; set; }
#endregion

The code below transforms the DAC field value during INSERT and UPDATE operations.

public class PXDBCryptStringAttribute : PXDBStringAttribute,
IPXFieldVerifyingSubscriber,
IPXRowUpdatingSubscriber,
IPXRowSelectingSubscriber

public override void CommandPreparing (PXCache sender,
PXCommandPreparingEventArgs e)

{

if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Insert ||
(e.Operation & PXDBOperation.Command) == PXDBOperation.Update)

{
string value = (string)sender.GetValue(e.Row, FieldOrdinal);
e.Value = !string.IsNullOrEmpty(value) *?

Convert.ToBase64String (
Encrypt (Encoding.Unicode.GetBytes (value)))
null;

| API Reference | 168

| API Reference | 169

}

base.CommandPreparing (sender, e);

Related Types
e PXCommandPreparingEventArgs Class
e PXDbType Enumeration
e PXDBOperation Enumeration

PXCommandPreparingEventArgs Class

Provides data for the CommandPreparing event.

Inherits

CancelEventArgs

Syntax

public sealed class PXCommandPreparingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the current DAC object.
e public object Value
Gets or sets the current DAC field value.
e public PXDBOperation Operation
Gets the pxDBOperation value of the current operation.
e public Type Table
Gets the type of DAC objects placed in the cache.
e public Type BglTable
Gets or sets the type of the DAC being used during the current operation.
e public string FieldName
Gets or sets the name of the DAC field being used during the current operation.
e public PXDbType DataType
Gets or sets the pxDbType of the DAC field being used during the current operation.
e public int? DatalLength
Gets or sets the number of characters in the DAC field being used during the current operation.
e public object DataValue
Gets or sets the DAC field value being used during the current operation.
e public bool IsRestriction

Gets or sets the value indicating that the DAC field being used during the UPDATE or DELETE
operation is placed in the WHERE clause.

| API Reference | 170

e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
CommandPreparing event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldDescription Class
The nested class that provides information about the field required for the T-SQL statement generation.

Syntax:
public sealed class FieldDescription

Properties:

e public readonly Type BglTable
Gets the type of DAC objects placed in the cache

e public readonly string FieldName
Gets the name of the DAC field

e public readonly PXDbType DataType
Gets the pxDbType of the DAC field

e public readonly int? DatalLength
Gets the storage size of the DAC field

e public readonly object DataValue
Gets the value stored in the DAC field

e public readonly bool IsRestriction

Gets the value indicating that the DAC field being used during the UPDATE or DELETE operation is
placed in the WHERE clause

RowSelecting Event

The RowSelecting event is triggered for each retrieved data record when the result of a BQL statement
is processed. For a BQL statement that contains a JOIN clause, the RowSelecting event is raised for
every joined data access class (DAC).

The RowSelecting event handler is used to:
e Calculate DAC field values that are not bound to specific database columns.

e Convert the database table value of a DAC field to its presentation form.

The application developer can execute additional BQL statements within a RowSelecting event handler.
However, the connection scope used to retrieve data, which triggered the RowSelecting event, is still
busy at the moment, so no other operations on this connection scope are allowed. Therefore, to execute
additional BQL statements in a RowSelecting handler, it is necessary to use a separate connection scope
(see Examples of Use).

| API Reference | 171

PXRowSelectingEventArgs e)
|

Graph Handlers Chain
(sender, e)

Yes No
\ 4

Attribute Handlers(sender, e)

h 4

Figure: Execution order for RowSelecting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowSelecting (PXCache sender,
PXRowSelectingEventArgs e)
{

}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowSelectingEventArgs e

The instance of the PXRowSelectingEventArgs type that holds data for the RowSelecting event

Examples of Use

The code below calculates a DAC field value that is not bound to a specific column in a database table.

public class LocationMaint
LocationMaintBase<Location, Location,
Where<Location.bAccountID,
Equal<Optional<Location.bAccountID>>>>

protected virtual void Location RowSelecting(PXCache sender,
PXRowSelectingEventArgs e)
{
Location record = (Location)e.Row;
if (record != null)
record.IsARAccountSameAsMain =
!lobject.Equals (record.LocationID, record.CARAccountLocationID);

| API Reference | 172

The code below executes an additional BQL statement to calculate a DAC field value that is not bound to
a specific column in a database table.

public class SOInvoiceEntry : ARInvoiceEntry

{

protected virtual void ARInvoice RowSelecting (PXCache sender,
PXRowSelectingEventArgs e)
{

ARInvoice row = (ARInvoice)e.Row;
if (row != null && !String.IsNullOrEmpty (row.DocType)

&& !String.IsNullOrEmpty (row.RefNbr))
{

row.IsCCPayment = false;
using (new PXConnectionScope ())

{
if (PXSelectJoin<
CustomerPaymentMethodC,
InnerJoin<
CA.PaymentMethod,
On<CA.PaymentMethod.paymentMethodID,

Equal<CustomerPaymentMethodC.paymentMethodID>>,
InnerJoin<

SOInvoice,
On<SOInvoice.pMInstancelD,

Equal<CustomerPaymentMethodC.pMInstanceID>>>>,
Where<SOInvoice.docType,

Equal<Required<SOInvoice.docType>>,
And<SOInvoice.refNbr,
Equal<Required<SOInvoice.refNbr>>,
And<CA.PaymentMethod.paymentType,
Equal<CA.PaymentMethodType.creditCard>,
And<CA.PaymentMethod.aRIsProcessingRequired,
Equal<True>>>>>>.
Select (this, row.DocType, row.RefNbr).Count > 0)

row.IsCCPayment = true;

The code below converts the database table value of a DAC field to the internal presentation.

public class PXDBCryptStringAttribute PXDBStringAttribute,

IPXFieldVerifyingSubscriber,
IPXRowUpdatingSubscriber,
IPXRowSelectingSubscriber
{

public override void RowSelecting (PXCache sender,
PXRowSelectingEventArgs e)
{

base.RowSelecting (sender, e);
if (e.Row == null || sender.GetStatus (e.Row)
!= PXEntryStatus.Notchanged) return;
string value = (string)sender.GetValue(e.Row, FieldOrdinal);
string result = string.Empty;
if (!string.IsNullOrEmpty (value))
{
try
{

| API Reference | 173

result = Encoding.
Unicode.
GetString (Decrypt (Convert.FromBase64String (value))) ;
}
catch (Exception)
{
try
{
result = Encoding.Unicode.
GetString(Convert.FromBase64String (value)) ;
}
catch (Exception)
{
result = value;
}
}
}

sender.SetValue (e.Row, FieldOrdinal,
result.Replace ("\0", string.Empty));

Related Types
e PXRowSelectingEventArgs Class
e PXDataRecord Class
PXRowSelectingEventArgs Class

Provides data for the RowSelecting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowSelectingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the DAC object that is being processed.
e public PXDataRecord Record
Gets the proceeded data record in the result set.
e public object Position
Gets or sets the index of the proceeded column in the result set.
e public object IsReadOnly
Gets the value indicating that the DAC object is read-only.
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
RowSelecting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

| API Reference | 174

PXDataRecord Class

Used for wrapping a single record of a result set obtained by executing a BQL statement. A record
includes data fields of all joined tables.

Inherits

IDisposable

Syntax

public class PXDataRecord : IDisposable

Properties
e public virtual int FieldCount

Gets the number of columns in the current data record. If the pPxDataRecord instance is not
positioned in a valid data record, the value is 0. The default value is -1.

Methods

e public PXDataRecord(IDataReader reader, IDbCommand command, IDataReader
reader)

e public virtual bool? GetBoolean (int 1i)

Parameters:

o i

The index of the zero-based column.

Returns:
The Boolean value of the column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual byte? GetByte (int 1)

Parameters:

o i

The index of the zero-based column.

Returns:
The 8-bit unsigned integer value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual long GetBytes(int i, long fieldOffset, byte[] buffer, int
bufferoffset, int i)

Reads a stream of bytes from the specified column offset into the buffer as an array, starting at
the given buffer offset.

| API Reference | 175

Parameters:
e buffer
The buffer into which to read the stream of bytes.
e bufferoffset
The index for the buffer to start reading.
e fieldOffset
The index within the field from which reading should start.
o i
The index of the zero-based column.
e length
The number of bytes to read.
Returns:
The actual number of bytes read.
Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual byte[] GetTimeStamp (int 1)
public virtual byte[] GetBytes (int i)
public virtual char? GetChar (int 1)
Parameters:

o i

The index of the zero-based column.

Returns:
The character value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual long GetChars(int i, long fieldoffset, char[] buffer, int
bufferoffset, int length)

Reads a stream of characters from the specified column and the offset within it into the buffer as
an array, starting from the provided offset.

Parameters:
o i
The index of the zero-based column.
e fieldoffset
The index within the row from which to start reading.

e buffer

The buffer into which the stream of bytes should be read.

e bufferoffset
The index in the buffer to start reading from.
e length
The number of bytes to read.
Returns:
The actual number of characters read.
Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual string GetDataTypeName (int i)
Parameters:

o i

The index of the zero-based column.

Returns:
The data type information for the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual DateTime? GetDateTime (int 1)
Parameters:

o i

The index of the zero-based column.

Returns:
The date and time value of the specified field.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual decimal? GetDecimal (int 1i)
Parameters:
o i
The index of the zero-based column.
Returns:
The fixed-position numeric value of the specified column.

Exceptions:

| API Reference | 176

| API Reference | 177

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual double? GetDouble (int 1)

Parameters:

e i

The index of the zero-based column.

Returns:
The double-precision floating point value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual Type GetFieldType (int 1i)
Parameters:
o i
The index of the zero-based column.
Returns:

The system.Type information corresponding to the type of System.0Object that would be returned
by System.Data.IDataRecord.GetValue (System.Int32).

Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual float? GetFloat(int i)

Parameters:

o i

The index of the zero-based column.

Returns:
The single-precision floating point number of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

e public virtual Guid? GetGuid (int 1)
Parameters:
o i
The index of the zero-based column.

Returns:

| API Reference | 178

The GUID value of the specified column.
Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual short? GetIntl6 (int i)
Parameters:

o i

The index of the zero-based column.

Returns:
The 16-bit signed integer value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual int? GetInt32 (int i)
Parameters:

o 1

The index of the zero-based column.

Returns:
The 32-bit signed integer value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual long? GetInt64 (int i)
Parameters:

e i

The zero-based column's index.

Returns:
the 64-bit signed integer value of the specified field.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual string GetName (int i)
Parameters:
o i

The zero-based column's index.

Returns:

| API Reference | 179

The name of the specified column or the empty string (" "), if there is no value to return.

Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual string GetString(int 1)
Parameters:

o i

The zero-based column's index.

Returns:
The string value of the specified column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual object GetValue (int 1)
Returns the value of the specified column.
Parameters:

o i

The index of the zero-based column.

Returns:
The system.Object containing the value of the column.
Exceptions:

e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

public virtual bool IsDBNull (int i)
Specifies whether the value of the specified column is null.
Parameters:
o i
The index of the zero-based column.

Returns:

true if the specified column is set to null and false otherwise.

Exceptions:
e System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

| API Reference | 180

RowPersisting Event

The RowPersisting event is triggered in the process of committing changes to the database for every
data record whose status is Inserted, Updated, or Deleted before the corresponding changes for the
data record are committed to the database.

Committing changes to a database is initiated by invoking the Actions.PressSave () method of the
business logic controller (BLC). While processing this method, the Acumatica Data Access Layer first
commits every Inserted data record, then every Updated data record, and finally each bDeleted data
record.

Avoid executing additional BQL statements in a RowPersisting event handler. When the

—| RowPersisting event is raised, the associated transaction scope is busy saving the changes, and
any other operation performed within this transaction scope may cause performance degradation and
deadlocks.

The RowPersisting event handler is used to:
e Validate the data record before it has been committed to the database.

e Cancel the commit operation of the data record by throwing an exception (see Examples of Use).

PXRowPersistingEventArgs e)

|
Graph Handlers Chain
(sender, e)

Yes No
\ 4

Attribute Handlers(sender, e)

Figure: Execution order for RowPersisting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowPersisting(PXCache sender,
PXRowPersistingEventArgs e)

{
}

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXRowPersistingEventArgs e

The instance of the PXRowPersistingEventArgs type that holds data for the RowPersisting event

| API Reference | 181

Examples of Use

The code below validates the data record before it is committed to the database.

public class CCProcessingCenterMaint : PXGraph<CCProcessingCenterMaint,
CCProcessingCenter>,
IProcessingCenterSettingsStorage

protected virtual void CCProcessingCenter RowPersisting(
PXCache sender,
PXRowPersistingEventArgs e)

if ((e.Operation & PXDBOperation.Command) != PXDBOperation.Delete &&
e.Row != null &&
(bool) ((CCProcessingCenter)e.Row) .IsActive &&

string.IsNullOrEmpty (((CCProcessingCenter)e.Row) .
ProcessingTypeName))

throw new PXRowPersistingException (
typeof (CCProcessingCenter.processingTypeName) .Name,
null,
ErrorMessages.FieldIsEmpty,
typeof (CCProcessingCenter.processingTypeName) .Name) ;

The code below shows a message box as well as the warning and error indications near the input
control for one or multiple fields.

protected virtual void APInvoice RowPersisting (PXCache sender,
PXRowPersistingEventArgs e)
{
APInvoice doc = (APInvoice)e.Row;
if (doc.PaySel == true && doc.PayDate == null)
{
sender.RaiseExceptionHandling<APInvoice.payDate> (
doc, null,
new PXSetPropertyException (ErrorMessages.FieldIsEmpty,
typeof (APInvoice.payDate) .Name)) ;
}
if (doc.PaySel == true && doc.PayDate != null &&
((DateTime) doc.DocDate) .CompareTo ((DateTime) doc.PayDate) > 0)

sender.RaiseExceptionHandling<APInvoice.payDate> (
e.Row, doc.PayDate,
new PXSetPropertyException (Messages.ApplDate Less DocDate,
PXErrorLevel.RowE;ror,_
typeof (APInvoice.payDate) .Name)) ;

The code below cancels the operation of committing a data record.

public class CampaignMemberMassProcess : PXGraph<CampaignMemberMassProcess>

{

protected virtual void Contact RowPersisting(PXCache sender,
PXRowPersistingEventArgs e)
{
e.Cancel = true;

}

| API Reference | 182

Related Types
e PXRowPersistingEventArgs Class
e PXEntryStatus Enumeration
e PXDBOperation Enumeration

PXRowPersistingEventArgs Class

Provides data for the RowPersisting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowPersistingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the DAC object that is being committed to the database.
e public PXDBOperation Operation
Gets the pPxDBOperation of the current commit operation
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
RowPersisting event handlers specified within the DAC field attributes should be invoked. If the
property is set to true, the handlers will not be invoked and the commit operation of the data
record will be canceled. Otherwise, the handlers will be invoked and the commit operation will not
be cancelled.

RowPersisted Event

The RowPersisted event is triggered in the process of committing changes to the database for every
data record whose status is Inserted, Updated, Oor Deleted. The RowPersisted event is triggered
twice:

e When the data record has been committed to the database and the status of the transaction
scope (indicated in the e.TranStatus field) is open

¢ When the status of the transaction scope has changed to completed, indicating successful
committing, or aborted, indicating that a database error has occurred and changes to the
database have been dropped

The Actions.PressSave () method of the business logic controller (graph) initiates committing
changes to a database. While processing this method, the Acumatica Data Access Layer first commits
every Inserted data record, then each Updated data record, and finally each Deleted data record.

Avoid executing additional BQL statements in a RowPersisted event handler when the status of the
—| transaction scope is Open. When the RowPersisted event is raised with this status, the associated
transaction scope is busy saving the changes, and any other operation performed within this transcation
scope may cause performance degradation and deadlocks.

The RowPersisted event handler is used to:

| API Reference | 183

e Retrieve data generated by the database.

e Restore data access class (DAC) field values if the status of the transaction scope is Aborted
(changes have not been saved). Note that in this case the DAC fields do not revert to any
previous state automatically but are left by the Acumatica Data Access Layer in exactly the state
they were in before the committing was initiated.

e Validate the data record while committing it to the database.

PXRowPersistedEventArgs e)
|

Attribute Handlers(sender, e)

Graph Handlers Chain |
(sender, e)

Figure: Execution order for RowPersisted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName RowPersisted(PXCache sender,
PXRowPersistedEventArgs e)

{
}

Parameters
e (required) PXCache sender
The cache object that raised the event

e (required) PXRowPersistedEventArgs e

The instance of the PXRowPersistedEventArgs type that holds data for the RowPersisted event

Examples of Use

The code below retrieves data generated by the database.

[AttributeUsage (AttributeTargets.Property | AttributeTargets.Parameter |
AttributeTargets.Class | AttributeTargets.Method)]

public class PXDBIdentityAttribute : PXDBFieldAttribute,
IPXFieldDefaultingSubscriber,
IPXRowSelectingSubscriber,
IPXCommandPreparingSubscriber,
IPXFieldUpdatingSubscriber,
IPXFieldSelectingSubscriber,
IPXRowPersistedSubscriber,
IPXFieldVerifyingSubscriber

public virtual void RowPersisted (PXCache sender,
PXRowPersistedEventArgs e)

{
if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Insert)

| API Reference | 184

if (e.TranStatus == PXTranStatus.Open)
{
if (_KeyToAbort == null)
KeyToAbort = (int?)sender.GetValue(e.Row, FieldOrdinal);

if (_KeyToAbort < 0)
{

int? id =
Convert.ToInt32 (PXDatabase.SelectIdentity(BglTable));
if ((id 2?? Om) == Om)

{
PXDataField[] pars =
new PXDataField[sender.Keys.Count + 1];

pars[0] = new PXDataField(DatabaseFieldName) ;
for (int 1 = 0; i < sender.Keys.Count; i++)
{

string name = sender.Keys[i];

PXCommandPreparingEventArgs.
FieldDescription description = null;

sender.RaiseCommandPreparing (
name, e.Row,
sender.GetValue (e.Row, name),
PXDBOperation.Select,
_BglTable, out description);

if (description != null &&
!String.IsNullOrEmpty (

description.FieldName) &&

description.IsRestriction)

pars[i + 1] = new PXDataFieldValue (
description.FieldName,
description.DataType,
description.Datalength,
description.DataValue) ;
}
}
using (PXDataRecord record =
PXDatabase.SelectSingle (BglTable, pars))
{
if (record != null)
id = record.GetInt32(0);
}
}
sender.SetValue (e.Row, FieldOrdinal, id);
}
else
_KeyToAbort = null;
}
else if (e.TranStatus == PXTranStatus.Aborted &&
_KeyToAbort != null)
{
sender.SetValue (e.Row, FieldOrdinal, KeyToAbort);
_KeyToAbort = null;

The code below restores the values of a DAC field if the commit operation failed—resulting in the
Aborted status of the transaction scope.

public class AddressRevisionIDAttribute : PXEventSubscriberAttribute,
IPXRowPersistingSubscriber,
IPXRowPersistedSubscriber

| API Reference | 185

public virtual void RowPersisted (PXCache sender,
PXRowPersistedEventArgs e)
{
if (e.TranStatus == PXTranStatus.Aborted &&
(e.Operation == PXDBOperation.Insert || e.Operation ==
PXDBOperation.Update))

int? revision = (int?)sender.GetValue(e.Row, FieldOrdinal);
revision—--;
sender.SetValue (e.Row, FieldOrdinal, revision);

The code below validates a data record while it is being committed to the database.

protected virtual void Batch RowPersisted(PXCache sender, PXRowPersistedEventArgs e)
{
if (e.TranStatus == PXTranStatus.Open &&
Convert.ToInt32 (((Batch)e.Row) .BatchNbr) > 10)
throw new PXRowPersistedException (
typeof (Batch.batchNbr) .Name,
((Batch)e.Row) .BatchNbr,
"Number of batches created should not exceed 10 in trial mode.");

Related Types
e PXRowPersistedEventArgs Class
e PXTranStatus Enumeration
e PXEntryStatus Enumeration
e PXDBOperation Enumeration

PXRowPersistedEventArgs Class

Provides data for the RowPersisted event.

Inherits

EventArgs

Syntax

public sealed class PXRowPersistedEventArgs : EventArgs

Properties

e public object Row
Gets the DAC object that has been committed to the database

e public PXDBOperation Operation

Gets the pxDBOperation value indicating the type of the current commit operation

e public Exception Exception
Gets the Exception object thrown while changes are committed to the database

e public PXTranStatus TranStatus

| API Reference | 186

Gets the status of the transation scope associated with the current committing operation

PXTranStatus Enumeration

Describes the current status of a transaction scope.

Syntax

public enum PXTranStatus

Members
e Open
The status of the transaction is unknown, because some participants still have to be polled.
e Completed

The changes associated with the transaction scope have been successfully committed to the
database.

e Aborted

The changes within the transaction scope have been dropped because of an error.
ExceptionHandling Event
The ExceptionHandling event is triggered under the following circumstances:
e When the pxsetPropertyException exception is thrown while the system is:

e Processing a data access class (DAC) field value received from the user interface (UI) or
through the Web Service application programming interface (API) when a data record is
being inserted or updated in the pxCache object.

e Processing DAC key field values when deletion of a data record from the pxcache object is
initiated in the UI or through the Web Service API.

e Assigning any field its default value or updating the value when the asignment or update is
initiated by any of the following methods of the pxCache class:

e Insert (IDictionary)

e SetDefaultExt (object, string)

e SetDefaultExt<Field> (object)

e Update (IDictionary, IDictionary)

e SetValueExt (object, string, object)
e SetValueExt<Field> (object, object)

e Converting the external DAC key field presentation to the internal field value initiated by any
of the following methods of the pxcache class:

e Locate(IDictionary)
e Update (IDictionary, IDictionary)
e Delete(IDictionary, IDictionary)

e When the PXxCommandPreparingException, PXRowPersistingException, Or
PXRowPersistedException exception is thrown in the process of saving an inserted, updated, or
deleted data record in the database.

The ExceptionHandling event handler is used to:

| API Reference | 187

e (Catch and handle the exceptions mentioned above (the platform rethrows all unhandled
exceptions).

e Implement non-standard handling of the exceptions mentioned above.

PXCache sender,
PXExceptionHandlingEventArgs e)

Graph Handlers Chain

(sender, e)
Yes No
v

Attribute Handlers(sender, e)

\
\
\
|
\
\
\
\
t

h J

|

|

|

|

|)

| e.Cancel -
|

|

|

|

Figure: Execution order for ExceptionHandling event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName FieldName ExceptionHandling (
PXCache sender,
PXExceptionHandlingEventArgs e)

Parameters
e (required) PXCache sender
The cache object that raised the event
e (required) PXExceptionHandlingEventArgs e

The instance of the PXExceptionHandlingEventArgs type that holds data for the
ExceptionHandling event

Examples of Use

The code below handles an exception on a DAC field and sets the field value.

public class APVendorBalanceEng : PXGraph<APVendorBalanceEng>
{

protected virtual void APHistoryFilter AccountID ExceptionHandling (
PXCache sender,
PXExceptionHandlingEventArgs e)

APHistoryFilter header = e.Row as APHistoryFilter;
if (header != null)
{

e.Cancel = true;

header.AccountID = null;

The code below alters an exception on a DAC field by setting its description.

public class CustomerMaint
BusinessAccountGraphBase<Customer, Customer,
Where<BAccount. type,
Equal<BAccountType.customerType>,
Or<BAccount. type,
Equal<BAccountType.combinedType>>>>

protected virtual void Customer CustomerClassID ExceptionHandling (

PXCache sender,

PXExceptionHandlingEventArgs e)

PXSetPropertyException ex = e.Exception as PXSetPropertyException;

if (ex != null)

{

ex.SetMessage (ex.Message + System.Environment.NewLine +

System.Environment.NewLine +
"Stack Trace:" + System.Environment.NewLine +
ex.StackTrace) ;

Related Types
e PXExceptionHandlingEventArgs Class
PXExceptionHandlingEventArgs Class

Provides data for the ExceptionHandling event.

Inherits

CancelEventArgs

Syntax

public sealed class PXExceptionHandlingEventArgs : CancelEventArgs

Properties
e public object Row
Gets the current DAC object.
e public object NewValue
Gets or sets the values of the DAC field. By default, containsvalues that are:
e Generated in the process of assigning a DAC field its default value.
e Passed as new values when a field is updated.

e Entered in the UI or through the Web Service API.

| API Reference | 188

| API Reference | 189

e Received with the PXCommandPreparingException, PXRowPersistingException, Or
PXRowPersistedException exception.

e public Exception Exception
Gets the initial exception that caused the event to be raised.
e public bool Cancel

Inherited from the cancelEventArgs ancestor class; gets or sets the value indicating whether
ExceptionHandling event handlers specified within the DAC field attributes should be invoked.
If the property is set to true, the handlers will not be invoked and the exception will be handled.
Otherwise, the exception is rethrown.

CacheAttached Event

The cacheAttached handler is used to override data access class (DAC) field attributes declared directly
within the DAC. By declaring a cacheAttached handler and attaching appropriate attributes to the
handler within a graph, the developer forces the framework to completely override DAC field attributes
within this graph.

I—('JacheAttan::hed(P)(Cache sender)
I

I
I
[Attribute Handlers(sender, e)
I
I
I

Graph Handlers Chain
(sender, e)

Figure: Execution order for CacheAttached event handlers

Syntax

You should define a graph event handler as follows.

[DAC Field Attribute 1]

[DAC Field Attribute N]

protected virtual void DACName FieldName CacheAttached (PXCache sender)
{

}

Parameters
e (required) PXCache sender

The cache object that raised the event

Examples of Use

The code below overrides DAC field attributes within a graph.

public class DimensionMaint : PXGraph<DimensionMaint, Dimension>

{

[PXDBString (15, IsUnicode = true, IsKey = true)]
[PXDefault (typeof (Dimension.dimensionID))]

| API Reference | 190

[PXUIField(DisplayName = "Dimension ID", Visibility =
PXUIVisibility.Invisible, Visible = false)]
[PXSelector (typeof (Dimension.dimensionID), DirtyRead = true)]

protected virtual void Segment DimensionID CacheAttached (PXCache sender)

{
}

Related Types
e PXUlVisibility Enumeration

BQL

This document describes BQL (business query language). BQL is a part of the data access layer of the
Acumatica Framework. BQL statements represent specific SQL queries and are translated into SQL by
the framework. This helps the developer to avoid specifics of the database provider and validate the
queries at compile time.

Most BQL components are directly mapped to SQL keywords (such as different types of joins, OrderBy,
GroupBy, etc.). In addition, BQL introduces custom syntax of Current, Required, and Optional
parameters. The parameters are substituted with specific values taken from the current objects or
specified in code.

The following chapters cover specific topics related to BQL statements construction and execution:
e Constructing Statements
e Filtering
e Querying Multiple Tables
e Grouping and Aggregating
e Using Parameters
e Using Functions
e FExecuting Statements

e Appendix

Constructing Statements

To construct a specific BQL statement, you take the generic pxselect<> class or one of its variants and
set its type parameters to the data access class (DAC), which represents a database table, and BQL
classes that represent SQL clauses and keywords.

Defining a DAC

To select data from a database table, you need to define the DAC. For example, to select data from the
Product table, you define the product DAC.

[System.SerializableAttribute ()]
public class Product : PX.Data.IBglTable
{
// The type will be used to reference the ProductID field in BQL statements
public abstract class productID : PX.Data.IBglField
{
}
// The property will hold the ProductID value

| API Reference | 191

[PXDBIdentity]
public virtual int? ProductID { get; set; }

// The type will be used to reference the ProductID UnitPrice in BQL statements
public abstract class unitPrice : PX.Data.IBglField

{

}

// The property will hold the UnitPrice value

[PXDBDecimal (2)]

public virtual int? UnitPrice { get; set; }

}

The definition of a field consists of the type and the property. The type is used to reference the field in
the BQL statements. The property holds the value of a field.

To indicate that the field is bound to the database and represents a table column, you place the
PXDBType attribute on the definition of the property.

Basic Select Statement
The following BQL statement selects all data records from the product table.

PXSelect<Product>

To execute such BQL statement, the application must define the DAC representing the pProduct
database table. This BQL statement will be translated into the following SQL query.

SELECT Product.ProductID, Product.UnitPrice FROM Product

The actual SQL query will also include ordering by DAC key fields in ascending order. The framework adds
— | such ordering to the end of the SQL query if the BQL statement does not specify ordering.

The SQL query generated by the framework selects all bound fields of the requested DACs. We will use
the * sign in further examples to represent selected columns.

Adding the Where Clause

PxSelect has several variants allowing additional clauses. The Where clause is used to specify
conditions.

PXSelect<Product,
Where<Product.productID, Equal<Required<Product.productID>>>>

This statement will be translated into the following SQL query, which selects the product data record
that satisfy the condition in the where clause.

SELECT * FROM Product
WHERE Product.ProductID = [parameter]

Here, [parameter] will be replaced with the value passed to the select () method.

To reference a field in a BQL statement, you use the type that is defined in the DAC and represents
the field (Product.productiD). The field name must be preceded with the DAC name and start with a
lowercase letter (to distiguish it from the property that holds the value of a field).

The where clause can be used to specify complex filtering conditions chained by logical operators or,
And, and Not and nested Where clauses. See examples in Filtering.

| API Reference | 192

Adding the OrderBy Clause

The result set of a BQL statement is ordered using the O0rderBy clause. It can be specified as the
second type parameter in the pPxSselectOrderBy statement, as the third type parameter in a pxselect
statement next to the where clause, or in more complex constructions with aggregations and joins.

It is possible to order the result set by one or several columns. For each column, the Asc or Desc clause
must be used to specify whether to sort records in ascending or descending order, respectively.

The following statement selects all product data records and sorts them by the UnitPrice field in
ascending order.

PXSelectOrderBy<Product, OrderBy<Asc<Product.unitPrice>>>
This statement is translated into the following SQL query.

SELECT * FROM Product
ORDER BY Product.UnitPrice

Using variants of Asc and pesc with two type parameters, you can request ordering by several columns,
as in the following example.

PXSelect<Product,
OrderBy<Asc<Product.unitPrice, Desc<Product.availQty>>>>

The corresponding SQL query will look like this.

SELECT * FROM Product
ORDER BY Product.UnitPrice, Product.AvailQty DESC

In the following example the orderBy clause is added to a statement with a where clause.

PXSelect<DocTransation,
Where<DocTransation.lastTransactionDate, Less<Today>>,
OrderBy<Desc<DocTransation.lastTransactionPrice>>>

This statement selects all DocTransation records of transactions carried out before today and sorts
them by the LastTransactionPrice field in the descending order (records with greater values of this
field go first). The statement is translated into the following SQL query.

SELECT * FROM DocTransaction
WHERE DocTransaction.LastTransactionDate < [today date]
ORDER BY DocTransation.lLastTransactionPrice DESC

You can construct any combination of Where, orderBy, Join, and GroupBy.

BQL Statement Execution

To execute a BQL statement, you invoke its select () method (either statically or dynamically). For
example, the following code may be found in some graph method.

foreach (Product p in PXSelect<Product,
Where<Product.UnitPrice, IsNotNull>>.Select (this))
{

}

See Executing Statements for details on execution of BQL statements and processing of the result set.

| API Reference | 193

PXSelect, Select, and Search Classes

The select class and its variants represent BQL commands. These classes can parse themselves into
SQL and provide methods for modifying the BQL command. However, you cannot use the select class
to execute the BQL command.

The pxsSelect class and its variants wrap instances of select and give you convenient interfaces to
execute the BQL command and interact with the cache. The instances of pxselect classes are complex
objects containing:

e Reference to the PXView object constructed to process the BQL command

e Reference to the select object—through the pxview object

e Reference to the graph

e Reference to the cache of the DAC type that is specified in the first type parameter of pxselect
You use pPxSelect classes to define data views in a graph and select data from the database in code.

The search class and its variants also represent BQL commands but select only one particular field,
while the select classes select all fields. In a BQL expression based on Select or pXSelect the first
type parameter is a DAC.

Select<Product>

In a search-based statement, the first type parameter is a DAC field.

Search<Product.unitPrice>

The select and Search classes are used to specify BQL commands when the interfaces to the pxview
and cache are not needed. Typically, you use Select and Search in attributes in DACs. For example,
Select is used in the PXProjection attribute and Search is used in the PXDBScalar attribute.

The syntax of PxSelect, Select, and Search statements is equivalent (except that search references a
field in the first parameter). Further examples show the syntax only for pxselect.

PXSelect Classes

The pxSelect class and other classes derived from PxSelectBase (referred to below as pxSelect
classes) are used as a basis for building BQL statements. Such classes are translated into the SQL
SELECT statements.

PXSelect<Table>
The BQL statement above is translated into the following SQL query.
SELECT * FROM Table

The first type parameter of all PXsSelect classes is a data access class (DAC) bound to a database table.
The resulting SQL query will select records from this table. Other type parameters are optional and
represent clauses that can be added to the basic select statement:

o Where
e OrderBy
e Join

e Aggregate

Depending on the clauses that will be used in a query, an appropriate variant of the pxselect class is
picked.

| API Reference | 194

For example, Where, OrderBy, and Join clauses may be combined in the PxSelectJoin<Table, Join,
Where, OrderBy> class as follows.

PXSelectJoinGroupBy<Tablel,
LeftJoin<Table2, On<Table2.field2, Equal<Tablel.fieldl>>>,
Where<Tablel.field3, IsNotNull>,
Aggregate<GroupBy<Tablel.fieldl,
Min<Table2.field2>>>,
OrderBy<Asc<Tablel.fieldl>>>

This is translated into the following SQL query.

SELECT * FROM Tablel
LEFT JOIN Table2 ON Table2.Field2 = Tablel.Fieldl
WHERE Tablel.Field3 IS NOT NULL
ORDER BY Tablel.Fieldl

PXSelect<Table> : PXSelectBase<Table>

Selects records from one table. The result set is merged with the modified data records kept in the
PXCache<Table> object.

Type Parameters:

e Table : class, IBglTable, new()

PXSelect<Table, Where> : PXSelectBase<Table>

Selects records from one table filtered by an expression set in Where. The result set is merged with the
modified data records kept in the PXCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()

e Where : IBglWhere, new()

PXSelect<Table, Where, OrderBy> : PXSelectBase<Table>

Selects records from one table, filters them by an expression set in where, and orders by fields specified
in orderBy. The result set is merged with the modified data records kept in the pPXCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Where : IBglWhere, new()

e OrderBy : IBglOrderBy, new()

PXSelectloin<Table, Join> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause. The resulting data records from the
main table are merged with the modified data records from the pXCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()

e Join : IBglJoin, new()

| API Reference | 195

PXSelectloin<Table, Join, Where> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause and filters the result set according to
expression set in where. The resulting data records from the main table are merged with the modified
data records from the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJdoin, new /()

e Where : IBglWhere, new()

PXSelectlJoinOrderBy<Table, Join, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause, filters the result set by the expression
set in Where, and sorts it by the fields specified in orderBy. The resulting data records from the main
table are merged with the modified data records from the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJdoin, new /()

e OrderBy : IBglOrderBy, new()

PXSelectloin<Table, Join, Where, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables. The resulting data records from the main table are merged with
the modified data records from the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJdoin, new()
e Where : IBglWhere, new()

e OrderBy : IBglOrderBy, new/()

PXSelectOrderBy<Table, OrderBy> : PXSelectBase<Table>

Selects records from one table and sorts them by fields specified in orderBy. The result set is merged
with the modified data records kept in the PXCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()

e OrderBy : IBglOrderBy, new()

PXSelectOrderBy<Table, Join, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables. The resulting data records from the main table are merged with
the modified data records from the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJoin, new()

e OrderBy : IBglOrderBy, new()

| API Reference | 196

PXSelectReadonly<Table> : PXSelectBase<Table>
Selects records from one table without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

PXSelectReadonly<Table, Where> : PXSelectBase<Table>
Selects records from one table without merging the result set with the pxCcache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Where : IBglWhere, new/()

PXSelectReadonly<Table, Where, OrderBy> : PXSelectBase<Table>
Selects records from one table without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Where : IBglWhere, new()

e OrderBy : IBglOrderBy, new()

PXSelectReadonly2<Table, Join> : PXSelectBase<Table>
Selects records from one table without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Join : IBglJoin, new()

PXSelectReadonly2<Table, Join, Where> : PXSelectBase<Table>
Selects records from multiple tables without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Join : IBglJdoin, new/()

e Where : IBglWhere, new()

PXSelectReadonly2<Table, Join, Where, OrderBy> : PXSelectBase<Table>
Selects records from multiple tables without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Join : IBglJoin, new()

e Where : IBglWhere, new/()

e QOrderBy : IBglOrderBy, new/()

| API Reference | 197

PXSelectReadonly3<Table, OrderBy> : PXSelectBase<Table>
Selects records from one table without merging the result set with the pxCache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e OrderBy : IBglOrderBy, new()

PXSelectReadonly3<Table, Join, OrderBy> : PXSelectBase<Table>
Selects records from multiple tables without merging the result set with the pxcache<Table> object.
Type Parameters:

e Table : class, IBglTable, new()

e Join : IBglJoin, new()

e OrderBy : IBglOrderBy, new()

PXSelectGroupBy<Table, Aggregate> : PXSelectBase<Table>

Selects records from the one table, grouping and applying aggregations. The result set is not merged
with the pxcache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()

e Aggregate : IBglAggregate, new()

PXSelectGroupBy<Table, Where, Aggregate> : PXSelectBase<Table>

Selects records from one table, grouping and applying aggregations. The result set is not merged with
the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new()

PXSelectGroupBy<Table, Where, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from one table grouping and applying aggregations. The result set is not merged with
the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Where : IBglWhere, new()
e Aggregate : IBglAggregate, new()

e QOrderBy : IBglOrderBy, new()

PXSelectloinGroupBy<Table, Join, Aggregate> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the pxcache<Table> object.

Type Parameters:

| API Reference | 198

e Table : class, IBglTable, new()
e Join : IBglJdoin, new /()

e Aggregate : IBglAggregate, new()

PXSelectloinGroupBy<Table, Join, Where, Aggregate> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the PxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJdoin, new()
e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new()

PXSelectloinGroupBy<Table, Join, Where, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the pxcache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJoin, new()
e Where : IBglWhere, new()
e Aggregate : IBglAggregate, new/()

e OrderBy : IBglOrderBy, new()

PXSelectGroupByOrderBy<Table, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from one table, grouping and applying aggregations. The result set is not merged with
the pxCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Aggregate : IBglAggregate, new/()
e OrderBy : IBglOrderBy, new()

PXSelectGroupByOrderBy<Table, Join, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the pPXCache<Table> object.

Type Parameters:
e Table : class, IBglTable, new()
e Join : IBglJdoin, new/()
e Aggregate : IBglAggregate, new()
e OrderBy : IBglOrderBy, new/()

| API Reference | 199

OrderBy Clause

The orderBy clause sorts the result set of a BQL statement. Sorting may be performed by one or
several fields in ascending (asc) or descending (Desc) order. The type parameter of OrderBy clause is
set to the Asc or besc operator specifying the field to sort by. For example:

PXSelect<Table, OrderBy<Asc<Table.fieldl>>>
This is translated into:

SELECT * FROM Table
ORDER BY Table.fieldl

An example of sorting by two fields:

PXSelect<Table,
OrderBy<Asc<Table.fieldl,
Desc<Table.field2>>>>

Note that to attach the second ordering field, a variant of asc with two type parameters is used. To add
sorting by even more fields, you would insert another Asc or besc operator in the last such operator.
The BQL statement above is translated into:

SELECT * FROM Table
ORDER BY Table.fieldl, Table.field2 DESC

The result set is sorted by the first field. Then the records that have the same value in the first field are
sorted by the second field, and so on.

If a BQL statement does not include OrderBy,Acumatica Framework automatically appends ordering by
—| DAC key fields to the SQL query.

OrderBy<List> : IBqlOrderBy

The clause for specifying how to order the result set of a BQL statetement, equivalent to the SQL clause
ORDER BY.

Type Parameters:

e List : IBglSortColumn

Asc<Field> : IBqlSortColumn

Indication of sorting in ascending order: from the least value to the largest value. The field to order by
is specified in the Field type parameter. The clause itself is used as a type parameter in OrderBy.

Type Parameters:

e Field : IBglOperand

Desc<Field> : IBqlSortColumn

Indication of sorting in descending order: from the largest value down to the least value. The field
to order by is specified in the Field type parameter. The clause itself is used as a type parameter in
OrderBy.

Type Parameters:

e Field : IBglOperand

Asc<Field, NextField> : IBqlSortColumn

A variant of the aAsc clause used to add additional sort expression.

| API Reference | 200

Type Parameters:
e Field : IBglOperand

e NextField : IBglSortColumn

Desc<Field, NextField> : IBqlSortColumn
A variant of the Desc clause used to add additional sort expression.
Type Parameters:

e Field : IBglOperand

e NextField : IBglSortColumn

Filtering

Filtering conditions are constructed using the Where clause. One Where clause can contain several
conditions chained by logical operators. Also, conditions can be organized in nested wWhere clauses,
which is equivalent to placing conditions in brackets.

Comparisons and Constants

Typically, a condition is a comparison of a particular field with another field, a constant, or null. The
compared field is specified in the first type parameter, while the comparison goes in the second.

PXSelect<Product, Where<Product.bookedQty, Greater<Product.availQty>>>

This statement is translated into the following SQL query, which selects all product records with the
BookedQty field greater than the availoty field.

SELECT * FROM Product WHERE Product.BookedQty > Product.AvailQty

There are a number of other comparisons such as NotEqual, Greater, and Less. They all can be used
to compare one field to another field or a constant.

Constants are BQL classes derived from the constant<Type> class. The predefined constants

include boolean values True and False, integer zero, datetime Now, Today, and MaxDate, and string
StringEmpty. The following BQL statement selects all Product records with the active field equal to
True.

PXSelect<Product, Where<Product.active, Equal<True>>>

A field can also be compared to null (to check if the field value has not been specified) using the 1sNul1l
comparison, as follows.

PXSelect<Product, Where<Product.bookedQty, IsNull>>
This statement is translated into the following SQL query.
SELECT * FROM Product WHERE Product.BookedQty IS NULL

Or you could reverse this condition by using a variant of Wwhere with one type parameter and the logical
operator Not.

PXSelect<Product, Where<Not<Product.bookedQty, IsNull>>>
Below is the corresponding SQL query.

SELECT * FROM Product WHERE NOT (Product.BookedQty IS NULL)

| API Reference | 201

The predefined constant Null cannot be used in the Where clause with Equal to select records with null
—| fields. The Null constant is used in Switch conditions in Arithmetic Operations.

Several Conditions in One Where Clause

It is possible to specify several comparisons in one where clause. For this purpose, you should

use a variant of the where clause with three type parameters: Where<Operand, Comparison,
NextOperator>. The third type parameter is set to a logical operator (And/And2 or O0r/0Or2), as the
following example shows.

PXSelect<Product,
Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>>

This statement will be translated into the following SQL query.

SELECT * FROM Product
WHERE Product.BookedQty > Product.AvailQty
OR Product.AvailQty < Product.MinAvailQty

This query selects products with BookedQty greater than AvailQty or AvailQty less than MinAvailQty.

You can chain any number of comparisons using binary operators with three type parameters. The third
type parameter is again a set to binary operator, as shown in the following example.

PXSelect<Product,
Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>,
Or<Product.availQty, IsNull>>>>

The corresponding SQL query is given below.

SELECT * FROM Product

WHERE Product.BookedQty > Product.AvailQty
OR Product.AvailQty < Product.MinAvailQty
OR Product.AvailQty IsNull

To write more complex conditional expressions with logical operator of different type, you may need to
separate some conditions with brackets. For this purpose, you should use nested Wwhere/Wthere2 clauses.

In the last example above, brackets would be superfluous, since the conditions are joined by the same
—| logical operator.

Building Complex Where Clauses

To surround a conditional expression part by brackets in the resulting SQL query, you should use a
nested where/Where2 clause. Brackets may be required in expressions that use different types of logical
operators.

The steps below illustrate the construction of a complex conditional expression on two samples. One
sample expression starts with a simple condition (an operand and a comparison) and has the following
form: (C1 and not C2 and (C3 or C4 or (C5 and C6)) and not (C7 or C8)). Here, C
with a number denotes a specific condition. This expression will be wrapped into the where clause. The
other sample expressions starts with a group of simple conditions: ((C1 or C2) and (C3 or C4)
and (C5 or C6)). This expression will be wrapped into the Where2 clause.

A conditional expression is build by the following rules:
1. Each group (a pair of brackets) is replaced by a Where, Where2, Not, Or Not2 clause:

e TWhere is used for groups that start with a simple condition. Not is used for the same
groups but preceded with logical "not".

| API Reference | 202

e Where2 is used for groups that start with a group. Not2 is used for the same groups but
preceded with logical "not".

Components of each group are chained using and (0r) or 2nd2 (0r2):

e Simple conditions at the beginning of a group are chained using and (or). If a condition is
preceded by not, it is wrapped in Not.

Where<Cl, And<Not<C2>, ... >

e All groups except for the last one are chained using And2 (0r2), the last one is chained
using And. The first parameter inside a logical operator is Where (Or Where2). not
preceding a group is placed inside a Wwhere clause.

Where<Cl, And<Not<C2>, And2<Where<...>, And<Not<...>>>>>

"Chained" means that each next logical operator is inserted as a type parameter into the
previous one. Below is another example.

Where2<Where<Cl or C2>, And2<Where<C3 or C4>, And<Where<C5 or C6>>>>

Align logical operators of the same level so that they have the same indent (typically, the indent
of the enclosing where clause plus four more spaces). Do not add line breaks before nested
Where clauses.

Where<Cl1,
And<Not<C2>,
And2<Where<C3 or C4 or (C5 and Co)>,
And<Not<C7 or C8>>>>>

Expanding nested where clauses and breaking them into lines, we get the following.

Where<C1l,
And<Not<C2>,
And2<Where<C3,
Or<Cc4,
Or<Where<C5,
And<C6>>>>>,
And<Not<C7,
Or<C8>>>>>>

As a result, each simple condition is placed on a separate line. For the second example, you first
get the following code.

Where2<Where<Cl or C2>,
And2<Where<C3 or C4>,
And<Where<C5 or C6>>>>

And, expanding nested Where clauses and breaking them into lines, you get this:

Where2<Where<Cl,
0r<C2>>,
And2<Where<C3,
Or C4>,
And<Where<C5,
0r<Co>>>>>

Conditions are substituted by the corresponding field-comparison pairs.

Where<Fieldl, Comparisonl,
And<Not<Field2, Comparison2>,
And2<Where<Field3, Comparison3,

| API Reference | 203

Or<Field4, Comparison4,
Or<Where<Field5, Comparisonb5,
And<Field6, Comparison6t>>>>>,
And<Not<Field7, Comparison7,
Or<Field8, Comparison8>>>>>>

Unlike the previous examples, this is at last valid BQL code (provided fields and comparisons are
represented by valid BQL code). It can be used in PxSelect statements as the where clause.

5. All lines except the last line of the BQL statement are ended with a comma. You should ensure
that the right number of closing angle brackets are inserted.

In the BQL statements above, the type parameters set to fields are actually operands. An operand can be a
—| field as well as an arithmetic expressions involving several fields.

Example with Products

Suppose you need to select all Product data records with the Active field equal to True, and either
BookedQty greater than AvailQty or AvailQty less than MinAvailQty.

This is a group of a simple condition (Product.active equals True) and another group joined by the
"and" operator. This is implemented by the following BQL statement.

PXSelect<Product,
Where<Product.active, Equal<True>,
And<Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>>>>

The corresponding SQL query look as follows.

SELECT * FROM Product
WHERE Product.active = 1
AND (Product.bookedQty > Product.availQty
OR Product.availQty < Product.minAvailQty)

Suppose the conditional expression in this example is extended to take into account Product data
records with the null Active field values. Then the new condition is added to "Product.active
equals True" using or. The resulting conditional expression will consists of two where groups enclosed
in Where?2.

Where2<Where<...>, And<Where<...>>>
Nested where clauses have the following structure.
Where<Cl, 0Or<C2>>
The entire BQL statement will look a follows.

PXSelect<Product,
Where2<Where<Product.active, Equal<True>,
Or<Product.active, IsNull>>,
And<Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>>>>

This statement is translated into the following SQL query.

SELECT * FROM Product
WHERE (Product.Active = 1
OR Product.Active IS NULL)
AND (Product.BookedQty > Product.AvailQty
OR Product.AvailQty < Product.MinAvailQty)

| API Reference | 204

To additionally ensure that none of the BookedQty, AvailQty, and MinAvailQty is null, you can join
three simple conditions to the existing conditional expression using And.

If the new conditions are added to the end of the overall expression, Where2 remains the outer clause
(since the first its component is still a Wwhere group). The And operator chaining nested where groups
becomes And2.

PXSelect<Product,
Where2<Where<Product.active, Equal<True>,

Or<Product.active, IsNull>>,

And2<Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>,

And<Product.bookedQty, IsNotNull,

And<Product.availQty, IsNotNull,

And<Product.minAvailQty, IsNotNull>>>>>>

If the new conditions are added to the beginning of the expression, the outer clause changes to iihere,
and the first nested where group becomes chained using and2.

PXSelect<Product,
Where<Product.bookedQty, IsNotNull,

And<Product.availQty, IsNotNull,

And<Product.minAvailQty, IsNotNull,

And2<Where<Product.active, Equal<True>,
Or<Product.active, IsNull>>,

And<Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>>>>>>>

These two BQL statements are equivalent and correspond to the following SQL query.

SELECT * FROM Product
WHERE (Product.Active = 1
OR Product.Active IS NULL)
AND (Product.BookedQty > Product.AvailQty
OR Product.AvailQty < Product.MinAvailQty)
AND Product.BookedQty IS NOT NULL
AND Product.AavailQty IS NOT NULL
AND Product.MinAvailQty IS NOT NULL

Finally, suppose the resulting set should be extended with the Product data records that have the null
Availoty field. Then the "Product.availQty is not null" condition should be appended to the entire
conditional expression from the previous example via or. They should be wrapped by a new Where?2
clause in the following way.

Where2<ExistingExpression, Or<NewCondition>>

The BQL statement will become something like this.

PXSelect<Product,
Where2<Where<Product.bookedQty, IsNotNull,

And<Product.availQty, IsNotNull,

And<Product.minAvailQty, IsNotNull,

And2<Where<Product.active, Equal<True>,
Or<Product.active, IsNull>>,

And<Where<Product.bookedQty, Greater<Product.availQty>,
Or<Product.availQty, Less<Product.minAvailQty>>>>>>>>,

Or<Product.availQty, IsNotNull>>>

It is translated into the following SQL query.

SELECT * FROM Product

WHERE (Product.BookedQty IS NOT NULL
AND Product.AavailQty IS NOT NULL
AND Product.MinAvailQty IS NOT NULL
AND (Product.Active = 1

| API Reference | 205

OR Product.Active IS NULL)
AND (Product .BookedQty > Product.AvailQty
OR Product.AvailQty < Product.MinAvailQty))
OR Product.AvailQty IS NOT NULL

Where Clauses

The where clause specifies filtering expressions for BQL statements. A pxselect statement with the
Where clause selects only the data records that satisfy the filtering expression.

The where clause can be specified in PXSelect, Select, and Search statements as well as in the On
and Case clause. Also, a group of conditions in brackets is implemented in a BQL statement by a nested
Where clause.

Where<Operand, Comparison> : IBqlWhere
Specifies a single filtering condition.

Examples:

PXSelect<Table,
Where<Table.fieldl, Equal<Table.field2>>>

This is translated into:

SELECT * FROM Table
WHERE Table.Fieldl = Table.Field2

Type Parameters:
e Operand : IBglOperand

e Comparison : IBglComparison

Where<Operand, Comparison, NextOperator> : IBqlWhere

Specifies a particular condition in the two first type parameters and attaches one more logical operator
(And or or).

Examples:

PXSelect<Table,
Where<Table.fieldl, Greater<Table.field2>,
And<Table.field3, IsNull>>>

The NextOperator type parameter can specify a single condition or a group of conditions, or again
continue the Wwhere expression:

PXSelect<Table,
Where<Table.fieldl, Greater<Table.field2>,
And<Table.field3, IsNull,
And<Table.field4, Equal<Today>>>>>

This is translated into:

SELECT * FROM Table

WHERE Table.Fieldl > Table.Field2
AND Table.Field3 IS NULL
AND Table.Field4 = [today date]

Type Parameters:
e Operand : IBglOperand

e Comparison : IBglComparison

| API Reference | 206

e NextOperator : IBglBinary

Where<Operator> : IBqlWhere

Specifies an unary operator as the filtering expression. The unary operator is either the Not or Match
operator.

Examples:

PXSelect<Table,
Where<Not<Table.fieldl, IsNotNull,
And<Table.field2, LessEqual<Table.fieldl>>>>>

This is translated into:

SELECT * FROM Table
WHERE NOT (Table.Fieldl IS NOT NULL
AND Table.Field2 <= Table.Fieldl)

Type Parameters:

e Operator : IBglUnary

Where2<Operator, NextOperator> : IBqlWhere

Specifies a complex condition group where the first component is again a group.

Examples:

A filtering expression of the form ((C1 and C2) or (C3 and C4)), where C with a number

denotes a single condition, is implemented by the BQL code of the following form:

Where2<Where<Cl,
And<C2>>,
Or<Where<C3,
And<C4>>>>

A full expression of this type may look as something like this:

Where2<Where<Table.field2, Greater<Table.fieldl>
And<Table.field3, Between<Table.fieldl, Table.field2>>>,
Or<Where<Table.field3, IsNull,
And<Table.fieldl, Equal<Table.field2>>>>>

This is translated into:

WHERE (Table.Field2 > Table.Fieldl
AND Table.Field3 BETWEEN Table.Fieldl AND Table.Field2)
OR (Table.Field3 IS NULL
AND Table.Fieldl = Table.Field2)

Type Parameters:
e Operator : IBglUnary
e NextOperator : IBglBinary

Comparisons

Comparison operators compare an operand with another operand. An operand is a constant, a particular
field, or an expression built from fields and constants using functions.

| API Reference | 207

The following BQL statement demonstrates the usage of the Greater and Between comparison
operators.

PXSelect<Table,
Where<Table.fieldl, Greater<Table.field2>,
And<Table.field3, Between<Table.fieldl, Table.field2>>>>

The first compared operand goes in the BQL statement right before the comparison. The second
compared operand is specified as the type parameter of a comparison. Here, the Greater operator
compares Table.fieldl with Table.field2. The condition is true if the latter is greater than the
former. The Between operator sets the condition that is true when Table.field3 value is between the
Table.fieldl and Table.field2 values.

The BQL statement above is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Fieldl > Table.Field2
AND Table.Field3 BETWEEN Table.Fieldl AND Table.Field2

The preceding operand and the comparison together constitute a condition. Conditions are
concatenated using logical operators.

Equal<Operand> : IBqlComparison
Compares the preceding operand with operand for equality.

Type Parameters:

e Operand : IBglOperand

NotEqual<Operand> : IBqlComparison
Checks if the preceding operand is not equal to Operand.
Type Parameters:

e Operand : IBglOperand

Greater<Operand> : IBqlComparison
Checks if the preceding operand is greater than Operand.
Type Parameters:

e Operand : IBglOperand

Less<Operand> : IBqlComparison
Checks if the preceding operand is less than operand.
Type Parameters:

e Operand : IBglOperand

LessEqual<Operand> : IBqlComparison
Checks if the preceding operand is less or equal to Operand.
Type Parameters:

e Operand : IBglOperand

GreaterEqual<Operand> : IBqlComparison

Checks if the preceding operand is greater or equal to Operand.

| API Reference | 208

Type Parameters:

e Operand : IBglOperand

Like<Operand> : IBqlComparison

Compares the preceding operand with the pattern specified in operand. Equivalent to the SQL operator
LIKE.

Operand should have a wildcard string value in which the sign "$" is used to substitute missing letters.
For example, "$1and%" will be matched by "Iceland" and "Laplandia”.

Type Parameters:

¢ Operand : IBglOperand

NotLike<Operand> : IBqlComparison

Checks if the preceding operand does not match the pattern specified in operand. Equivalent to SQL
operator NOT LIKE.

Type Parameters:

e Operand : IBglOperand

Between<Operandl, Operand2> : IBqlComparison

Checks if the value of the preceding operand falls between the values of Operandl and Operand2.
Equivalent to SQL operator BETWEEN.

Type Parameters:
e Operandl : IBglOperand
e Operand2 : IBglOperand

NotBetween<Operandl, Operand2> : IBqlComparison

Checks if the value of the preceding operand does not fall between the values of 0perandl and
Operand2. Equivalent to SQL operator NOT BETWEEN.

Type Parameters:
e Operandl : IBglOperand

e Operand?2 : IBglOperand

IsNull : IBqlComparison

Checks if the preceding field is null. Equivalent to SQL operator IS NULL.

IsNotNull : IBqlComparison

Checks if the preceding field is not null. Results in true for data records with this field containing a
value. Equivalent to SQL operator IS NOT NULL.

Logical Operators

Logical operators concatenate conditions and condition groups into conditional expressions. They can be
used in Where and On clauses.

To append one more logical operator to the current one, you should use a form with the NextOperator
type parameter. NextOperator is set to the next logical operator. For example, an expression (C1 and

| API Reference | 209

C2 and C3 and C4) corresponds to a BQL code of the following form (C with a nhumber denotes a

single condition).
Where<Cl, And<C2, And<C3, And<C4>>>>
The BQL statement below gives an example of such expression.

PXSelect<Table
Where<Table.fieldl, Equal<Table.field2>,
And<Table.field3, Greater<Zero>,
And<Table.field3, IsNotNull>,
And<Table.field4, Less<Table.field5>>>>>>

This is translated into the following SQL query.

SELECT * FROM Table

WHERE Table.Fieldl = Table.Field2
AND Table.Field3 > 0
AND Table.Field3 IS NOT NULL
AND Table.Field4 < Table.Field5

And<Operand, Comparison> : IBqlBinary

Appends a single condition to a conditional expression via logical "and".

Examples:

And<Table.fieldl, Greater<Table.field2>>

Type Parameters:
e Operand : IBglOperand

e Comparison : IBglComparison

And<Operand, Comparison, NextOperator> : IBqlBinary

Appends a single condition to a conditional expression via logical "and" and continues the chain of
conditions. The condition is set by Operand and Comparison. NextOperator is set to And (And2) or Or

(or2) operator which continues the filtering expression.

Examples:

And<Table.fieldl, IsNull,
And<Table.field2, IsNotNull,
And<...>>>

Type Parameters:
e Operand : IBglOperand
e Comparison : IBglComparison, new()

e NextOperator : IBglBinary

And<Operator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "and". The unary operator is the Not,

Where, Or Match operator.

Examples:

And<Not<Table.fieldl, Equal<Zero>>>

| API Reference | 210

Type Parameters:

e Operator : IBglUnary

And2<Operator, NextOperator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "and" and continues the chain of
conditions. The unary operator is the Not, Where, or Match operator.

Type Parameters:
e Operator : IBglUnary, new()

e NextOperator : IBglBinary

Or<Operand, Comparison> : IBqlBinary

Appends a single condition or a group of conditions wrapped in Where to a conditional expression via
logical "or".

Type Parameters:
¢ Operand : IBglOperand

e Comparison : IBglComparison

Or<Operand, Comparison, NextOperator> : IBqlBinary

Appends a single condition to a conditional expression via logical "or" and continues the chain of
conditions. The condition is set by Operand and Comparison. NextOperator is set to And (And2) or Or
(or2) operator which continues the filtering expression.

Type Parameters:
e Operand : IBglOperand
e Comparison : IBglComparison, new()

e NextOperator : IBglBinary

Or<Operator> : IBqiBinary

Appends a unary operator to a conditional expression via logical "or". The unary operator is the Not,
Where, Or Match operator.

Type Parameters:

e QOperator : IBglUnary

Or2<Operator, NextOperator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "or" and continues the chain of
conditions. The unary operator is the Not, Where, or Match operator.

Type Parameters:
e Operator : IBglUnary, new()

e NextOperator : IBglBinary

Not<Operand, Comparison> : IBqlUnary
Adds logical "not" to a single condition.
Type Parameters:

e Operand : IBglOperand

| API Reference | 211

e Comparison : IBglComparison

Not<Operand, Comparison, NextOperator> : IBqlUnary

Adds logical "not" to a conditional expression. In the resulting SQL, the group is preceded with not and
surrounded by brackets.

Type Parameters:
e Operand : IBglOperand
e Comparison : IBglComparison

e NextOperator : IBglBinary

Not<Operator> : IBqlUnary

Add logical "not" to a unary operator. A unary operator is the Wwhere or Match operator. In the resulting
SQL the group is preceded with not and surrounded by brackets.

Type Parameters:

e QOperator : IBglUnary

Not2<Operator, NextOperator> : IBqlUnary

Add logical "not" to a unary operator. A unary operator is the Wwhere or Match operator. In the resulting
SQL the group is preceded with not and surrounded by brackets.

Type Parameters:
e QOperator : IBglUnary

e NextOperator : IBglBinary

Match<Parameter> : IBqlUnary

Matches only the data records the specified user has access rights for. The condition is applied to
the data records of the first table mentioned in a BQL statement. The user is specified in Parameter,
typically through the current parameter.

Examples:

PXSelect<Table,
Where<Match<Current<AccessInfo.userName>>>>

Type Parameters:

e Parameter : IBglParameter

Match<Table, Parameter> : IBqlUnary

Matches only the data records the specified user has access rights for. The condition is applied to the
data records of the table set with Table. The user is specified in Parameter, typically through the
Current parameter.

This form of Match is used when the filtered table is added though a join clause.

Examples:

PXSelectJoin<Tablel,
InnerJoin<Table2, On<Tablel.fieldl, Equal<Table2.field2>>>,
Where<Match<Table2, Current<AccessInfo.userName>>>>

Type Parameters:

| API Reference | 212

e Table : IBglTable

e Parameter : IBglParameter

CurrentMatch<Field> : IBqlUnary
Equivalent to Match<Field>, but is used in the pPXProjection attribute.
Type Parameters:

e Field : IBglField

CurrentMatch<Table, Field> : IBqlUnary
Equivalent to Match<Table, Field>, butis used in the PXProjection attribute.
Type Parameters:

e Table : IBglTable

e Field : IBglField

MatchWithBranch<Field> : IBqlUnary

Matches the data records whose field is null or holds the ID of a branch that can be accessed from
within the current branch. The current branch is the branch to which the user is signed in.

Type Parameters:
e Field : IBglOperand

A field where to look for the branch ID whose rights should be checked.

MatchWithBranch<Field, Parameter> : IBqlUnary

Matches the data records whose field is null or holds the ID of a branch that can be accessed from
within the specified branch or its subsidiaries.

Type Parameters:
e Field : IBglOperand
A field where to look for the branch ID whose rights should be checked.
e Parameter : IBglParameter

The branch to check against the branch found in Field.

Constants

Constants represent predefined values. They can be used in conditional expressions, for comparison
with fields, and in arithmetic expressions.

Constants are implemented as classes derived from the generic Constant<ConstType> class. You can
define custom constants.

Constant<ConstType> : Constant, IBqlOperand, IBqiCreator
The base class for BQL constants.

To define a custom constant in the application, derive a class from Constant. Specify constant's type in
the constType type parameter and implement the constructor. The constructor should inherit base class
constructor and provide the constant's actual value in its argument.

Examples:

| API Reference | 213

The predefined constant Zero represents integer 0 and is not suitable for comparison with
decimal values. The application should define a custom constant for decimal zero, deriving it from
Constant<Decimal> in the following way:

public class decimal 0 : Constant<Decimal>
{
public decimal 0 ()
: base (0m)
{
}
}

This constant can be used in BQL statements in the following way:

PXSelect<Table,
Where<Table.decimalField, Greater<decimal 0>>>

This BQL statement is tranlsated into the following SQL query:

SELECT * FROM Table
WHERE Table.DecimalField > .0

Null : IBqlOperand, IBqlCreator

The null value used in switch clauses as a default value. Don't use this constant for checking fields for
null value — use the IsNull and IsNotNull comparisons instead.

Now : Constant<DateTime>

Current UTC time.

Today : Constant<DateTime>

Represents today date.

Tomorrow : Constant<DateTime>

Represents tomorrow date.

True : Constant<short>

The true value for comparing with boolean fields. In translation to SQL corresponds to CONVERT (BIT,
1).

False : Constant<short>

The false value for comparing with boolean fields. In translation to SQL corresponds to CONVERT (BIT,
0).

Zero : Constant<int>

The integer zero, not comparable with floating point numeric types (such as decimal).

StringEmpty : Constant<string>
An empty string.

MaxDate : Constant<DateTime>
The maximum date: 06/06/2079.

| API Reference | 214

Querying Multiple Tables

BQL statements can join several database tables using the following clauses directly mapped to SQL
JOIN clauses:

e InnerdJoin returns all records where there is at least one match in both tables.

e LeftJoin returns all records from the left table, and the matched records from the right table.
Where there are no matched records from the right table, null values are inserted.

e RightJoin returns all records from the right table, and the matched records from the left table.
Where there are no matched records from the left table, null values are inserted.

e FullJoin returns all records when there is a match in one of the tables.
e CrossJoin returns the entire Cartesian product of two tables.

A result set record of a BQL statement with joins consists of all fields of each of the joined tables. Such
record (as an instance of the pPXresult<> class) can be cast to any of the DACs corresponding to the
joined tables.

A join clause is specified as the second type parameter of PXSelectJoin and other forms of
PXSelectJoin that have a type parameter derived from 1BglJoin, as follows.

PXSelectJoin<SalesOrder,
InnerJoin<OrderDetail,
On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>>>

This BQL statement will select all salesOrder records along with related orderDetail records. It is
translated into the following SQL code.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail
ON OrderDetail.OrderNbr = SalesOrder.OrderNbr

Each join clause has two variants, with two type parameters and with three type parameters. You use
the version with two type parameters to provide one join clause. To specify several join clauses, you the
version with three type parameters. Each next join clause is specified as the last type parameter of the
previous join clause, as shown in the following code.

PXSelectJoin<SalesOrder,
InnerJoin<OrderDetail,
On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>,
LeftJoin<Employee,
On<Employee.employeeID, Equal<SalesOrder.employeeID>>>>>

Which is translated to the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail

ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
LEFT JOIN Employee

ON Employee.EmployeeID = SalesOrder.EmployeeID

The on conditions in subsequent join clauses can refer to fields from any linked table. Also, the on
clause can contain any number of conditions. These conditions should be chained by logical operators as
in filtering conditions.

PXSelectJoin<SalesOrder,
InnerJoin<OrderDetail,
On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>,
LeftJoin<Employee,
On<Employee.employeeID, Equal<SalesOrder.employeeID>>,
RightJoin<Product,
On<Product.productID, Equal<OrderDetail.productID>,

| API Reference | 215

And<Product.unitPrice, Equal<OrderDetail.unitPrice>>>>>>>

This is traslated into the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail

ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
LEFT JOIN Employee

ON Employee.EmployeeID = SalesOrder.EmployeeID
RIGHT JOIN Product

ON (Product.ProductID

Product.UnitPrice

OrderDetail.ProductID AND
OrderDetail .UnitPrice)

For crossJoin, the on condition is not spesified, since it creates an unrestricted set of all possible pairs
of records from two tables. An example is given below.

PXSelectJoin<Product, CrossJoin<Supplier>>

This is translated into the following SQL query.

SELECT * FROM Product CROSS JOIN Supplier

Attaching the Where Clause

To add the where clause, you should take an appropriate pxselect variant. Where is specified after the
joining operator.

The following BQL statement joins the SupplierProduct (which implements a many-to-many
relationship) and supplier tables to the Product table and filters them by supplierProduct fields.

PXSelectJoin<Product,
InnerJoin<SupplierProduct,
On<SupplierProduct.productID, Equal<Product.productID>>,
InnerJoin<Supplier,
On<Supplier.accountID, Equal<SupplierProduct.accountID>>>>,
Where<SupplierProduct.lastPurchaseDate, IsNotNull,
And<SupplierProduct.lastSupplierPrice, LessEqual<Product.unitPrice>>>>

This BQL statement is translated into the following SQL code.

SELECT * FROM Product
INNER JOIN SupplierProduct
ON SupplierProduct.ProductID = Product.ProductID
INNER JOIN Supplier
ON Supplier.AccountID = SupplierProduct.AccountID
WHERE SupplierProduct.LastPurchaseDate IS NOT NULL
AND SupplierProduct.LastSupplierPrice <= Product.UnitPrice

Note that the where conditional expression applies to the set formed by all joined tables. In particular,
the filtering conditions can refer to any field of any of the joined tables.

Attaching the OrderBy Clause

The orderBy clause is specified after the where clause if there is one in the statement, or after the join
clause.

If a BQL statement should include a join clause and applying filtering and ordering, it is based on the
PXSelectJoin version of with four type parameters.

PXSelectJoin<SalesOrder,
InnerJoin<OrderDetail,
On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>>,
Where<SalesOrder.requiredDate, Less<Today>>,

| API Reference | 216

OrderBy<Desc<OrderDetail.orderDetailQty>>>

This BQL statement is translated into the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail

ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
WHERE SalesOrder.RequiredDate < [today date]
ORDER BY OrderDetail.OrderDetailQty DESC

If a BQL statement should include only a join clause and apply ordering, it is based on
PXSelectOrderBy with three type parameters, as follows.

PXSelectOrderBy<Product,
LeftJoin<OrderDetail,
On<OrderDetail .productID, Equal<Product.productID>,
AND<OrderDetail.unitPrice, Equal<Product.unitPrice>>>>,
OrderBy<Asc<Product.productName>>>>

This is translated into the following SQL query.

SELECT * FROM Product
LEFT JOIN OrderDetail
ON (OrderDetail.ProductID = Product.ProductID AND
OrderDetail.UnitPrice = Product.UnitPrice)
ORDER BY Product.ProductName

Join Clauses

"Join" clauses link other tables to the main one specified as the first type parameter in the BQL
statement. An example is given below.

PXSelectJoin<Tablel,
InnerJoin<Table2, On<Table2.field2, Equal<Tablel.fieldl>>,
LeftJoin<Table3, On<Table3.field3, Equal<Tablel.field4>>>>>

This is tranlsated into the following SQL query.

SELECT * FROM Tablel
INNER JOIN Table2

ON Table2.Field2 = Tablel.Fieldl
LEFT JOIN Table3

ON Table3.Field3 = Tablel.Field4

Conditional expression for joining is specified using the On classes. The syntax for conditional
expressions set in on is the same as used in Where.

InnerJoin<Table, On> : IBqlJoin
Joins a table via INNER JOIN.
Type Parameters:

e Table : IBglTable

e On : IBglOn

InnerJoin<Table, On, NextJoin> : IBqlJoin
Joins a table via INNER JOIN and allows joining one or several more tables..
Type Parameters:

e Table : IBglTable

e On : IBglOn, new()

e NextJoin : IBglJoin

LeftJoin<Table, On> : IBqlJoin
Joins a table via LEFT JOIN.
Type Parameters:

e Table : IBglTable

e On : IBglOn

LeftJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via LEFT JOIN and allows joining one or several more tables..

Type Parameters:
e Table : IBglTable
e On : IBglOn, new()

e NextJoin : IBglJoin

Rightloin<Table, On> : IBqlJoin
Joins a table via RIGHT JOIN.
Type Parameters:

e Table : IBglTable

e On : IBglOn

Rightloin<Table, On, NextJoin> : IBqlJoin

Joins a table via RIGHT JOIN and allows joining one or several more tables..

Type Parameters:
e Table : IBglTable
e On : IBglOn, new()

e NextJoin : IBglJoin

FullJoin<Table, On> : IBqlJoin
Joins a table via FULL JOIN.
Type Parameters:

e Table : IBglTable

e On : IBglOn

FullJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via FULL J0IN and allows joining one or several more tables..

Type Parameters:
e Table : IBglTable

e On : IBglOn, new()

| API Reference | 217

| API Reference | 218

e NextJoin : IBglJoin

CrossJoin<Table> : IBqlJoin
Joins a table via cross JOIN. Not joining condition is specified.

Examples:

PXSelectJoin<Tablel, CrossJoin<Table2>>
This is translated into:

SELECT * FROM Tablel CROSS JOIN Table2

Type Parameters:

e Table : IBglTable

CrossJoin<Table, NextJoin> : IBqlJoin
Joins a table via cross JoIN and allows joining one or several more tables.
Type Parameters:

e Table : IBglTable

e NextJoin : IBglJoin

On Clause

The on clause defines the conditional expression for table joining.

On<Operand, Comparison> : IBqlOn
Specifies a single joining condition. Corresponds to SQL keyword on.

Examples:

PXSelectJoin<Tablel,
InnerJoin<Table2, On<Table2.field2, Equal<Tablel.fieldl>>>>

Type Parameters:
e Operand : IBglOperand

e Comparison : IBglComparison

On<Operator> : IBqlOn

Specifies the joining condition through the Not, Wihere, or Where2 clause. Corresponds to SQL keyword
ON.

Examples:

PXSelectJoin<Tablel,
InnerJoin<Table2, On<Not<Table2.field2, Equal<Tablel.fieldl>>>>>

Type Parameters:

e Operator : IBglUnary

On<Operand, Comparison, NextOperator> : IBqlOn

Specifies a single joining condition and allows continuing the chain of conditions using a logical operator.
Corresponds to SQL keyword ON.

| API Reference | 219

Examples:

PXSelectJoin<Tablel,
InnerJoin<Table2,
On<Table2.fieldl, Equal<Tablel.field2>,
And<Table2.field3, Equal<Tablel.field4>>>>>

This is translated into:

SELECT * FROM Tablel
INNER JOIN Table2 ON
Table2.Fieldl = Tablel.Field2 AND Table2.Field3 = Tablel.Field4

Type Parameters:
e Operand : IBglOperand
e Comparison : IBglComparison

e NextOperator : IBglBinary

On2<Operator, NextOperator> : IBqlOn

Specifies the joining condition using Not, Where, or Where2 and allows continuing the chain of conditions
using a logical operator. Corresponds to SQL keyword on.

Type Parameters:
e QOperator : IBglUnary

e NextOperator : IBglBinary

Grouping and Aggregating
The BQL grouping and aggregating syntax is similar to the SQL syntax. BQL implements:
e The GroupBy clause for grouping
e The equivalents of SQL aggregation functions: Min, Max, Sum, Avg, and Count.

All grouping conditions and aggregation functions are specified in the aggregate clause. For example,
to group the result set by a field, place the GroupBy clause into Aggregate as follows.

PXSelectGroupBy<Product,
Aggregate<GroupBy<Product.categoryCD>>>

Note that you should take an appropriate pxselect version with the Aggregate type parameter, such as
PXSelectGroupBy<Table, Aggregate>. The statement above is translated into the following SQL code.

SELECT Product.CategoryCD,

[MAX (Field) or NULL for other fields]
FROM Product
GROUP BY Product.CategoryCD

Fields specified in GroupBy clauses are selected as is. To all other fields, an aggregation function is
applied. The default Max function is used if no function is specified for a field. If Max cannot be applied
to the type of a field, NULL is selected for it.

Another GroupBy clause or aggregation function is inserted as the second type parameter of the
previous GroupBy clause or aggregation function.

PXSelectGroupBy<Product,
Aggregate<GroupBy<Product.categoryCD, Sum<Product.availQty>>>>

| API Reference | 220

This BQL statement will count the sum of of the Availoty field for each group of records with equal
CategoryCD field values. NULL is also considered a value here. The following SQL query corresponds to
the statement above.

SELECT Product.CategoryCD, SUM(Product.AvailQty),
[MAX (Field) or NULL for other fields]

FROM Product

GROUP BY Product.CategoryCD

Grouping can be applied to several fields. In this case, a combination of such fields is considered equal
to another one only if all fields in them concide.

The previous example can be extended by adding the GroupBy clause for the stockunit field. As a
result, Product records will be grouped by both categories and stock units. Some aggregation functions
might be added as well, as in the following example.

PXSelectGroupBy<Product,
Aggregate<GroupBy<Product.categoryCD,
Sum<Product.availQty,
Sum<Product.bookedQty,
GroupBy<Product.stockUnit,
Min<Product.unitPrice>>>>>>>

This is translated into the following SQL query.

SELECT Product.CategoryCD, Product.StockUnit,
SUM (Product.AvailQty), SUM(Product.AvailQty), MIN (Product.UnitPrice),
[MAX (Field) or NULL for other fields]

FROM Product

GROUP BY Product.CategoryCD, Product.StockUnit

Aggregate and GroupBy Clauses
This set of classes implement SQL GrROUP BY and the aggregate functions.

Unlike SQL, all grouping clauses and aggregations are gathered in a BQL statement in one Aggregate
clause. The Aggregate clause is specified as the PxSelectGroupBy variant's type parameter .

In the SQL translation, alll fields not specified in GroupBy clauses are aggregated using:
e The aggregation function specified in the aggregate clause
e The MaX function if no aggregation function is specified explicitly for a field
e NULL if MAX is not applicable to the field

For example, consider the folloing BQL statement.

PXSelectGroupBy<Table,
Aggregate<GroupBy<Table.fieldl>>>

It is translated into:

SELECT Table.Fieldl,

[MAX (Table.Field) or NULL for all fields]
FROM Table
GROUP BY Table.Fieldl

While the following BQL statement:

PXSelectGroupBy<Table,
Aggregate<GroupBy<Table.fieldl,
Avg<Table.field2,
Min<Table.field3>>>>>

| API Reference | 221

is translated into:

SELECT Table.Fieldl,

AVG (Table.Field2), MIN(Table.Field3),

[MAX (Table.Field) or NULL for all other fields]
FROM Table
GROUP BY Table.Fieldl

An aggregation BQL statement has a read-only result set.

Aggregate<Function> : IBqlAggregate
A wrapper clause for the GroupBy clauses and aggregation functions.
Examples:

The following BQL statement groups Table records by the Table.fieldl field and calculates sums of
the Table.field2 field in each group.

PXSelectGroupBy<Table,
Aggregate<GroupBy<Table.fieldl, Sum<Table.field2>>>>

This is translated into the following SQL code.

SELECT Table.Fieldl, SUM(Table.Field2),

[MAX (Table.Field) or NULL for other fields]
FROM Table
GROUP BY Table.Fieldl

Type Parameters:

e Function : IBglFunction

GroupBy<Field> : IBqlFunction
Adds grouping by the field specified in Field. Equivalent to SQL operator GROUP BY.
Type Parameters:

e Field : IBglField

GroupBy<Field, NextAggregate> : IBqlFunction

Adds grouping by the field specified in Field and continues the aggregation clause with
NextAggregate. Equivalent to SQL operator GROUP BY.

Type Parameters:
e Field : IBglField

e NextAggregate : IBglFunction

Aggregation Functions

The aggregation functions are calculated for all field values in a group. To apply an aggregation to a
field, specify the field in the type parameter and append the clause to the aggregate operator.

Sum<Field> : IBqlFunction
Returns the sum of all Field values in a group. Equivalent to SQL function sum.
Type Parameters:

e Field : IBglField

| API Reference | 222

Sum<Field, NextAggregate> : IBqlFunction

Returns the sum of all Field values in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function sum.

Examples:

PXSelectGroupBy<Table,
Aggregate<Sum<Table.fieldl,
Sum<Table.field2,
GroupBy<Table.field3>>>>>

Type Parameters:
e Field : IBglField

e NextAggregate : IBglFunction

Avg<Field> : IBqlFunction
Returns the average of the values of Field in a group. Equivalent to SQL function ava.
Type Parameters:

e Field : IBglField

Avg<Field, NextAggregate> : IBqlFunction

Returns the average of the values of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function avG.

Type Parameters:
e Field : IBglField

e NextAggregate : IBglFunction

Min<Field> : IBqlFunction
Returns the minimum value of Field in a group. Equivalent to SQL function MIN.
Type Parameters:

e Field : IBglField

Min<Field, NextAggregate> : IBqlFunction

Returns the minimum value of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function MIN.

Type Parameters:
e Field : IBglField

e NextAggregate : IBglFunction

Max<Field> : IBqlFunction
Returns the maximum value of Field in a group. Equivalent to SQL function mMax.

Type Parameters:

e Field : IBglField

| API Reference | 223

Max<Field, NextAggregate> : IBqlFunction

Returns the maximum value of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function MAX.

Type Parameters:
e Field : IBglField

e NextAggregate : IBglFunction

Count : IBqlFunction

Counts the number of items in a group if a GroupBy clause is specified or, otherwise, the total number
of records in the result set. In the translation to SQL, it is represented by counT (*) added to the list of
selected columns.

You access the calculated value through the RowCount property of the PxResult<> type.

Examples:

PXResult<Table> res =
PXSelectGroupBy<Table, Aggregate<Count>>.Select (this);

// The calculated number of records is stored in the
// PXResult.RowCount property.
int tableRecordsNumber = res.RowCount;

The BQL code in this example is translated into the following SQL query.

SELECT [MAX (Table.Field) or NULL for all fields defined in the Table DAC],
COUNT (*)
FROM Table

Count<Field> : IBqlFunction
Counts distinct values of the specified field in a group. Equivalent to SQL function COUNT DISTINCT.

You access the calculated value through the rRowCount property of the pPXxResult<> type. Note that you
should use only one count<> function in a BQL query, because you won't be able to access other such
counted values.

Examples:

foreach (PXResult<Table> row in PXSelectGroupBy<Table,
Aggregate<GroupBy<Table.fieldl, Count<Table.field2>>>>.Select (this))

{
// The calculated number of distinct values of field2 in a group
int field2CountInGroup = row.RowCount;

The BQL code in this example is translated into the following SQL query.

SELECT COUNT (DISTINCT Table.Field2),

[MAX (Table.Field) or NULL for all other fields defined in the Table DAC]
FROM Table
GROUP BY Table.Fieldl

Type Parameters:

e Field : IBglField

| API Reference | 224

Using Parameters

BQL parameters are replaced in the translation to SQL with specific values. There are four type of
parameters: Current (Current2), Optional (Optional2), Required, and Argument.

Current Parameter

By using the Current parameter in the declaration of a data view, you can reference another view to
relate them to each other. A typical example is referencing the current master record on master-detail
webpages.

The current parameter actually inserts the Current object's field value from the pxCcache object. For
example, suppose the following BQL statement defines the master view.

// The view declaration in a graph
PXSelect<SalesOrder> MasterRecords;

The details view might be defined as follows.

// The view declaration in the same graph
PXSelect<OrderDetail,
Where<OrderDetail.orderNbr, Equal<Current<SalesOrder.orderNbr>>>>
DetailsRecords;

Exectuion of the second data view will produce the following SQL query.

SELECT * FROM OrderDetail
WHERE OrderDetail.OrderNbr = [parameter]

Here [parameter] is the orderNbr value taken from the current property of the orderbDetail cache.

This value can be obtained through the following code executed in a graph:
f— ((OrderDetail)Caches[typeof (OrderDetail)] .Current) .OrderNbr.

Suppose there is a many-to-one relationship between the DocTransaction and Document DACs. Let
it be implemented through the DocNbr and DocType key fields. The views connecting Document and
DocTransaction records might be defined as follows.

// The views declarations in a graph
PXSelect<Document> Documents;
PXSelect<DocTransaction,
Where<DocTransaction.docNbr, Equal<Current<Document.docNbr>>,
And<DocTransaction.docType, Equal<Current<Document.docType>>>>>
DocTransactions;

Second view's execution will produce the following SQL query:

SELECT * FROM DocTransaction
WHERE DocTransaction.DocNbr = [parameterl]
AND DocTransaction.DocType = [parameter?]

Where [parameterl] is the DocNbr value and [parameter2] is the DocType value taken from the
Current property of the DocTransaction cache.

If the field specified in the current parameter is null, the default value will be inserted. The default
value assignment procedure takes into account the pxDefault attribute value and triggers the
FieldDefaulting event handlers. The value eventually returned by the procedure is inserted into the
SQL query in place of the current parameter.

This procedure doesn't start if the Current?2 version of the parameter is used.

| API Reference | 225

Required Parameter

To pass a specific value to the SQL query, you should use the Required parameter. To execute a BQL
statement with the rRequired parameter, specify the value as the select () method argument.

The Required parameter should be used only in the BQL statements that are executed in the
application code. The value passed to select () must be of the same type as the specified field.

The code below shows execution of BQL statement with the Required parameter.

// Suppose an event handendler related to the Product DAC
// is being executed
Product product = (Product)e.Row;

// Select the Category record with the specified CategoryCD
Category category =
PXSelect<Category,
Where<Category.categoryCD, Equal<Required<Category.categoryCD>>>>
.Select (this, product.CategoryCD) ;

The BQL statement used in this example is translated into the following SQL query.

SELECT * FROM Category
WHERE Category.CategoryCD = [parameter]

Where [parameter] is the product.CategoryCD variable's value at the moment the select ()
method is invoked.

A BQL statement can include several Required parameters. The number of Required parameters must
match the number of parameters passed to the select () function. See the example below.

// Suppose an event handler related to the DocTransaction DAC
// is being executed
DocTransaction line = (DocTransaction)e.Row;

Document doc =
PXSelect<Document,
Where<Document.docNbr, Equal<Required<DocTransaction.docNbr>,
And<Document.docType, Equal<Required<DocTransaction.docType>>>>>
.Select (this, line.DocNbr, line.DocType) ;

In this example, the BQL statement corresponds to the following SQL query.

SELECT * FROM Document
WHERE Document.DocNbr = [line.DocNbr value]
AND Document.DocType = [line.DocType valuel]

The Required parameter can be used together with other parameter as follows.

// Suppose an event handler related to the DocTransaction DAC
// is being executed
DocTransaction line = (DocTransaction)e.Row;

SupplierProduct suppdata =
PXSelect<SupplierProduct,
Where<SupplierProduct.accountID, Equal<Current<Document.accountID>>,
And<SupplierProduct.productID, Equal<Required<Product.productID>>>>>
.Select (this, line.ProductID);

Here only one parameter is passed to the select () method (excluding graph reference), because
Current doesn't need an explicitly passed value.

| API Reference | 226

Optional Parameter

The optional parameter is used to pass field's "external value" to the SQL query. Parameter execution
triggers the Fieldupdating event handlers, which can transform it to "internal value". The value is
passed to the select () method. If the value is not specified or is null, the default field value is used.

For example, suppose the OrderDetail DAC adds the pxSelector attribute to the Product1D field.
PXSelector replaces it in the user interface (UI) with the human-readable ProductcD field.

[PXSelector (typeof (Search<Product.productID>),
new Type [] {
typeof (Product.productCD),
typeof (Product.productName)
by
SubstituteKey = typeof (Product.productCD))]
public virtual int? ProductID { get; set; }

In the UI control for this field, the user inputs a ProductcCD value. The pPxSelector attribute implements
the FieldUpdating event handler which replaces it with the corresponding Product1D value. The
following code could be used to select OrderDetail records related to a Product record.

// Product data record obtained somehow
Product p =
// Selecting OrderDetail records - ProductCD value is passed
// to the Select() method.
PXSelect<OrderDetail,
Where<OrderDetail.ProductID, Equal<Optional<OrderDetail.ProductID>>>>
.Select (this, p.ProductCD);

If the Required parameter goes after an optional parameter in a BQL command, the Optional
parameter has to be provided with a value. The general rule is to provide values for all optional,
Required, and Argument parameters up to the last Required or Argument parameter in the BQL
statement.

// Related OrderDetail and Product records obtained somehow
OrderDetail od =
Product p =

// At least three values (in addition to graph reference) must
// be passed to the Select () method below.
// The second Optional parameter here will be substituted with the
// default UnitPrice value.
PXResultSet<OrderDetail> details =
PXSelect<OrderDetail,

Where<OrderDetail .productID, Equal<Optional<OrderDetail.productID>>,
And<OrderDetail.extPrice, Less<Required<OrderDetail.extPrice>>,
And<OrderDetail.unitPrice, Greater<Required<OrderDetail.unitPrice>>,
And<OrderDetail.taxRate, Equal<Optional<OrderDetail.taxRate>>>>>>>

.Select (this, p.ProductCD, od.ExtPrice, od.UnitPrice);

The BQL statement in this example is translated into the following SQL query.

SELECT * FROM OrderDetail

WHERE OrderDetail.ProductID = [line.ProductID value or default]
AND OrderDetail.ExtPrice < [line.ExtPrice value]
AND OrderDetail.UnitPrice > [line.UnitPrice value]
AND OrderDetail.TaxRate = [Default TaxRate value]

Argument Parameter

The Argument parameter is used to pass values from UI controls to the optional method of a data view.
In this case, the optional method should have the parameters through which you can access the values
passed from the UI. When a BQL statement with the Argument parameter is executed in code, the value
must be specifed in the parameters of the select () method.

| API Reference | 227

In the Argument type parameter, you specify the data type of the expected value, as follows.

PXSelect<TreeViewItem,
Where<TreeViewlItem.parentID, Equal<Argument<int?>>>,
OrderBy<Asc<TreeViewItem.parentID>>> GridDataSource;

The BQL statement from this example in translated into the following SQL query.

SELECT * FROM TreeViewItem
WHERE TreeViewItem.ParentID = [parameter]
ORDER BY TreeViewlItem.ParentID

Where [parameter] will contain the value received from the UI control and passed to the Select ()
method.

Parameters

Parameters are used as operands in conditional expressions to pass values determined at run time into
the resulting SQL.

Current<Field> : IBqlParameter

Inserts the field value from the Current property of the cache. If the current property is null or the
field value is null, the parameter is replaced by the default value.

Examples:

// Declaration of views in a BLC
PXSelect<Tablel> MasterRecords;
PXSelect<Table2,
Where<Table2.tableID, Equal<Current<Tablel.tableID>>>> DetailRecords;

The second view corresponds to the following SQL query.

SELECT * FROM Table2
WHERE Table2.TableID = [value]

Where [value] is the TableID value from the Current property of the PXCache<Tablel> object.
Type Parameters:

e Field : IBglField

Current2<Field> : IBqlParameter

The same as current, but in case the null value is passed to the parameter, doesn't insert the default
value.

Type Parameters:

e Field : IBglField

CurrentValue<Field> : IBqlOperand, IBqlCreator
Equivalent to the current parameter, but is used in the pPXProjection attribute.
Type Parameters:

e Field : IBglField

Required<Field> : IBqlParameter

Is replaced by a value passed to the select () method. The value type should match the type of the
field specified as Field.

| API Reference | 228

Examples:

PXResutset<Table> res =
PXSelect<Table, Where<Table.fieldl, Equal<Required<Table.fieldl>>>>
.Select (this, wval);

The BQL statement in this example is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Fieldl = [the val variable value]

Type Parameters:

e Field : IBglField

Optional<Field> : IBqlParameter

Inserts the value from the current property of the cache or the value explicitly passed to the select ()
method. In the latter case, the parameter causes raising of the FieldUpdating event for the specified

field (which can modify or substitute the value). If the null value is passed or the Current property is
null, the default value of the field is inserted.

Examples:

PXResutset<Tablel> res =
PXSelect<Tablel, Where<Tablel.fieldl, Equal<Optional<Table2.fieldl>>>>
.Select (this, wval);

The view corresponds to the following SQL query:

SELECT * FROM Tablel
WHERE Tablel.Fieldl = [value]

Where [value] is the value of the val variable, possibly, modified by FieldUpdating event handlers.
Type Parameters:

e Field : IBglField

Optional2<Field> : IBqlParameter

The same as Optional, but in case the null value is passed to the parameter, doesn't insert the default
value.

Type Parameters:

e Field : IBglField

Argument<ArgumentType> : IBqlParameter

Is used to pass a value of a particular data type from a UI control to the associated view. When a BQL
statement with Argument is executed in code, a value is passed in the select () method's arguments.

Examples:

// Declaration of a view in a BLC
PXSelect<Table, Where<Table.fieldl, Greater<Argument<int?>>>> Records;

// Execution of the view in code
foreach (Table rec in Records.Select (5))

| API Reference | 229

The BQL here is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Fieldl > 5

Type Parameters:

e ArgumentType : Type

Using Functions

Functions are primaritly used in attributes to calculate a field from other fields. They can also be used
as operands in Where and OrderBy clauses.

Arithmetic Operations

The following BQL classes implement arithmetic operations:
e Add<Operandl, Operand2> corresponds to (Operandl + Operand?2)
e Sub<Operandl, Operand2> corresponds to (Operandl - Operand?2).
e Mult<Operandl, Operand2> correspondsto (Operandl * Operand?2).
e Div<Operandl, Operand2> corresponds to (Operandl / Operand?2).
e Minus<Operand> corresponds to -Operand.

For example, product reorder discrepancy can be calculated using the following expression:

Minus<
Sub<Sub<IsNull<Product.availQty, decimal 0>,
IsNull<Product.bookedQty, decimal 0>>,
Product.minAvailQty>>

Where the decimal 0 constant represents the 0 decimal value. The expression is translated to the
following SQL code:

- ((ISNULL (Product.AvailQty, .0) - ISNULL(Product.BookedQty, .0))
- Product.MinAvailQty)

IsNull returns the first argument if it is not null or the second argument otherwise.

Such expression could be used in an attribute (for instance, pxbBCacled) to define a calculated field not
bound to a database column:

// Data field definition in a DAC
[PXDecimal (2)]
[PXDBCalced (typeof (Minus<
Sub<Sub<IsNull<Product.availQty, decimal 0>,
IsNull<Product.bookedQty, decimal 0>>,
Product.minAvailQty>>),
typeof (Decimal))]
public virtual decimal? Discrepancy { get; set; }

Also, it may be used in a conditional expression in a BQL statement like the following one.

PXSelect<Product,
Where<Minus<
Sub<Sub<IsNull<Product.availQty, decimal 0>,
IsNull<Product.bookedQty, decimal 0>>,
Product.minAvailQty>>,
NotEqual<decimal 0>>>

| API Reference | 230

This corresponding SQL query retrieves product records that don't make the expression equal 0.

SELECT * FROM Product
WHERE - ((ISNULL (Product.AvailQty, .0) - ISNULL (Product.BookedQty, .0))
- Product.MinAvailQty) <> .0

Let us consider another example. Suppose an OrderDetail record represents sales order information
for a single product. Then its total discount price may be calculated by the following formula.

Quantity * UnitPrice * (1 - DiscountRate/100)
This formula may be implemented in BQL as follows.

Mult<Mult<OrderDetail.unitPrice,
OrderDetail.orderDetailQty>,
Sub<decimal 1,
Div<OrderDetail.discountRate,
decimal 100>>>

Here, decimal 1 and decimal 100 are classes derived from Constant<decimal> and represent the 1
and 100 decimal values.

This expression could be written differently in BQL. For example, rounding the discount as shown below.

Sub<Mult<OrderDetail.unitPrice,
OrderDetail.orderDetailQty>,
Round<Div<Mult<Mult<OrderDetail.unitPrice,
OrderDetail.orderDetailQty>,
OrderDetail.discountRate>,
decimal 100>,
Minus<int 1>>>

The latter expression will be translated into the following SQL code.

((OrderDetail.UnitPrice * OrderDetail.OrderDetailQty)
- ROUND (OrderDetail.UnitPrice *
OrderDetail.OrderDetailQty *
OrderDetail.DiscountRate / 100., -1))

Equivalents of SQL Functions

The BQL library defines the following SQL function equivalents:
e IsNull<Operandl, Operand2> corresponds to ISNULL (Operandl, Operand?2).
e NullIf<Operandl, Operand2> corresponds to NULLIF (Operandl, Operand2).
e Round<Operandl, Operand2> corresponds to ROUND (Operandl, Operand2).

e Substring<Operand, Start, Length> corresponds to SUBSTRING (Operand, Start,
Length).

e Replace<Operand, toReplace, replaceWith> corresponds to REPLACE (Operand,
toReplace, replaceWith).

e DateDiff<Operandl, Operand2, OUM> corresponds to DATEDIFF (OUM, Operandl,
Operand?2).

Also, the BQL library defines the switch class translated to SQL operator CASE.

Example - Conditional Ordering

The switch clause can be used in 0rderBy to sort data records according to a condition.

| API Reference | 231

For example, data records with a specific field greater than another one can be placed above
other data records. In this case, you should put the switch clause inside Asc or Desc as in
OrderBy<Asc<Switch<...>>>, as follows.

PXSelectOrderBy<Product,
OrderBy<Asc<
Switch<Case<Where<Product.availQty, Greater<Product.bookedQty>>, True>,
False>>>>

This BQL statement is translated into the following SQL query.

SELECT * FROM Product
ORDER BY
(CASE
WHEN Product.AvailQty > Product.BookedQty THEN 1
ELSE 0
END)

In the result set, the records with AvailQty values less or equal to BookedQty values will go first.

Arithmetic Operations

Arithmetic functions are used to construct arithmetic expressions out of fields, constants, and other
functions.

Add<Operandl, Operand2> : IBqlOperand, IBqlCreator
Returns the sum of Operandl and Operand2.

Examples:

Add<Table.fieldl, Table.field2>
This is tranlsated into:

(Table.Fieldl + Table.Field2)

Type Parameters:
e Operandl : IBglOperand

e Operand?2 : IBglOperand

Sub<Operandl, Operand2> : IBqlOperand, IBqlCreator
Returns the substraction of operand2 from Operandl

Examples:

Sub<Table.fieldl, Table.field2>
This is tranlsated into:

(Table.Fieldl - Table.Field2)

Type Parameters:
e Operandl : IBglOperand

e Operand2 : IBglOperand

Mult<Operandl, Operand2> : IBqlOperand, IBqlCreator

Returns the multiplication of 0perandl by Operand?2.

Examples:
Mult<Table.fieldl, Table.field2>
This is tranlsated into:

(Table.Fieldl * Table.Field2)

Type Parameters:
e Operandl : IBglOperand

e Operand2 : IBglOperand

Div<Operandl1, Operand2> : IBqlOperand, IBqlCreator
Return the division of operandl on Operand2.

Examples:

Div<Table.fieldl, Table.field2>
This is tranlsated into:

(Table.Fieldl / Table.Field2)

Type Parameters:
e QOperandl : IBglOperand

e Operand?2 : IBglOperand

Minus<Operand> : IBqlOperand, IBqlCreator
Returns -Operand (multiplies by -1).

Examples:
Minus<Table.field>

This is tranlsated into:
-Table.Field

Type Parameters:

¢ Operand : IBglOperand

Common Functions

Common functions are translated to the equivalent SQL functions.

IsNull<Operandl, Operand2> : IBqlOperand, IBqiCreator

Returns operandl if it is not null, or operand2 otherwise. Equivalent to SQL function 1sSNULL.

Examples:
IsNull<Table.fieldl, Table.field2>
This is tranlsated into:

ISNULL (Table.Fieldl, Table.Field2)

| API Reference | 232

| API Reference | 233

Type Parameters:
e Operandl : IBglOperand

e Operand?2 : IBglOperand

Substring<Operand, Start, Length> : IBqlOperand, IBqlCreator

Returns the Length characters from the Operand string starting from the start index (the first
character has index 1). Equivalent to SQL function SUBSTRING.

To use constant numeric values in start and Length, define the corresponding integer constants as
classes derived from Constant<int>.

Examples:
Substring<Table.field, int 1, int 5>

Provided int 1 and int 5 are classes representing integer constants 1 and 5, this is tranlsated into:
SUBSTRING (Table.Field, 1, 5)

Type Parameters:
e Operand : IBglOperand
e Start : IBglOperand

e Length : IBglOperand

Round<Operandl, Operand2> : IBqlOperand, IBqiCreator
Returns a numeric value rounded to the specified precision. Equivalent to SQL function ROUND.

Examples:
Round<Table.fieldl, Table.field2>
This is tranlsated into:

Round (Table.Fieldl, Table.Field2)

Type Parameters:
e Operandl : IBglOperand

e Operand2 : IBglOperand

NullIf<Operandl, Operand2> : IBqlOperand, IBqiCreator

Returns null if operandl equals Operand2 and returns Operandl if the two expression are not equal.
Equivalent to SQL function NULLIF.

Examples:

NullIf<Table.fieldl, Table.field2>
This is tranlsated into:

NULLIF (Table.Fieldl, Table.Field2)

Type Parameters:

e Operandl : IBglOperand

| API Reference | 234

e QOperand2 : IBglOperand

Replace<Operand, toReplace, replaceWith> : IBqlOperand, IBqlCreator

Replaces all occurrences of a string with another string in the source expression. Equivalent to SQL
function REPLACE.

Examples:
Replace<Table.field, str AAA, str BBB>

Provided str aaA and str BBB are classes representing string constants "AAA" and "BBB", this is
tranlsated into:

REPLACE (Table.Field, "AAA", "BBB")

Type Parameters:
e Operand : IBglOperand
e toReplace : IBglOperand

e replaceWith : IBglOperand

DateDiff<Operandl, Operand2, UOM> : IBqlOperand, IBqlCreator

Returns the count of the datepart boundaries specified in uoM crossed between Operandl and Operand2.
Equivalent to SQL function DATEDIFF.

Examples:

DateDiff<Table.fieldl, Table.field2, DateDiff.hour>
This is translated into:

DATEDIFF (hh, Table.Fieldl, Table.Field2)

Type Parameters:
e Operandl : IBglOperand
e Operand2 : IBglOperand

e UOM : Constant<string>, new()

DateDiff
Wraps string constants that can be used as the third argument in the patebiff function.
e public class day : Constant<string>
Constant dad.
e public class hour : Constant<string>
Constant hh.
e public class minute : Constant<string>
Constant mi.
e public class second : Constant<string>
Constant ss.

e public class millisecond : Constant<string>

| API Reference | 235

Constant ms.

Switch Clause

The switch clause returns one of the possible values depending on a condition.

Switch<Case> : IBqlOperand, IBqlCreator

Evaluates conditions and returns one of multiple possible values. Equivalent to SQL CASE expression
without the ELSE expression. Pairs condition-value are specified via the case clause.

The switch clause can be used as an Operand type parameter in the Where or OrderBy clause.

Examples:

Switch<
Case<Where<Table.fieldl, Less<Table.field2>>, Table.field3,
Case<Where<Table.fieldl, Equal<Table.field2>>, Table.field4,
Case<Where<Table.fieldl, Greater<Table.field2>>, Table.field5>>>>

This is translated into:

CASE
WHEN Table.Fieldl < Table.Field2 THEN Table.Field3
WHEN Table.Fieldl = Table.Field2 THEN Table.Field4
WHEN Table.Fieldl > Table.Field2 THEN Table.Field5
END
Type Parameters:
e Case : IBglCase, new()

Switch<Case, Default> : IBqlOperand, IBqlCreator, ISwitch

Evaluates conditions and returns one of multiple possible values or the default value if none of the
conditions is satisfied. Equivalent to SQL CASE-ELSE expression. Pairs condition-value are specified via
the case clause.

Examples:

Switch<
Case<Where<Table.fieldl, Greater<Table.field2>,
Or<Table.field2, IsNull>>, True>,
False>

This is translated into:

CASE
WHEN Table.Fieldl > Table.Field2 OR Table.Field2 IS NULL THEN 1
ELSE 0

END

Type Parameters:
e Case : IBglCase, new()

e Default : IBglOperand

Case<Where, Operand> : IBqlCase

Specifies a condition to evaluate in the switch clause and the expression to return if the condition is
satisfied.

The condition is set by the Wwhere clause. In the tranlation to SQL, case is replaced with WHEN
[conditions] THEN [expression].

| API Reference | 236

Type Parameters:
e Where : IBglWhere, new()

e Operand : IBglOperand

Case<Where, Operand, NextCase> : IBqlCase

Specifies a single condition to evaluate and the expression to return if the condition is satisfied, and
allows attaching more case clauses.

Examples:

Switch<
Case<Where<Table.fieldl, Equal<Table.field2>>, intO,
Case<Where<Table.fieldl, Equal<Table.field3>>, intl>,
int2>

Where int0, intl, and int2 are derived from Constant<int> and represent the 0, 1, and 2
integers. The corresponding SQL code:

CASE
WHEN Table.Fieldl
WHEN Table.Fieldl
ELSE 2

Table.Field2 THEN 0
Table.Field3 THEN 1

END

Type Parameters:
e Where : IBglWhere, new()
e Operand : IBglOperand

e NextCase : IBglCase, new()

Executing Statements

To send a request to the database, you should call the select () method of the pxselect class.
Additional parameters are provided if a BQL statement includes parameters. The select () method
returns the pXxrResultset<> object, which represents the result set.

The select () method invokes the method of the underlying pxview object, which is responsible for
further processing of the request. The pxview object translates the BQL statement into the SQL query,
sends it to the database, and maintains the result set.

Different Ways of Executing a Statement
You use the pxselect class or its variant to define a data view in one of the following ways:

e Declared as a member in a graph. Such data view can be specified as the data member of the
webpage control and used for basic data manipulation (inserting a data record, updating a data
records, and deleting a data record). You can execute the data view by calling the select ()
method.

e Executed using the static select () method. As the first parameter, you provide a graph object
(typically, as the this variable).

e Dynamically instantiatated in code and executed using the select () method. You provide the
graph object as a parameter to the pxSelect constructor.

The following code example demonstrates different ways of BQL statement execution.

// Business logic controller (graph) declaration.
public class OrderDataEntry : PXGraph<OrderDataEntry, SalesOrder>
{

| API Reference | 237

// A data view declared as a graph member
public PXSelectOrderBy<SalesOrder,
OrderBy<Asc<SalesOrder.orderNbr>>> Orders;

public void SomeMethod ()

{
// An execution of the data view in code
foreach (SalesOrder so in Orders.Select())

{
// The SalesOrder record selected by a data view can
// be modified and updated through the Update () method
so.OrderTotal = so.LinesTotal + so.FreightAmt;
// Update the SalesOrder data record in the cache
Orders.Update (s0) ;

}

// Execution through the static Select () method
foreach (SalesOrder so in
PXSelectReadOnly3<SalesOrder,
OrderBy<Asc<SalesOrder.orderNbr>>>.Select (this))

// Dynamic instantiation of a data view
PXSelectBase<SalesOrder> orders =
new PXSelectOrderBy<SalesOrder,
OrderBy<Asc<SalesOrder.orderNbr>>> (this) ;

// An execution of a dynamically created BQL statement
foreach (SalesOrder so in orders.Select())

Note that the statically executed statement here is based on the PxSelectReadOnly class. Its result
set will not reflect the changes to the salesorder records made three lines above. At the same time,
orders.Select () will reflect the changes, because the result set will be merged with the cache.

Result Set Merging with Cache

If a BQL statement is not read-only and does not contain joins, the result set is merged with the
appropriate pxCache object and the select () method returns the merged result set.

If the BQL statement is not read-only and joins data from multiple tables, the result set is merged only
with the pxCache object that corresponds to the first table of the BQL statement. The PXResultset<>
object, which represents the result set, contains objects of generic PXxResult<> type. This type can

be cast to the DACs that represent the joined tables. The instance of the primary DAC to which the
PXResult<> is cast will contain the modifications stored in the cache. Moreover, the casting will

return the instance from the cache. On the other hand, casting PxResult<> to joined DACs will return
the instances that contain values from the database and have no relation with the caches of the
correponding DAC types.

A BQL statement is read-only if it uses aggregation or is based on the pxsSelectReadonly class or its
variant. For such statements, the result set is not merged with a pXcache object. The select () method
returns the data records as they are currently stored in the database.

Processing the Result Set

Select () returns the PXResultset<> object. The type parameter is set to the first table selected by the
BQL statement.

You can iterate through the result set in a foreach loop, obtaining:
e DAC instances

e DPXResult<> instances

| API Reference | 238

A PXResult<> instance represents a whole result set record. It can be cast to any of the DAC types
joined in the BQL statement.

In the following example, records are selected from one table.

// Result set records are implicitly casted to the Document DAC.
foreach (Document doc in PXSelect<Document>.Select (this))

{
}

The following example shows how to process a result set of a BQL statement joining two tables.

// The static Select () method is called to execute a BQL command.
PXResultset<OrderDetail> result =
PXSelectJoin<OrderDetail, InnerJoin<SalesOrder,
On<SalesOrder.orderNbr, Equal<OrderDetail.orderNbr>>>>.Select (this);

// Iterating over the result set.

// PXResult should be specialized with DACs of all joined tables
// to be able to cast to these DACs.

foreach (PXResult<OrderDetail, SalesOrder> record in result)

{
// Casting a result set record to the OrderDetail DAC.

OrderDetail detail = (OrderDetail)record;
// Casting a result set record to the SalesOrder DAC.
SalesOrder order = (SalesOrder)record;

Note that the pxrResult<> type should be specialized with DACs of all joined tables. In the example
above, the DACs are OrderDetail and SalesOrder.

The detail variable above references the orderDetail instance located in the OrderDetail cache.

The order variable above references a salesOrder instance that is initialized with the values from the
database and is placed in the part of the memory that have no relation to the salesorder cache.

Executing Statements with Parameters

Current, Optional, and Required parameters are used to pass specific values to a BQL statement. The
following example demonstrates their usage.

// Declaration of a BLC
public class ReceiptDataEntry : PXGraph<ReceiptDataEntry, Document>
{
// When a screen associated with this BLC is first opened,
// the Optional parameter will be replaced with the default DocType value.
public PXSelect<Document,
Where<Document .docType, Equal<Optional<Document.docType>>>> Receipts;

// The Current parameters will be replaced with the values from
// the PXCache<Document> object's Current property.
public PXSelect<DocTransaction,
Where<DocTransaction.docNbr, Equal<Current<Document.docNbr>>,
And<DocTransaction.docType, Equal<Current<Document.docType>>>>,
OrderBy<Asc<DocTransaction.lineNbr>>> ReceiptTransactions;

public void SomeMethod ()
{

// Select documents of the same DocType as the Current document
// has or of the default DocType if Current is null.
PXResult<Document> resl = Receipts.Select();

// Select documents of the "N" DocType
PXResult<Document> res2 = Receipts.Select ("N");

| API Reference | 239

// Parameter values are taken from the Current document
PXResult<DocTransaction> res3 = ReceiptTransactions.Select () ;

// Use the Required parameter to provide values in code.
// The result set here is the same as res2.
PXResult<Document> res4 =
PXSelect<Document,
Where<Document .docType, Equal<Required<Document.docType>>>>
.Select (this, "N");

For more details on parameters usage in BQL statement, see Using Parameters.

More Methods

Using other methods of the PXSelectBase class you can select a specific number of records, append
additional conditions to the where clause, join more tables, and redefine ordering.

Implementing Optional Select Method

In some cases the data requested from the database cannot be described by a declarative BQL
statement. In this case you can implement the optional method that will be used instead of the
standard select () logic to retrieve data from the database. The data request will still be executed via
the select () method, but his will result in the optional method invocation.

If the optional method is not defined or returns null, the standard Select () logic will be executed.

The optional method of a data view should have the same name as the data view except for the first
letter, which must have a different case. The optional method should return IEnumerable, as shown in
the following example.

// A view declaration in a graph.
public PXSelectJoin<BalancedAPDocument,
LeftJoin<APInvoice,
On<APInvoice.docType, Equal<BalancedAPDocument.docType>,
And<APInvoice.refNbr, Equal<BalancedAPDocument.refNbr>>>,
LeftJoin<APPayment,
On<APPayment.docType, Equal<BalancedAPDocument.docType>,
And<APPayment.refNbr, Equal<BalancedAPDocument.refNbr>>>>>>
DocumentList;

// The optional method executed on DocumentList.Select().
protected virtual IEnumerable apdocumentlist ()
{
// BAn empty result set is created.
// All DAC types that will be included in the set must be specified.
PXResultset<BalancedAPDocument, APInvoice, APPayment>
ret = new PXResultset<BalancedAPDocument, APInvoice, APPayment> () ;

// Iterating over the result set of a complex BQL statement.
foreach (PXResult<BalancedAPDocument, APInvoice, APPayment, APAdjust> res in
PXSelectJoinGroupBy<BalancedAPDocument,
LeftJoin<APInvoice,
On<APInvoice.docType, Equal<BalancedAPDocument.docType>,
And<APInvoice.refNbr, Equal<BalancedAPDocument.refNbr>>>,
LeftJoin<APPayment,
On<APPayment.docType, Equal<BalancedAPDocument.docType>,
And<APPayment.refNbr, Equal<BalancedAPDocument.refNbr>>>,
LeftJoin<APAdjust,
On<APAdjust.adjgDocType, Equal<BalancedAPDocument.docType>>>>>,
Aggregate<GroupBy<BalancedAPDocument.docType,
GroupBy<BalancedAPDocument.refNbr,
GroupBy<BalancedAPDocument.released,

| API Reference | 240

GroupBy<BalancedAPDocument.prebooked,
GroupBy<BalancedAPDocument.openDoc>>>>>>>.Select (this))

// Casting a result set record to DAC types.
BalancedAPDocument apdoc = (BalancedAPDocument)res;
APAdjust adj = (APAdjust)res;

// Checking some conditions and modifying records

// Adding a record to the result set.
// PXResult record passed as a parameter to the constructor is
// automatically casted to the appropriate type.
ret.Add (new PXResult<BalancedAPDocument, APInvoice, APPayment> (
apdoc, res, res));
}

return ret;

In this example, the apdocumentlist () method creates an empty result set. The PxResultSet type

in this case should be parametrized with all DAC types that will be wrapped in a result set record. The
apdocumentlist () method then executes a complex SQL query with aggregation, processes the result
set and constructs records for the output result set.

A record is added to the pxResultset object via the Add () method. Note that you can pass a PXResult
object as a parameter to the PxResult contructor. The pxrResult object will be implicitly casted to the
appropriate DAC type (here, APInvoice and APPayment).

Appendix
This chapter provides reference information for the following BQL API components:
e Search Classes

e Select Classes

Search Classes

The search classes are used for specifying BQL statements in such attributes as pxselector,
PXDBScalar, and PxDefault. A Search statement selects a value of a particular field rather than a
whole record. The field is specified as the first type parameter instead of the table. Apart from this, the
syntax of BQL statements based on search and pxSelect classes is identical.

In the example below, the pxDBScalar attribute will add a subrequest into SQL queries that request
SomeField.

// Declaration of a field in the DAC representing Tablel.
// SomeField will be assigned a value retrieved from Table2.
[PXDecimal (2)]
[PXDBScalar (typeof (
Search<Table2.someField,
Where<Table2.field2, Equal<Tablel.fieldl>>>))]
public virtual decimal? SomeField { get; set; }

For more details on attributes and examples, see Attributes Reference.

Search<Field> : BgqiCommand, IBqlSearch
Retrieves a field value.
Type Parameters:

e Field : IBglField

Search<Field, Where> : BqilCommand, IBqlSearch

Retrieves a field value, applying filtering.

| API Reference | 241

Type Parameters:
e Field : IBglField

e Where : IBglWhere, new/()

Search<Field, Where, OrderBy> : BqlCommand, IBqlSearch
Retrieves a field from a table, applying filtering and ordering.
Type Parameters:

e Field : IBglField

e Where : IBglWhere, new()

e OrderBy : IBglOrderBy, new()

Search2<Field, Join> : BqlCommand, IBqlSearch, IBqlJoinedSelect
Retrieves a field from a table joined with other tables.
Type Parameters:

e Field : IBglField

e Join : IBglJoin, new()

Search2<Field, Join, Where> : BqilCommand, IBqlSearch, IBqlJoinedSelect
Retrieves a field from a table joined with other tables, applying filtering.
Type Parameters:

e Field : IBglField

e Join : IBglJdoin, new()

e Where : IBglWhere, new()

Search2<Field, Join, Where, OrderBy> : BqiCommand, IBqlSearch, IBqlJoinedSelect
Retrieves a field from a table joined with other tables, applying filtering and ordering.
Type Parameters:

e Field : IBglField

e Join : IBglJoin, new()

e Where : IBglWhere, new()

e QOrderBy : IBglOrderBy, new/()

Search3<Field, OrderBy> : BqilCommand, IBqlSearch
Retrieves a field value, applying ordering.
Type Parameters:

e Field : IBglField

e OrderBy : IBglOrderBy, new()

Search3<Field, Join, OrderBy> : BqlCommand, IBqlSearch, IBqlJoinedSelect

Retrieves a field value from a table joined with other tables, applying ordering.

| API Reference | 242

Type Parameters:
e Field : IBglField
e Join : IBglJdoin, new /()

e QOrderBy : IBglOrderBy, new()

Search4<Field, Aggregate> : BqiCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value.
Type Parameters:

e Field : IBglField

e Aggregate : IBglAggregate, new /()

Search4<Field, Where, Aggregate> : BqilCommand, IBqlSearch, IBqlAggregate
Retrieve an aggregated field value, applying filtering.
Type Parameters:

e Field : IBglField

e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new/()

Search4<Field, Where, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value, applying filtering and ordering.
Type Parameters:

e Field : IBglField

e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new()

e OrderBy : IBglOrderBy, new()

Search5<Field, Join, Aggregate> : BqilCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value from one table joined with other tables.
Type Parameters:

e Field : IBglField

e Join : IBglJoin, new()

e Aggregate : IBglAggregate, new/()

Search5<Field, Join, Where, Aggregate> : BqlCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value from one table joined with other tables, applying filtering.
Type Parameters:

e Field : IBglField

e Join : IBglJoin, new()

e Where : IBglWhere, new/()

e Aggregate : IBglAggregate, new()

| API Reference | 243

Search5<Field, Join, Where, Aggregate, OrderBy> : BqilCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value from one table joined with other tables, applying filtering and
ordering.

Type Parameters:
e Field : IBglField
e Join : IBglJdoin, new /()
e Where : IBglWhere, new()
e Aggregate : IBglAggregate, new/()

e OrderBy : IBglOrderBy, new()

Search6<Field, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value, applying ordering.
Type Parameters:

e Field : IBglField

e Aggregate : IBglAggregate, new/()

e OrderBy : IBglOrderBy, new()

Search6<Field, Join, Aggregate, OrderBy> : BqilCommand, IBqlSearch, IBqlAggregate
Retrieves an aggregated field value from one table joined with other tables, applying ordering.
Type Parameters:

e Field : IBglField

e Join : IBglJdoin, new()

e Aggregate : IBglAggregate, new()

e OrderBy : IBglOrderBy, new()

Coalesce<Searchl, Search2> : BqilCommand, IBqlSearch, IBqlCoalesce
Retrieves a value using Search1 or, if it returns null, search2.
Type Parameters:

e Searchl : IBglSearch, new()

e Search2 : IBglSearch, new()

Select Classes

The select classes represent BQL commands and are primarily passed to pxview objects, which
execute the BQL command. However, to select data from the database, you use one of the pxSelect
classes, which initializes the select object and passes it to the pxview object for you.

The select and pxSelect BQL statements syntax is identical, only the names of the classes themselves
are different. For example, the PxSelectJoinOrderBy<Table, Join, OrderBy> type initializes the
object of Select3<Table, Join, OrderBy> type.

The select classes are also used for specifying BQL statements in such attributes as pxpParent and
PXProjection.

For more details on attributes and examples, see Attributes Reference.

Select<Table> : BqlCommand, IBqlSelect
Selects data records from a single table.
Type Parameters:

e Table : IBglTable

Select<Table, Where> : BglCommand, IBqlSelect
Selects data records from a single table with filtering.
Type Parameters:

e Table : IBglTable

e Where : IBglWhere, new/()

Select<Table, Where, OrderBy> : BqlCommand, IBqlSelect
Selects data records from a single table with filtering and ordering.
Type Parameters:

e Table : IBglTable

e Where : IBglWhere, new()

e OrderBy : IBglOrderBy, new()

Select2<Table, Join> : BgqilCommand, IBqlSelect, IBqlJoinedSelect
Selects data records from multiple tables.
Type Parameters:

e Table : IBglTable

e Join : IBglJoin, new()

Select2<Table, Join, Where> : BgqlCommand, IBqlSelect, IBqlJoinedSelect
Selects data records from multiple tables with filtering.
Type Parameters:

e Table : IBglTable

e Join : IBglJdoin, new/()

e Where : IBglWhere, new()

Select2<Table, Join, Where, OrderBy> : BqlCommand, IBqlSelect, IBqlJoinedSelect

Selects data records from multiple tables with filtering and ordering.
Type Parameters:

e Table : IBglTable

e Join : IBglJoin, new()

e Where : IBglWhere, new/()

e QOrderBy : IBglOrderBy, new/()

| API Reference | 244

| API Reference | 245

Select3<Table, OrderBy> : BgqilCommand, IBqlSelect
Selects data records from a single table with ordering.
Type Parameters:

e Table : IBglTable

e OrderBy : IBglOrderBy, new()

Select3<Table, Join, OrderBy> : BqilCommand, IBqlSelect, IBqlJoinedSelect
Selects data records from multiple tables with ordering.
Type Parameters:

e Table : IBglTable

e Join : IBglJoin, new()

e OrderBy : IBglOrderBy, new()

Select4<Table, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate
Selects aggregated values from a single table.
Type Parameters:

e Table : IBglTable

e Aggregate : IBglAggregate, new()

Select4<Table, Where, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate
Selects aggregated values from a single table with filtering.
Type Parameters:

e Table : IBglTable

e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new()

Select4<Table, Where, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate
Selects aggregated values from a single table with filtering and ordering.
Type Parameters:

e Table : IBglTable

e Where : IBglWhere, new()

e Aggregate : IBglAggregate, new()

e QOrderBy : IBglOrderBy, new()

Select5<Table, Join, Aggregate> : BgqiCommand, IBqlSelect, IBqlAggregate
Selects aggregated values from multiple tables.
Type Parameters:

e Table : IBglTable

e Join : IBglJdoin, new /()

e Aggregate : IBglAggregate, new()

| API Reference | 246

Select5<Table, Join, Where, Aggregate> : BqilCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with filtering.

Type Parameters:

Table : IBglTable
Join : IBglJoin, new /()
Where : IBglWhere, new()

Aggregate : IBglAggregate, new/()

Select5<Table, Join, Where, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with filtering and ordering.

Type Parameters:

Table : IBglTable

Join : IBglJoin, new()

Where : IBglWhere, new/()
Aggregate : IBglAggregate, new()

OrderBy : IBglOrderBy, new()

Select6<Table, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from a single table with ordering.

Type Parameters:

Table : IBglTable
Aggregate : IBglAggregate, new()

OrderBy : IBglOrderBy, new()

Select6<Table, Join, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with ordering.

Type Parameters:

Table : IBglTable
Join : IBglJoin, new/()
Aggregate : IBglAggregate, new()

OrderBy : IBglOrderBy, new()

Core Classes

The developer of Acumatica Framework applications deals most of the time with the following classes
that form the core of the framework:

The PXCache<> class represents the cache and the controller of modified data records from a
particular database table.

The PXSelect<> and related classes define a data view for retrieving a particular data set from
the database.

| API Reference | 247

e The successors of the PXGraph class are the base types for business logic controllers (graphs). In
a graph, the application defines data views, actions, and event handlers.

e The PXView class is instantiated to execute a data view. The objects of this type are handled
mostly internally.

PXCache<Table> Class

Represents the cache of modified data records from a paricular table and the controller for basic
operations over these data records. The type parameter is set to the data access class (DAC) that
represents this table.

The cache objects consists conceptually of two parts:

¢ The collections of the data records that were modified and not yet saved to the database, such as
Updated, Inserted, Deleted, and Dirty. See Properties for description of these items.

e The controller that executes basic data-related operations through the use of the methods, such
as Update(), Insert(), Delete(), Persist(), and other methods.

During execution of these methods, the cache raises events. The graph and attributes can subscribe to
these events to implement business logic. The methods applied to a previously unchanged data record
result in placing of the data record into the cache.

See Remarks for more details.

Inheritance Hierarchy

PXCache

Syntax

[System.Security.Permissions.ReflectionPermission (
System.Security.Permissions.SecurityAction.Assert,
Unrestricted = true)]

[System.Security.Permissions.SecurityPermission (
System.Security.Permissions.SecurityAction.Assert,
Unrestricted = true)]

[DebuggerTypeProxy (typeof (PXCache<>.PXCacheDebugView))]

public class PXCache<TNode> : PXCache
where TNode : class, IBglTable, new()

The pxCache<Table> type exposes the following members.

Constructors

The application does not need to instantiate pxcache directly, as the system creates caches
automatically whenever they are needed. A cache instance is always bound to an instance of the
business logic controller (graph). The application typically accesses a cache instance through the cache
property of a data view. The property always returns the valid cache instance, even if it didn't exist
before the property was accessed. A cache instance is also available through the caches property of the
graph to which the cache instance is bound.

Properties

e public virtual bool AllowDelete

Gets or sets the value that indicates whether the cache allows deletion of data records from the
user interface. This value does not affect the ability to delete a data record via the methods. By
default, the property equals true.

e public virtual bool AllowInsert

| API Reference | 248

Gets or sets the value that indicates whether the cache allows insertion of data records from the
user interface. This value does not affect the ability to insert a data record via the methods. By
default, the property equals true.

public virtual bool AllowSelect
Get, set. By default, the property equals true.
public virtual bool AllowUpdate

Gets or sets the value that indicates whether the cache allows update of data records from the
user interface. This value does not affect the ability to update a data record via the methods. By
default, the property equals true.

public override object Current

Gets or sets the current data record. This property points to the last data record displayed in the
user interface. If the user selects a data record in a grid, this property points to this data record.
If the user or the application inserts, updates, or deletes a data record, the property points to this
data record. Assigning this property raises the RowSelected event.

You can reference the Current data record and its fields in the pxSelect BQL statements by using
the current parameter.

public virtual PXGraph Graph
Gets or sets the business logic controller the cache is related to.
public override IEnumerable Dirty

Gets the collection of updated, inserted, and deleted data records. The collection contains data
records with the Updated, Inserted, Or Deleted status.

public override IEnumerable Updated

Gets the collection of updated data records that exist in the database. The collection contains data
records with the Updated status.

public override IEnumerable Inserted

Gets the collection of inserted data records that does not exist in the database. The collection
contains data records with the Inserted status.

public override IEnumerable Deleted

Gets the collection of deleted data records that exist in the database. The collection contains data
records with the Deleted status.

public override IEnumerable Cached

Get the collection of all cached data records. The collection contains data records with any status.
The developer should not rely on the presense of data records with statuses other than updated,
Inserted, and Deleted in this collection.

public override bool IsInsertedUpdatedDeleted

Gets the value that indicates if the cache contains modified data records to be saved to database.
public virtual bool IsDirty

Gets or sets the value that indicates whether the cache contains the modified data records.
public override PXFieldCollection Fields

Gets the collection of names of fields and virtual fields. By default, the collection includes all
public properties of the DAC that is associated with the cache. The collection may also include
the virtual fields that are injected by attributes (such as the description field of the PXSelector
attribute). The developer can add any field to the collection.

| API Reference | 249

e public virtual List<string> AlteredFields

Gets the collection of field names. Placing the field name in this collection forces calculation of the
PXFieldState object in the GetValueExt<>() method.

e public virtual List<string> Keys

Gets the list of the key fied names (that form the identity of a data record). The collection
contains the fields that have the 1skey property set to true in the attribute that specifies the field
data type.

e public virtual string Identity
Gets the name of the identity field if the DAC defines it.
e public override List<Type> BqglFields

Gets the list of classes that implement 1BqlField and are nested in the DAC and its base type.
These types represent DAC fields in BQL queries. This list differs from the list that the Fields
property returns.

e public override List<Type> BglKeys
Gets the collection of BQL types that correspond to the key fields which the DAC defines.
e public override Type BglTable

Gets the DAC the cache is associated with. The DAC is specified through the type parameter when
the cache is instantiated.

e public string DisplayName

Gets or sets the user-friendly name set via the PXCacheName attribute.

Methods

Method Description

Clear() Clears the cache from all data

ClearQueryCache() Clears the internal cache of database query results

CreateCopy(Table) Initializes a new data record with the field values got
from the provided data record

CreateCopy(object) Creates a clone of the provided data record by
initializing a new data record with the field values get
from the provided data record

Createlnstance() Returns a new data record of the DAC type of the
cache

Delete(object) Places the data record into the cache with the Deleted
Or InsertedDeleted status

Delete(IDictionary, IDictionary) Initializes the data record with the provided key values
and places it into the cache with the Deleted or
InsertedDeleted status

Extend<Parent>(Parent) Initializes a data record of the DAC type of the cache
from the provided data record of the base DAC type
and inserts the new data record into the cache

FromXml(string) Initializes the data record from the provided XML string

| API Reference | 250

Method

Description

GetAttributes(string)

Returns the cach-level instances of attributes placed
on the specified field and all item-level instances
currently stored in the cache

GetAttributes(object, string)

Returns the item-level instances of attributes placed
on the specified field

GetAttributes<Field>()

Returns the cach-level instances of attributes placed
on the specified field and all item-level instances
currently stored in the cache

GetAttributes<Field>(object)

Returns the item-level instances of attributes placed
on the specified field

GetAttributesReadonly(string)

Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly(string, bool)

Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly(object, string)

Returns the item-level attribute instances placed
on the specified field if such instances exist for the
provided data record or the cache-level instances
otherwise

GetAttributesReadonly <Field>()

Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly <Field>(object)

Returns the item-level instances of attributes placed
on the specified field if such instances exist for the
provided data record or the cache-level instances
otherwise

GetBqlField(string) Gets the type that represents the field with the
provided name in BQL expressions
GetBqglTable(Type) Gets the base DAC type by which the provided DAC

type is bound to the database

GetExtension<Extension>(object)

Gets the instance of the DAC extension of the specified
type

GetField(Type) Searches the Fields collection for the name of the
specified type
GetFieldCount() Returns the number of fields and virtual fields which

comprise the Fields collection

GetFieldOrdinal(string)

Returns the index of the specified field in the internally
kept fields map

GetFieldOrdinal<Field>()

Returns the index of the specified field in the internally
kept fields map

GetltemType()

Returns the DAC type of the data records in the cache

GetObjectHashCode(object)

Returns the hash code generated from key field values

GetStateExt(object, string)

Gets the pxFieldState object of the specified field in
the given data record

| API Reference | 251

Method

Description

GetStateExt<Field>(object)

Gets the pxFieldState object of the specified field in
the given data record

GetStatus(object)

Returns the status of the provided data record

GetValue(object, int)

Returns the value of the specified field in the given
data record without raising any events

GetValue(object, string)

Returns the value of the specified field in the given
data record without raising any events

GetValue<Field>(object)

Returns the value of the specified field in the given
data record without raising any events

GetValueExt(object, string)

Returns the value or the pxFieldState object of the
specified field in the given data record

GetValueExt<Field>(object)

Gets either the value or pxFieldState object of the
specified field in the given data record

GetValueOriginal(object, string)

Returns the value of the specified field for the data
record as it is stored in the database

GetValueOriginal <Field>(object)

Returns the value of the specified field for the data
record as it is stored in the database

GetValuePending(object, string)

Returns the value of the field from the provided data
record when the data record's update or insertion is in
process

GetValuePending <Field>(object)

Returns the value of the field from the provided data
record when the data record's update or insertion is in
process

HasAttributes(object)

Checks if the provided data record has any attributes
attached to its fields

Insert() Initializes a new data record with default values and
inserts it into the cache by invoking the Insert(object)
method

Insert(object) Inserts the provided data record into the cache

Insert(IDictionary) Initializes a new data record using the provided field
values and inserts the data record into the cache

Load() Loads dirty items and other cache state objects from
the session

Locate(object) Searches the cache for a data record that has the
same key fields as the provided data record

Locate(IDictionary) Searches the cache for a data record that has the
same key fields as in the provided dictionary

Normalize() Recalculates internally stored hash codes

ObjectToString(object)

Returns a string of key fields and their values in the
{keyl=valuel, key2=value2} format

ObjectsEqual(object, object)

Compares two data records by the key fields

ObjectsEqual<Field1>(object, object)

Compares two data records by the field value

| API Reference | 252

Method

Description

ObjectsEqual<Field1, Field2>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3>(object,
object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3,
Field4>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(object, object)

Compares two data records by the values of the
specified fields

Persist(PXDBOperation)

Saves the modifications of a particular type from the
cache to the database

Persist(object, PXDBOperation)

Saves the modification of the specified type from the
cache to the database for a particular data record

PersistDeleted(object)

Deletes the provided data record from the database by
the key fields

PersistInserted(object)

Inserts the provided data record into the database

PersistUpdated(object)

Updates the provided data record in the database

Persisted(bool)

Completes saving changes to the database by raising
the rRowPersisted event for all persisted data records

RaiseCommandPreparing(string, object,
object, PXDBOperation, Type, out)

Raises the commandPreparing event for the specified
field and data record

RaiseCommandPreparing <Field>(object,
object, PXDBOperation, Type, out)

Raises the commandPreparing event for the specified
field and data record

RaiseExceptionHandling(string, object,
object, Exception)

Raises the ExceptionHandling event for the specified
field and data record

RaiseExceptionHandling <Field>(object,
object, Exception)

Raises the ExceptionHandling event for the specified
field and data record

RaiseFieldDefaulting(string, object, out)

Raises the FieldbDefaulting event for the specified
field and data record

RaiseFieldDefaulting <Field>(object, out)

Raises the FieldDefaulting event for the specified
field and data record

RaiseFieldSelecting(string, object, ref, bool)

Raises the Fieldselecting event for the specified
field and data record

RaiseFieldSelecting<Field>(object, ref, bool)

Raises the Fieldselecting event for the specified
field and data record

RaiseFieldUpdated(string, object, object)

Raises the Fieldupdated event for the specified field
and data record

| API Reference | 253

Method

Description

RaiseFieldUpdated<Field>(object, object)

Raises the Fieldupdated event for the specified field
and data record

RaiseFieldUpdating(string, object, ref)

Raises the Fieldupdating event for the specified field
and data record

RaiseFieldUpdating <Field>(object, ref)

Raises the FieldUpdating event for the specified field
and data record

RaiseFieldVerifying(string, object, ref)

Raises the Fieldverifying event for the specified
field and data record

RaiseFieldVerifying <Field>(object, ref)

Raises the Fieldverifying event for the specified
field and data record

RaiseRowDeleted(object)

Raises the rRowDeleted event for the specified data
record

RaiseRowDeleting(object)

Raises the rRowDeleting event for the specified data
record

RaiseRowlInserted(object)

Raises the RowInserted event for the specified data
record

RaiseRowlInserting(object)

Raises the RowInserting event for the specified data
record

RaiseRowPersisted(object, PXDBOperation,
PXTranStatus, Exception)

Raises the RowPersisted event for the specified data
record

RaiseRowPersisting(object, PXDBOperation)

Raises the RowPersisting event for the specified data
record

RaiseRowSelected(object)

Raises the rRowSelected event for the specified data
record

RaiseRowSelecting(object, PXDataRecord, ref
int, bool)

Raises the rRowSelecting event for the specified data
record

RaiseRowUpdated(object, object)

Raises the rRowUpdated event for the specified data
record

RaiseRowUpdating(object, object)

Raises the rRowUpdating event for the specified data
record

Remove(object)

Completely removes the provided data record from the
cache without raising any events

RestoreCopy(object, object)

Copies values of all fields from the second data record
to the first data record

RestoreCopy(Table, Table)

Copies values of all fields from the second data record
to the first data record

Select(PXDataRecord, ref int, bool, out bool)

Creates a data record from the pxDataRecord object
and places it into the cache with the NotChanged
status if the data record isn't found among the
modified data records in the cache

SetAltered(string, bool)

Adds the field to the AlteredFields list or removes it
from this list

| API Reference | 254

Method Description

SetAltered<Field>(bool) Adds the field to the AlteredFields list or removes it
from this list

SetDefaultExt(object, string) Sets the default value to the field in the provided data
record

SetDefaultExt<Field>(object) Sets the default value to the field in the provided data
record

SetStatus(object, PXEntryStatus) Sets the status to the provided data record

SetValue(object, int, object) Sets the value of the field in the provided data record
without raising events

SetValue(object, string, object) Sets the value of the field in the provided data record
without raising events

SetValue<Field>(object, object) Sets the value of the field in the provided data record
without raising events

SetValueExt(object, string, object) Sets the value of the field in the provided data record

SetValueExt<Field>(object, object) Sets the value of the field in the provided data record

SetValuePending(object, string, object) Sets the value of the field in the provided data record

when the data record's update or insertion is in
process and the field possibly hasn't been updated in
the cache yet

SetValuePending <Field>(object, object) Sets the value of the field in the provided data record
when the data record's update or insertion is in
process and the field possibly hasn't been updated in
the cache yet

ToDictionary(object) Converts the provided data record to the dictionary of
field names and field values

ToString() Returns the string representing the current cache
object

ToXml(object) Returns the XML string representing the provided data
record

Unload() Serializes the cache to the session

Update(object) Updates the provided data record in the cache

Update(IDictionary, IDictionary) Updates the data record in the cache with the provided
values

ValueFromString(string, string) Converts the provided value of the field from a string

to the appropriate type and returns the resulting value

ValueToString(string, object) Converts the provided value of the field to string and
returns the resulting value

Remarks

The system creates and destroys pxCache instances (caches) on each request. If the user or the code
modifies a data record, it is placed into the cache. When request execution is completed, the system
serializes the modified records from the caches to the session. At run time, the cache may also include

| API Reference | 255

the unchanged data records retrieved during request execution. These data records are discarded once
the request is served.

On the next round trip, the modified data records are loaded from the session to the caches. The cache
merges the data retrieved from the database with the modified data, and the application accesses the
data as if the entire data set has been preserved from the time of previous request.

The cache maintains the modified data until the changes are discarded or saved to the database.

The cache is the issuer of all data-related events, which can be handled by the graph and attributes.

PXCache<Table> Methods
The PXCache<Table> type exposes the following methods.

Clear()
Clears the cache from all data.

Syntax:

public override void Clear ()

Examples:

The code below clears the cache of the PorReceipt data records.

// Declaration of a data view in a graph
public PXSelect<POReceipt> poreceiptslist;

// Clearing the cache of POReceipt data records
poreceiptslist.Cache.Clear () ;

ClearQueryCache()
Clears the internal cache of database query results.

Syntax:

public override void ClearQueryCache ()

CreateCopy(Table)
Initializes a new data record with the field values from the provided data record.

Syntax:
public static Table CreateCopy (Table item)

Parameters:
e item
The data record to copy.
Examples:
The code below creates a copy of the current data record of a data view.
public PXSelect<APInvoice, ... > Document;

APInvoice newdoc = PXCache<APInvoice>.CreateCopy (Document.Current) ;

| API Reference | 256

CreateCopy(object)

Creates a clone of the provided data record by initializing a new data record with the field values get
from the provided data record.

Syntax:
public override object CreateCopy (object item)

Parameters:
e item

The data record to copy.

Createlnstance()

Returns a new data record of the DAC type of the cache. The method may be used to initialize a data
record of the type appropriate for the pxCache instance when its DAC type is unknown.

Syntax:

public override object Createlnstance ()

Delete(object)

Places the data record into the cache with the Deleted or InsertedDeleted status. The method assigns
the InsertedDeleted status to the data record if it has the Inserted status when the method is
invoked.

The method raises the RowDeleting and RowDeleted events. See Deleting a Data Record for the events
flowchart.

The AllowDelete property does not affect this method.

Syntax:
public override object Delete (object data)

Parameters:
e data
The data record to delete.
Examples:

The code below deletes an APInvoice data record.

APInvoice item = ...
Documents.Cache.Delete (item) ;

The second line above is equivalent to the following line.

Documents.Delete (item) ;

Delete(IDictionary, IDictionary)

Initializes the data record with the provided key values and places it into the cache with the Deleted or
InsertedDeleted status. The method assigns the InsertedbDeleted status to the data record if it has
the Inserted status when the method is invoked.

The method raises the following events: FieldUpdating, FieldUpdated, RowDeleting, and RowDeleted
events. See Deleting a Data Record for the events flowchart.

| API Reference | 257

This method is typically used to process deletion initiated from the user interface. If the AllowDelete
property is false, the data record is not marked deleted and the method returns 0. The method returns
1 if the data record is successfully marked deleted.

Syntax:

public override int Delete (IDictionary keys, IDictionary values)

Parameters:
e Xkeys
The values of key fields.
e values

The values of all fields. The parameter is not used in the method.

Extend<Parent>(Parent)

Initializes a data record of the DAC type of the cache from the provided data record of the base DAC
type and inserts the new data record into the cache. Returns the inserted data record.

Syntax:
public override object Extend<Parent> (Parent item)

The DAC type of the cache should derive from the parent DAC.
Parameters:
e item
The data record of the base DAC type which field values are used to initialize the data record.
Examples:

See the Extend<Parent>(Parent) method of the pPxSelectBase<> class.

FromXmli(string)
Initializes the data record from the provided XML string.

The data record is represented in the XML by the <Row> element with the type attribute set to the DAC
name. Each field is represented by the <Field> element with the name attribute holding the field name
and the value attribute holding the field value.

Syntax:
public override object FromXml (string xml)
Parameters:

e xml

The XML string to parse.

GetAttributes(string)

Returns the cach-level instances of attributes placed on the specified field and all item-level instances
currently stored in the cache.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributes (string name)

| API Reference | 258

Parameters:

& name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

GetAttributes(object, string)

Returns the item-level instances of attributes placed on the specified field. If such instances are not
exist for the provided data record, the method creates them by copying all cache-level attributes and
storing them in the internal collection that contains the data record specific attributes. To avoid cloning
cache-level attributes, use the GetAttributesReadonly(object, string) method.

Syntax:

public override List<PXEventSubscriberAttribute>
GetAttributes (object data, string name)

Parameters:

e data
The data record.

e name

The name of the field whose attributes are returned. If nul1, the method returns attributes from
all fields.

GetAttributes<Field>()

Returns the cach-level instances of attributes placed on the specified field and all item-level instances
currently stored in the cache. The field is specified as the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributes<Field> ()
where Field : IBglField

GetAttributes<Field>(object)

Returns the item-level instances of attributes placed on the specified field. If such instances are not
exist for the provided data record, the method creates them by copying all cache-level attributes and
storing them in the internal collection that contains the data record specific attributes. To avoid cloning
cache-level attributes, use the GetAttributesReadonly(object, string) method. The field is specified as
the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributes<Field> (object data)
where Field : IBglField

Parameters:
e data
The data record.

Examples:

foreach (PXEventSubscriberAttribute attr in sender.GetAttributes<Field> (data))

{
if (attr is PXUIFieldAttribute)

{

| API Reference | 259

// Doing something

GetAttributesReadonly(string)
Returns the cache-level instances of attributes placed on the specified field in the DAC.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly (
string name)

Parameters:
® name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

Remarks:

The system maintains instances of attributes on three different levels. On its instantiation, a cache
object copies appropriate attributes from the global level to the cache level and stores them in an
internal collection. When an attribute needs to be modified for a particular data record, the cache
creates item-level copies of all attributes and stores them associated with the data record.

GetAttributesReadonly(string, bool)
Returns the cache-level instances of attributes placed on the specified field in the DAC.

Using this method, you can prevent expanding the aggregate attributes by setting the second
parameter to false. Other overloads of this method always include both the aggregate attributes and
the attributes that comprise such attributes.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly (
string name, bool extractEmmbeddedAttr)

Parameters:
¢ name
The data record.
e extractEmmbeddedAttr

The value that indicates whether the attributes embedded into an aggregate attribute are included
into the list. If true, both the aggregate attribute and the attributes embedded into it are
included in the list. Otherwise, only the aggregate attribute is included.

An aggregate attribute is an attribute that derives from the PXAggregateAttribute class. This
—| class allows combining multiple different attributes in a single one.

GetAttributesReadonly(object, string)

Returns the item-level attribute instances placed on the specified field, if such instances exist for the
provided data record, or the cache-level instances, otherwise.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly (
object data, string name)

| API Reference | 260

Parameters:

e data
The data record.

¢ name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

Examples:

The code below gets the attributes and places them into a list.

protected virtual void InventoryItem ValMethod FieldVerifying(
PXCache sender, PXFieldVerifyingEventArgs e)

{
List<PXEventSubscriberAttribute> attrlist =
sender.GetAttributesReadonly (e.Row, "ValMethod");

GetAttributesReadonly<Field>()

Returns the cache-level instances of attributes placed on the specified field in the DAC. The field is
specified as the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributesReadonly<Field> ()
where Field : IBglField

GetAttributesReadonly<Field>(object)

Returns the item-level instances of attributes placed on the specified field if such instances exist for
the provided data record or the cache-level instances otherwise. The field is specified as the type
parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributesReadonly<Field> (
object data)
where Field : IBglField

Parameters:

e data

The data record.

GetBqlField(string)
Gets the type that represents the field with the provided name in BQL expressions.
The method searches the field by its name in the BqlFields collection.

Syntax:
public Type GetBglField(string field)
Parameters:

e field

The name of the field.

| API Reference | 261

GetBqlTable(Type)
Gets the base DAC type by which the provided DAC type is bound to the database.
Syntax:

public static Type GetBglTable (Type dac)

Parameters:

e dac

The DAC type for which the base DAC type is searched.

GetExtension<Extension>(object)

Gets the instance of the DAC extension of the specified type. The extension type is specified as the type
parameter.

Syntax:

public override Extension GetExtension<Extension> (object item)

Parameters:
e item
The standard data record whose extension is returned.
Examples:
The code below gets an extension data record corresponding to the given instance of the base data

record.

Inventoryltem item = cache.Current as Inventoryltem;
InventorylItemExtension itemExt =
cache.GetExtension<InventoryItemExtension> (item) ;

GetExtension<Extension>(Table)

Gets the instance of the DAC extension of the specified type. The extension type is specified as the type
parameter.

Syntax:

public static Extension GetExtension<Extension> (Table item)
where Extension : PXCacheExtension<Table>

Parameters:
e item
The standard data record whose extension is returned.
Examples:
The code below gets an extension data record corresponding to the given instance of the base data

record.

Inventoryltem item = cache.Current as Inventoryltem;
InventorylItemExtension itemExt =
PXCache<Inventoryltem>.GetExtension<InventoryltemExtension> (item) ;

GetField(Type)

| API Reference | 262

Searches the Fields collection for the name of the specified type. Returns the field name if the field is

found in the collection or null otherwise.

Syntax:
public string GetField (Type bglField)

Parameters:
e bglField
The type declaration of the field in the DAC.

GetFieldCount()

Returns the number of fields and virtual fields which comprise the Fields collection.

Syntax:

public override int GetFieldCount ()

GetFieldOrdinal(string)
Returns the index of the specified field in the internally kept fields map.
Syntax:

public override int GetFieldOrdinal (string field)

Parameters:
e field

The name of the field whose index is returned.

GetFieldOrdinal<Field>()
Returns the index of the specified field in the internally kept fields map. The pare

Syntax:

public override int GetFieldOrdinal<Field> ()

GetItemType()
Returns the DAC type of the data records in the cache.
Syntax:

public override Type GetItemType ()

GetObjectHashCode(object)
Returns the hash code generated from key field values.

Syntax:
public override int GetObjectHashCode (object data)

Parameters:

e data

| API Reference | 263

The data record.

GetStateExt(object, string)
Gets the pxFieldState object of the specified field in the given data record.
The method raises the FieldSelecting event.

Syntax:
public override object GetStateExt (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName

The name of the field whose PxFieldState object is created.

GetStateExt<Field>(object)

Gets the pxFieldstate object of the specified field in the given data record. The field is specified as the
type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetStateExt<Field> (object data)
where Field : IBglField

Parameters:
e data

The data record.

GetStatus(object)

Returns the status of the provided data record. The PXEntryStatus enumeration defines the possible
status values. For example, the status can indicate whether the data record has been inserted, updated,
or deleted.

Syntax:
public override PXEntryStatus GetStatus (object item)

Parameters:
e item
The data record whose status is requested.
Examples:

The code below shows how a status of a data record can be checked in an event handler.

protected virtual void Vendor RowSelected (PXCache sender,
PXRowSelectedEventArgs e)
{
Vendor vend = e.Row as Vendor;
if (vend != null && sender.GetStatus(vend) == PXEntryStatus.Notchanged)
{

| API Reference | 264

GetValue(object, int)

Returns the value of the specified field in the given data record without raising any events. The field is
specified by its index—see the GetFieldOrdinal(string) method.

Syntax:
public override object GetValue (object data, int ordinal)

Parameters:
e data
The data record.
e ordinal

The index of the field whose value is returned.

GetValue(object, string)
Returns the value of the specified field in the given data record without raising any events.

Syntax:
public override object GetValue (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName
The name of the field whose value is returned.
Remarks:

To get the field of a data record of a known DAC type, you can use DAC properties. If a type of a data
record is unknown (for example, when it is available as object), you can use the Getvalue () methods
to get a value of a field. These methods can also be used to get values of fields defined in extensions
(another way is to get the extension data record through the GetExtension<>() method).

The GetValueExt() methods are used to get the value or the field state object and raise events.
Examples:

The code below iterates over all fields of a specific DAC (including fields defined in extensions) and
checks whether a value is null.

foreach (string field in sender.Fields)

{

if (sender.GetValue (row, field) == null)

}

Here, sender is an instance of the pxCache<Table> type and row references an instance of Table
(although the row variable may be of object type).

| API Reference | 265

GetValue<Field>(object)

Returns the value of the specified field in the given data record without raising any events. The field is
specified as the type parameter.

Syntax:

public object GetValue<Field> (object data)
where Field : IBglField

Parameters:
e data
The data record whose field value is returned.
Examples:

The code below gets the value of one field and assigns it to another field.

protected virtual void APInvoice VendorLocationID FieldUpdated (
PXCache sender, PXFieldUpdatedEventArgs e)
{

sender.SetValue<APInvoice.payLocationID> (
e.Row, sender.GetValue<APInvoice.vendorLocationID> (e.Row)) ;

GetValueExt(object, string)

Returns the value or the pxFieldState object of the specified field in the given data record. The
PXFieldState object is returned if the field is in the AlteredFields collection.

The method raises the FieldSelecting event.

Syntax:

public override object GetValueExt (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName

The name of the field whose value or PxFieldState object is returned.

GetValueExt<Field>(object)

Gets either the value or PxFieldState object of the specified field in the given data record. The
PXFieldState object is returned if the field name is in the AlteredFields collection. The field is
specified as the type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetValueExt<Field> (object data)
where Field : IBglField

Parameters:

e data

The data record whose field value or PxFieldState object is returned.

| API Reference | 266

Examples:

The code below shows how you can get the value of a field if the GetvalueExt<>() method returns the
field state object.

object finPeriodID = cache.GetValueExt<APRegister.finPeriodID> (doc) ;
if (finPeriodID is PXFieldState)

{
finPeriodID = ((PXFieldState)finPeriodID) .Value;

}

GetValueOriginal(object, string)
Returns the value of the specified field for the data record as it is stored in the database.

Syntax:

public override object GetValueOriginal (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName

The name of the field whose original value is returned.

GetValueOriginal<Field>(object)

Returns the value of the specified field for the data record as it is stored in the database. The field is
specified as the type parameter.

Syntax:

public object GetValueOriginal<Field> (object data)
where Field : IBglField

Parameters:
e data

The data record.

GetValuePending(object, string)

Returns the value of the field from the provided data record when the data record's update or insertion
is in progress.

The method raises the FieldSelecting event.

Syntax:
public override object GetValuePending (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName

The field name.

| API Reference | 267

GetValuePending<Field>(object)

Returns the value of the field from the provided data record when the data record's update or insertion
is in progress. The field is specified as the type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetValuePending<Field> (object data)
where Field : IBglField

Parameters:
e data

The data record.

HasAttributes(object)
Checks if the provided data record has any attributes attached to its fields.

Syntax:
public override bool HasAttributes (object data)

Parameters:
e data

The data record.

Insert()

Initializes a new data record with default values and inserts it into the cache by invoking the
Insert(object) method. Returns the new data record inserted into the cache.

Syntax:
public override object Insert ()
Examples:

APInvoice newltem = cache.Insert ()

Insert(object)

Inserts the provided data record into the cache. Returns the inserted data record or null if the data
record wasn't inserted.

The method raises the following events: FieldDefaulting, FieldUpdating, FieldVerifying,
FieldUpdated, RowInserting, and RowInserted. See Inserting a Data Record for the events chart.

The method does not check if the data record exists in the database. The AllowlInsert property does not
affect this method unlike the Insert(IDictionary) method.

In case of successful insertion, the method marks the data record as Inserted, and it becomes
accessible through the 1nserted collection.

Syntax:
public override object Insert (object data)

Parameters:

| API Reference | 268

e data
The data record to insert into the cache.
Examples:

The code below initializes a new instance of the APInvoice data record and inserts it into the cache.

APInvoice newDoc = new APInvoice();
newDoc.VendorID = Document.Current.VendorID;
Document.Insert (newbDoc) ;

Here Document is a data view that selects ApInvoice data records. Invoking the Insert () method on it
is a shortcut for the following code.

Document.Cache.Insert (newDoc) ;

Insert(IDictionary)

Initializes a new data record using the provided field values and inserts the data record into the cache.
Returns 1 in case of successful insertion, and 0 otherwise.

The method raises the following events: FieldDefaulting, FieldUpdating, FieldVerifying,
FieldUpdated, RowInserting, and RowInserted. See Inserting a Data Record for the events chart.

The method does not check if the data record exists in the database. The values provided in the
dictionary are not readonly and can be updated during execution of the method. The method is typically
used by the system when the values are received from the user interface. If the AllowInsert property
is false, the data record is not inserted and the method returns 0.

In case of successful insertion, the method marks the data record as Inserted, and it becomes
accessible through the 1nserted collection.

Syntax:
public override int Insert (IDictionary values)

Parameters:
e values

The dictionary with values to initialize the data record fields. The dictionary keys are field names.

Load()

Loads dirty items and other cache state objects from the session. The application does not typically use
this method.

Syntax:

public override void Load()

Locate(object)

Searches the cache for a data record that has the same key fields as the provided data record. If the
data record is not found in the cache, the method retrieves the data record from the database and
places it into the cache with the NotChanged status. The method returns the located or retrieved data
record.

The allowSelect property does not affect this method unlike the Locate(IDictionary) method.

Syntax:

public override object Locate (object item)

| API Reference | 269

Parameters:
e item

The data record to locate in the cache.

Locate(IDictionary)

Searches the cache for a data record that has the same key fields as in the provided dictionary. If the
data record is not found in the cache, the method initializes a new data record with the provided values
and places it into the cache with the NotChanged status.

Returns 1 if a data record is successfully located or placed into the cache, and returns 0 if placing into
the cache fails or the AllowSelect property is false.

Syntax:
public override int Locate (IDictionary keys)

Parameters:
e keys

The dictionary with values to initialize the data record fields. The dictionary keys are field names.

Normalize()

Recalculates internally stored hash codes. The method should be called after a key field is modified in a
data record from the cache.

Syntax:

public override void Normalize ()

ObjectToString(object)
Returns a string of key fields and their values in the {keyl=valuel, key2=value2} format.

Syntax:
public override string ObjectToString (object data)

Parameters:
e data

The data record which key fields are written to a string.

ObjectsEqual(object, object)

Compares two data records by the key fields. Returns true if the values of all key fields in the data
records are equal. Otherwise, returns false.

Syntax:
public override bool ObjectsEqual (object a, object b)

Parameters:
e a
The first data record to compare.
e Db

The second data record to compare.

| API Reference | 270

ObjectsEqual<Field1>(object, object)
Compares two data records by the field value.

Syntax:

public bool ObjectsEqual<Fieldl> (object a, object b)
where Fieldl : IBglField

Parameters:
e a
The first data record to compare.
e b

The second data record to compare.

ObjectsEqual<Field1, Field2>(object, object)
Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl, Field2>(object a, object b)
where Fieldl : IBglField
where Field2 : IBglField

Parameters:
e a
The first data record to compare.
e Db

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3>(object, object)
Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl, Field2, Field3>(object a, object b)
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField

Parameters:
e a
The first data record to compare.
e b
The second data record to compare.

Examples:

This method and its overloads are often used in the FieldUpdated or RowUpdated event handlers. The
following code can be used in such event handlers for the APInvoice data records.

if (!sender.ObjectsEqual<APInvoice.docDate,
APInvoice.finPeriodID,
APInvoice.curyID> (e.Row, e.0ldRow))

ObjectsEqual<Field1, Field2, Field3, Field4>(object, object)
Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl, Field2, Field3, Field4>(object a, object Db)
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField

Parameters:
¢ a
The first data record to compare.
e b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5>(object, object)
Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl, Field2, Field3,
Field4, Field5> (object a, object b)
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField
where Field5 : IBglField

Parameters:
e a
The first data record to compare.
e b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5, Field6>(object, object)
Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl, Field2, Field3,
Field4, Field5, Field6>(object a, object b)
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField
where Field5 : IBglField
where Field6 : IBglField

Parameters:
e a

The first data record to compare.

| API Reference | 271

e Db

| API Reference | 272

The second data record to compare.

ObjectsEqual<Fieldl, Field2, Field3, Field4, Field5, Field6, Field7>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl,
Fields5,

where
where
where
where
where
where
where

Parameters:

* a

The first data record to compare.

e Db

Fieldl
Field2
Field3
Field4
Field5
Fieldé6
Field7

IBglField
IBglField
IBglField
IBglField
IBglField
IBglField
IBglField

Field2, Field3, Field4,
Field6, Field7>(object a, object b)

The second data record to compare.

ObjectsEqual<Field1l, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Fieldl,
Field5,

where
where
where
where
where
where
where
where

Parameters:

* a

The first data record to compare.

e Db

Fieldl
Field2
Field3
Field4
Field5
Fieldé6
Field7
Field8

IBglField
IBglField
IBglField
IBglField
IBglField
IBglField
IBglField
IBglField

Field2, Field3, Field4,
Field6, Field7, Field8> (object a, object b)

The second data record to compare.

Persist(PXDBOperation)

Saves the modifications of a particular type from the cache to the database. Returns the number of
saved data records.

Using this method, you can update, delete, or insert all data records kept by the cache. You can also
perform different operations at once by passing a combination of PxDBOperation values, such as

PXDBOperation.Insert |

PXDBOperation.Update.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,

ExceptionHandling.

| API Reference | 273

Syntax:

public override int Persist (PXDBOperation operation)

Parameters:
e operation

The value that indicates the types of database operations to execute, either one of
PXDBOperation.Insert, PXDBOperation.Update, and PXDBOperation.Delete values or their
bitwise "or" (|) combination.

Examples:

The code below modifies a vendor data record, updates it in the cache, saves changes to update
Vendor data records to the database, and causes raising of the RowPersisted event with indication that
the operation has completed successfully.

vendor.Status = BAccount.status.Inactive;
Caches[typeof (Vendor)] .Update (vendor) ;

Caches|[typeof (Vendor)] .Persist (PXDBOperation.Update) ;
Caches|[typeof (Vendor)] .Persisted(false) ;

Persist(object, PXDBOperation)
Saves the modification of the specified type from the cache to the database for a particular data record.

Syntax:

public override void Persist (object row, PXDBOperation operation)

Parameters:
¢ row
The data record to save to the database.
e operation

The database operation to perform for the data record, either one of PXxDBOperation.Insert,
PXDBOperation.Update, and PXDBOperation.Delete values or their bitwise "or" (|) combination.

PersistDeleted(object)

Deletes the provided data record from the database by the key fields. Returns true if the data record
has been deleted sucessfully, or false otherwise.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the pPxDBInterceptor attribute.

Syntax:
public override bool PersistDeleted (object row)
Parameters:

¢ Trow

The data record to deleted from the database.

| API Reference | 274

PersistInserted(object)

Inserts the provided data record into the database. Returns true if the data record has been inserted
sucessfully, or false otherwise.

The method throws an exception if the data record with such keys exists in the database.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the pxDBInterceptor attribute.

Syntax:

public override bool PersistInserted(object row)

Parameters:
o row

The data record to insert into the database.

PersistUpdated(object)

Updates the provided data record in the database. Returns true if the data record has been updated
sucessfully, or false otherwise.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the pxDBInterceptor attribute.

Syntax:

public override bool PersistUpdated (object row)

Parameters:
o row

The data record to update in the database.

Persisted(bool)

Completes saving changes to the database by raising the rRowPersisted event for all persisted data
records.

Syntax:

public override void Persisted(bool isAborted)

Parameters:
e isAborted
The value indicating whether the database operation has been aborted or completed.

Examples:

You need to call this method in the application only when you call the persist (), PersistInserted(),
PersistUpdated (), Oor PersistDeleted () method, as the following example shows.

// Opening a transaction and saving changes to the provided
// new data record
using (PXTransactionScope ts = new PXTransactionScope ())
{
cache.PersistInserted (item) ;
ts.Complete (this) ;

| API Reference | 275

}

// Indicating successful completion of saving changes to the database
cache.Persisted(false);

RaiseCommandPreparing(string, object, object, PXDBOperation, Type, out)
Raises the commandPreparing event for the specified field and data record.

Syntax:

public bool RaiseCommandPreparing(
string name, object row, object value, PXDBOperation operation,
Type table, out PXCommandPreparingEventArgs.FieldDescription description)

Parameters:

¢ name

The name of the field for which the event is raised.
¢ row

The data record for which the event is raised.
e value

The current field value.
e operation

The current database operation.
e table

The type of DAC objects placed in the cache.
e (out) description

The FieldDescription object containing the description of the current field.

RaiseCommandPreparing<Field>(object, object, PXDBOperation, Type, out)
Raises the commandPreparing event for the specified field and data record.

Syntax:

public bool RaiseCommandPreparing<Field> (
object row, object value, PXDBOperation operation,
Type table, out PXCommandPreparingEventArgs.FieldDescription description)
where Field : IBglField

Parameters:
¢ row
The data record for which the event is raised.
e value
The current field value.
e operation
The current database operation.
e table
The type of DAC objects placed in the cache.

| API Reference | 276

e (out) description

The FieldDescription object containing the description of the current field.

RaiseExceptionHandling(string, object, object, Exception)
Raises the ExceptionHandling event for the specified field and data record.

Syntax:

public bool RaiseExceptionHandling(string name, object row,
object newValue, Exception exception)

Parameters:

e name
The name of the field for which the event is raised.
¢ row
The data record for which the event is raised.
e newValue
The new value of the current field generated by the operation that causes the exception.
e exception

The exception that causes the event.

RaiseExceptionHandling<Field>(object, object, Exception)
Raises the ExceptionHandling event for the specified field and data record.

Syntax:

public bool RaiseExceptionHandling<Field> (object row, object newValue,
Exception exception)

where Field : IBglField

Parameters:
o row

The data record for which the event is raised.

e newValue

The new value of the current field generated by the operation that causes the exception.

e exception
The exception that causes the event.

Examples:

A typical use of the method is found in event handlers when the value of a field doesn't pass

validation. If the value is validated in a RowUpdating event handler, you should pass an instance of
PXSetPropertyException with the error message to the method. The code below gives an example for
this case.

INComponent row = e.NewRow as INComponent;

if (row != null && row.Qty != null &&
row.MinQty != null && row.Qty <= row.MinQty)
{
sender.RaiseExceptionHandling<INComponent.qgty> (
row, row.Qty, new PXSetPropertyException (

| API Reference | 277

"Quantity must be greater or equal to Min. Quantity."));

RaiseFieldDefaulting(string, object, out)
Raises the FieldDefaulting event for the specified field and data record.

Syntax:

public bool RaiseFieldDefaulting(string name, object row, out object newValue)

Parameters:
e name
The name of the field for which the event is raised.
¢ Trow
The data record for which the event is raised.
e newValue

The default value for the current field.

RaiseFieldDefaulting<Field>(object, out)
Raises the FieldDefaulting event for the specified field and data record.

Syntax:

public bool RaiseFieldDefaulting<Field> (object row, out object newValue)
where Field : IBglField

Parameters:
L4 row
The data record for which the event is raised.
e newValue
The default value for the current field.
Examples:

The code below shows how to raise an event.

CashAccount acct = null;

// Get the cache (the other way is to use Cache property of a data view)
PXCache cache = this.Caches[typeof (ARPayment)].Cache;

// Initialize a new ARPayment data record

ARPayment payment = new ARPayment () ;
payment.CustomerID = aDoc.CustomerID;
payment.CustomerLocationID = aDoc.CustomerLocationID;

// You could execute cache.Insert (payment) to insert the data record
// in the cache and raise the events including FieldDefaulting.
// However, we need to raise FieldDefaulting only on one field.

// Declare a variable for the value
object newValue;

// Raise the FieldDefaulting event
cache.RaiseFieldDefaulting<ARPayment.cashAccountID> (payment, out newValue) ;

// Convert the object to the data type of the field

Int32? acctID = newValue as Int327?;

// Use the value to retrieve the CashAccount data record
if (acctID.HasValue)
{

acct = PXSelect<CashAccount,
Where<CashAccount.cashAccountID,
Equal<Required<CashAccount.cashAccountID>>>>.

Select (this, acctID);

RaiseFieldSelecting(string, object, ref, bool)

Raises the FieldSelecting event for the specified field and data record.

Syntax:

public bool RaiseFieldSelecting(string name, object row,
ref object returnValue,
bool forceState)

Parameters:

® name

The name of the field for which the event is raised.

® row

The data record for which the event is raised.

e returnValue

The external presentation of the value of the current field.

e forceState

The value indicating whether the PXFieldState object should be generated.

RaiseFieldSelecting<Field>(object, ref, bool)
Raises the FieldSelecting event for the specified field and data record.
Syntax:
public bool RaiseFieldSelecting<Field> (object row, ref object returnValue,

bool forceState)
where Field : IBglField

Parameters:
o row

The data record for which the event is raised.

e returnValue

The external presentation of the value of the current field.

e forceState

The value indicating whether the PXFieldState object should be generated.

RaiseFieldUpdated(string, object, object)

Raises the Fieldupdated event for the specified field and data record.

| API Reference | 278

Syntax:
public void RaiseFieldUpdated (string name, object row, object oldValue)

Parameters:
e name
The name of the field for which the event is raised.
L4 row
The data record for which the event is raised.
e oldValue

The value of the current field befor update.

RaiseFieldUpdated<Field>(object, object)
Raises the FieldUpdated event for the specified field and data record.

Syntax:

public void RaiseFieldUpdated<Field> (object row, object oldValue)
where Field : IBglField

Parameters:
¢ row
The data record for which the event is raised.
e oldvalue

The value of the current field befor update.

RaiseFieldUpdating(string, object, ref)
Raises the Fieldupdating event for the specified field and data record.

Syntax:
public bool RaiseFieldUpdating(string name, object row, ref object newValue)

Parameters:
¢ name
The name of the field for which the event is raised.
¢ TYow
The data record for which the event is raised.
e newValue

The updated value of the current field.

RaiseFieldUpdating<Field>(object, ref)
Raises the Fieldupdating event for the specified field and data record.

Syntax:

public bool RaiseFieldUpdating<Field> (object row, ref object newValue)
where Field : IBglField

| API Reference | 279

| API Reference | 280

Parameters:
¢ row
The data record for which the event is raised.
e newValue

The updated value of the current field.

RaiseFieldVerifying(string, object, ref)
Raises the Fieldverifying event for the specified field and data record.

Syntax:
public bool RaiseFieldVerifying(string name, object row, ref object newValue)

Parameters:
® name
The name of the field for which the event is raised.
¢ row
The data record for which the event is raised.
e newValue

The updated value of the current field.

RaiseFieldVerifying<Field>(object, ref)
Raises the Fieldverifying event for the specified field and data record.

Syntax:

public bool RaiseFieldVerifying<Field> (object row, ref object newValue)
where Field : IBglField

Parameters:
¢ row
The data record for which the event is raised.
e newValue

The updated value of the current field.

RaiseRowDeleted(object)
Raises the rRowDeleted event for the specified data record.
Syntax:

public void RaiseRowDeleted (object item)

Parameters:
e item

The data record for which the event is raised.

RaiseRowDeleting(object)

Raises the RowDeleting event for the specified data record.

Syntax:

public bool RaiseRowDeleting (object item)

Parameters:

item

The data record for which the event is raised.

RaiseRowlInserted(object)

Raises the RowInserted event for the specified data record.

Syntax:

public void RaiseRowInserted (object item)

Parameters:

item

The data record for which the event is raised.

RaiseRowlInserting(object)

Raises the RowInserting event for the specified data record.

Syntax:

public bool RaiseRowInserting (object item)

Parameters:

item

The data record for which the event is raised.

RaiseRowPersisted(object, PXDBOperation, PXTranStatus, Exception)

Raises the rRowPersisted event for the specified data record.

Syntax:

public void RaiseRowPersisted(object item, PXDBOperation operation,

PXTranStatus tranStatus, Exception exception)

Parameters:

item

The data record for which the event is raised.

operation

The pPxDBOperation value indicating the type of the current database operation.
tranStatus

The PXTranStatus value indicating the status of the transaction.

exception

The exception thrown while the database operation was executed.

| API Reference | 281

RaiseRowPersisting(object, PXDBOperation)
Raises the RowPersisting event for the specified data record.

Syntax:
public bool RaiseRowPersisting(object item, PXDBOperation operation)
Parameters:
e item
The data record for which the event is raised.

e operation

he pxDBOperation value indicating the type of the current database operation.

RaiseRowSelected(object)
Raises the RowSelected event for the specified data record.

Syntax:

public void RaiseRowSelected (object item)

Parameters:
e item

The data record for which the event is raised.

RaiseRowSelecting(object, PXDataRecord, ref int, bool)
Raises the RowSelecting event for the specified data record.

Syntax:

public bool RaiseRowSelecting(object item, PXDataRecord record,
ref int position, bool isReadOnly)

Parameters:
e item
The data record for which the event is raised.

e record

The pxDataRecord object wrapping the result set row.
e (ref) position

The current index in the list of PxDataRecord columns.

e 1isReadOnly

The value indicating if the data record is read-only.

RaiseRowUpdated(object, object)
Raises the rRowUpdated event for the specified data record.

Syntax:

public void RaiseRowUpdated (object newlItem, object oldItem)

Parameters:

| API Reference | 282

| API Reference | 283

e newltem
The updated version of the data record.
e oldItem

The version of the data record before update.

RaiseRowUpdating(object, object)
Raises the rRowUpdating event for the specified data record.

Syntax:

public bool RaiseRowUpdating (object item, object newltem)

Parameters:
e item
The version of the data record before update.
e newltem

The updated version of the data record.

Remove(object)

Completely removes the provided data record from the cache without raising any events.

Syntax:

public override void Remove (object item)

Parameters:
e item
The data record to remove from the cache.

Examples:

The code below locates a data record in the cache and, if the data record has not been changed, silently
removes it from the cache.

// Searching the data record by its key fields in the cache
object cached = sender.Locate(item) ;

// Checking the status
if (cached != null && (sender.GetStatus (cached) == PXEntryStatus.Held ||
sender.GetStatus (cached) == PXEntryStatus.Notchanged))

{
// Removing without events
sender.Remove (cached) ;

}

The Held status indicates that a data record has not been changed but needs to the preserved in the
session.

RestoreCopy(object, object)
Copies values of all fields from the second data record to the first data record.

The data records should have the DAC type of the cache, or the method does nothing.

| API Reference | 284

Syntax:
public override void RestoreCopy (object item, object copy)

Parameters:
e item
The data record whose field values are updated.

® COpy
The data record whose field values are copied.

RestoreCopy(Table, Table)
Copies values of all fields from the second data record to the first data record.

Syntax:
public static void RestoreCopy (Table item, Table copy)

Parameters:
e item
The data record whose field values are updated.
® COpy
The data record whose field values are copied.
Examples:

The code below modifies an APrRegister data record and copies the values of all its fields to an
APInvoice data record.

APRegister doc = ...
APInvoice apdoc = ...

// Modifying the doc data record
doc.OpenDoc = true;
doc.ClosedFinPeriodID = null;

// Copying all fields of doc to apdoc (APInvoince derives from APRegister)
PXCache<APRegister>.RestoreCopy (apdoc, doc) ;

Select(PXDataRecord, ref int, bool, out bool)

Creates a data record from the pxbataRecord object and places it into the cache with the NotChanged
status if the data record isn't found among the modified data records in the cache.

If isReadOnly is false then:

e If the cache already contains the data record with the same keys and the NotChanged status, the
method returns this data record updated to the state of pxDataRecord.

e If the cache contains the same data record with the Updated or Inserted status, the method
returns this data record.

In other cases and when isReadonly is true, the method returns the data record created from the
PXDataRecord object.

If the AllowSelect property is false, the methods returns a new empty data record and the logic
described above is not executed.

The method raises the RowSelecting event.

| API Reference | 285

Syntax:

public override object Select (PXDataRecord record,
ref int position,
bool isReadOnly,
out bool wasUpdated)

Parameters:
e record
The pxDataRecord object to convert to the DAC type of the cache.
e (ref) position
The index of the first field to read in the list of columns comprising the pxbataRecord object.
e isReadOnly

The value indicating if the data record with the same key fields should be located in the cache and
updated.

e (out) bool

The value indicating whether the data record with the same keys existed in the cache among the
modified data records.

SetAltered(string, bool)
Adds the field to the AlteredFields list or removes it from this list.

Syntax:
public virtual void SetAltered(string field, bool isAltered)

Parameters:
e field
The field name.
e isAltered

The value indicating whether the field is added or removed.

SetAltered<Field>(bool)

Adds the field to the aAlteredFields list or removes it from this list. The field is specified in the type
parameter.

Syntax:

public virtual void SetAltered<Field> (bool isAltered)
where Field : IBglField

Parameters:
e isAltered
The value indicating whether the field is added or removed.

Examples:

Items.Cache.SetAltered<FlatPriceltem.inventoryID> (true) ;

| API Reference | 286

SetDefaultExt(object, string)
Sets the default value to the field in the provided data record.
The method raises FieldDefaulting, FieldUpdating, FieldVerifying, and FieldUpdated

Syntax:
public override void SetDefaultExt (object data, string fieldName)

Parameters:
e data
The data record.
e fieldName

The name of the field to set.

SetDefaultExt<Field>(object)

Sets the default value to the field in the provided data record. The field is specified as the type
parameter.

The method raises FieldDefaulting, FieldUpdating, FieldVerifying, and FieldUpdated

Syntax:

public void SetDefaultExt<Field> (object data)
where Field : IBglField

Parameters:
e data

The data record.

SetStatus(object, PXEntryStatus)

Sets the status to the provided data record. The PXEntryStatus enumeration defines the possible status
values.

Syntax:
public override void SetStatus (object item, PXEntryStatus status)

Parameters:
e item
The data record to set status to.
e status
The new status.
Examples:
The code below checks the status of a data record and sets the status to Updated if the status is

Notchanged.

if (Transactions.Cache.GetStatus (tran) == PXEntryStatus.Notchanged)

{
Transactions.Cache.SetStatus (tran, PXEntryStatus.Updated) ;

}

| API Reference | 287

SetValue(object, int, object)

Sets the value of the field in the provided data record without raising events. The field is specified by its
index in the field map.

To set the value, raising the field-related events, use the SetValueExt(object, string, object) method.

Syntax:

public override void SetValue (object data, int ordinal, object value)

Parameters:
e data
The data record.

e ordinal

The index of the field in the internally stored field map. To get the index of a specific field, use the
GetFieldOrdinal(string) method.

e value

The value to set to the field.

SetValue(object, string, object)
Sets the value of the field in the provided data record without raising events.
To set the value, raising the field-related events, use the SetValueExt(object, string, object) method.

Syntax:

public override void SetValue (object data, string fieldName, object value)

Parameters:
e data
The data record.
e fieldName
The name of the field that is set to the value.
e value

The value to set to the field.

SetValue<Field>(object, object)

Sets the value of the field in the provided data record without raising events. The field is specified in the
type parameter.

To set the value, raising the field-related events, use the SetValueExt<Field>(object, object) method.

Syntax:

public void SetValue<Field> (object data, object value)
where Field : IBglField

Parameters:

e data

The data record

e value

| API Reference | 288

The value to set to the field.

SetValueExt(object, string, object)
Sets the value of the field in the provided data record.

The method raises the FieldUpdating, FieldVerifying, and FieldUpdated events. To set the value to
the field without raising events, use the SetValue(object, string, object) method.

Syntax:
public override void SetValueExt (object data, string fieldName, object value)

Parameters:
e data
The data record.
e fieldName
The name of the field that is set to the value.
e value

The value to set to the field.

SetValueExt<Field>(object, object)
Sets the value of the field in the provided data record. The field is specified in the type parameter.

The method raises the FieldUpdating, FieldVerifying, and FieldUpdated events. To set the value to
the field without raising events, use the SetValue<Field>(object, object) method.

Syntax:

public void SetValueExt<Field> (object data, object value)
where Field : IBglField

Parameters:
e data
The data record.
e value
The value to set to the field.
Examples:
The code below checks the value of one field of the ApInvoice data record and sets another field to this

value with raising of events.

APInvoice doc = e.Row as APInvoice;
if (doc != null && doc.CuryDocBal != null && doc.CuryDocBal != 0)
sender.SetValueExt<APInvoice.curyOrigDocAmt> (doc, doc.CuryDocBal) ;

SetValuePending(object, string, object)

Sets the value of the field in the provided data record when the data record's update or insertion is in
process and the field possibly hasn't been updated in the cache yet. The field is specified in the type
parameter.

The method raises the FieldUpdating event.

| API Reference | 289

Syntax:

public override void SetValuePending (object data, string fieldName, object value)

Parameters:
e data
The data record.
e fieldName
The name of the field that is set to the value.
e value

The value to set to the field.

SetValuePending<Field>(object, object)

Sets the value of the field in the provided data record when the data record's update or insertion is in
process and the field possibly hasn't been updated in the cache yet.

The method raises the FieldUpdating event.

Syntax:

public void SetValuePending<Field> (object data, object wvalue)
where Field : IBglField

Parameters:

e data
The data record.

e value

The value to set to the field.

ToDictionary(object)

Converts the provided data record to the dictionary of field names and field values. Returns the
resulting dictionary object.

The method raises the rFieldSelecting event for each field.

Syntax:
public override Dictionary<string, object> ToDictionary(object data)
Parameters:

e data

The data record to convert to a dictionary.

ToString()
Returns the string representing the current cache object.

Syntax:

public override string ToString()

| API Reference | 290

ToXml(object)
Returns the XML string representing the provided data record.

The data record is represented in the XML by the <Row> element with the type attribute set to the DAC
name. Each field is represented by the <Field> element with the name attribute holding the field name
and the value attribute holding the field value.

To initialize a data record from the XML string returned by this method, use the FromXml(string)
method.

Syntax:
public override string ToXml (object data)

Parameters:
e data

The data record to convert to XML.

Unload()
Serializes the cache to the session.

Syntax:

public override void Unload ()

Update(object)
Updates the provided data record in the cache.

If the data record does not exist in the cache, the method tries to retrieve it from the database. If the
data record exists in the cache or database, it gets the Updated status. If the data record does not exist
in the database, the method inserts a new data record into the cache with the Inserted status.

The method raises the following events: FieldUpdating, FieldVerifying, FieldUpdated,
RowUpdating, and RowUpdated. See Updating a Data Record for the events flowchart. If the data record
does not exist in the database, the method also causes the events of the Insert(object) method.

The AllowUpdate property does not affect the method unlike the Update(IDictionary, IDictionary)
method.

Syntax:
public override object Update (object data)

Parameters:
e data
The data record to update in the cache.
Examples:

The code below modifies an APRegister data record and places it in the cache with the Updated status
or updates it in the cache if the data record is already there.

// Declaring a data view in a graph
public PXSelect<APRegister> APDocument;

APRegister apdoc = ...

// Modifying the data record
apdoc.Voided = true;
apdoc.OpenDoc = false;

| API Reference | 291

apdoc.CuryDocBal = Om;
apdoc.DocBal = Om;

// Updating the data record in the cache
APDocument.Cache.Update (apdoc) ;

Update(IDictionary, IDictionary)
Updates the data record in the cache with the provided values.

The method initalizes a data record with the provided key fields. If the data record with such keys does
not exist in the cache, the method tries to retrieve it from the database. If the data record exists in the
cache or database, it gets the Updated status. If the data record does not exist in the database, the
method inserts a new data record into the cache with the Inserted status.

The method raises the following events: FieldUpdating, FieldVerifying, FieldUpdated,
RowUpdating, and RowUpdated. See Updating a Data Record for the events flowchart. If the data record
does not exist in the database, the method also causes the events of the Insert(object) method.

If the AllowUpdate property is false, the data record is not updated and the methods returns 0. The
method returns 1 if the data record is successfully updated or inserted.

Syntax:

public override int Update (IDictionary keys, IDictionary values)

Parameters:
e keys
The values of the key fields of the data record to update.
e values

The new values with which the data record fields are updated.

ValueFromString(string, string)

Converts the provided value of the field from a string to the appropriate type and returns the resulting
value. No events are raised.

Syntax:

public override object ValueFromString(string fieldName, string val)

Parameters:
e fieldName
The name of the field.
e val

The string representation of the field value.

ValueToString(string, object)

Converts the provided value of the field to string and returns the resulting value. No events are raised.

Syntax:

public override string ValueToString (string fieldName, object val)

Parameters:

e fieldName

| API Reference | 292

The name of the field.
e val

The field value.

PXSelectBase<Table> Class

The base type for classes that define BQL statements, such as PXSelect<> class and its variants and
the PXProcessing<> class and its successors.

Inheritance Hierarchy

PXSelectBase

Syntax

public abstract class PXSelectBase<Table> : PXSelectBase
where Table : class, IBqglTable, new ()

The PXSelectBase<Table> type exposes the following members.

Properties
e public virtual Table Current

Gets or sets the current property of the cache that corresponds to the DAC specified in the type
parameter.
Fields

e public PXView View

The PXView object that is created to execute the BQL statement.

Methods

Method Description

Ask(string, string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons, bool) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons, Displays the dialog window with single or multiple

Messagelcon) choices for the user

Ask(string, string, string, MessageButtons, Displays the dialog window with single or multiple

bool) choices for the user

Ask(string, string, string, MessageButtons, Displays the dialog window with single or multiple

Messagelcon) choices for the user

Ask(string, string, MessageButtons, Displays the dialog window with single or multiple

Messagelcon, bool) choices for the user

| API Reference | 293

Method

Description

Ask(string, string, string, MessageButtons,
Messagelcon, bool)

Displays the dialog window with single or multiple
choices for the user

AskExt() Displays the dialog window configured by the
PXSmartPanel control

AskExt(string) Displays the dialog window configured by the
PXSmartPanel control

AskExt(bool) Displays the dialog window configured by the

PXSmartPanel control

AskExt(PXView.InitializePanel)

Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, bool)

Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, PXView.InitializePanel)

Displays the dialog window configured by the
PXSmartPanel control

AskExt(PXView.InitializePanel, bool)

Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, PXView.InitializePanel, bool)

Displays the dialog window configured by the
PXSmartPanel control

ClearDialog() Clears the dialog information saved by the graph on
last invocation of the Ask () method
Delete(Table) Deletes the data record by invoking the Delete(object)

method on the cache

Extend<Parent>(Parent)

Initializes a data record of the derived DAC from the
provided data record of the base DAC and inserts the
new data record into the cache

GetltemType()

Returns the type of the DAC provided as the type
parameter of PxSelectBase<> class

GetValueExt<Field>(Table)

Gets the value of the specified field for the given data
record

Insert() Inserts a new data record into the cache by invoking
the Insert() method on the cache

Insert(Table) Inserts the provided data record into the cache by
invoking the Insert(object) method on the cache

Join<join>() Appends a joining clause to the BQL statement

Locate(Table) Searches the cache for the data record that has

the same key fields as the provided data record, by
invoking the Locate(object) method on the cache

OrderByNew<newOrderBy>()

Replaces the orderBy clause if the BQL statement
has one, otherwise the new orderBy clause is simply
attached to the BQL statement

Search<Field0>(object, params object[])

Searches for a data record by the value of specified
field in the data set that corresponds to the BQL
statement

| API Reference | 294

Method

Description

Search<Field0, Fieldl>(object, object,
params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1l, Field2>(object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3>(object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3,
Field4>(object, object, object, object, object,
params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5>(object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6>(object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(object, object, object,
object, object, object, object, object, params
object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(object, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Fieldl, Field2, Field3, Field4,
Field5, Field6, Field7, Field8, Field9>(object,
object, object, object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

SearchAll<Sort>(object[], params object[])

Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchWindowed<Sort>(object([], int, int,
params object[])

Retrieves the specified number of contiguous data
records starting from the given position in the filtered
data set

Select(params object[])

Executes the BQL statement and retrieves all matching
data records

SelectSingle(params object[])

Retrieves the top data record of the data set that
corresponds to the BQL statement

SelectWindowed(int, int, params object[])

Retrieves the specified humber of data records starting
from the given position

SetValueExt<Field>(Table, object)

Sets the value of the specified field in the given data
record

| API Reference | 295

Method Description

Update(Table) Updates the data record in the cache by invoking the
Update(object) method on the cache

WhereAnd<TWhere>() Appends a filtering expression to the BQL statement
via the logical "and"

WhereNew <newWhere>() Replaces the filtering expression in the BQL statement

WhereNot() Adds logical "not" to the whole Where clause of the

BQL statement, reversing the condition to the opposite

WhereOr<TWhere>() Appends a filtering expression to the BQL statement
via the logical "or"

Examples

The code below defines a data view, extends its Where conditional expression, and executes the data
view.

// Definition of a data view
PXSelectBase<ARDocumentResult> sel = new PXSelectReadOnly2<ARDocumentResult,
LeftJoin<ARInvoice, On<ARInvoice.docType, Equal<ARDocumentResult.docType>,
And<ARInvoice.refNbr, Equal<ARDocumentResult.refNbr>>>,
Where<ARRegister.customerID, Equal<Current<ARDocumentFilter.customerID>>>>
(this) ;

ARDocumentFilter header = Filter.Current;

// Appending a condition if BranchID is specified in the filter
if (header.BranchID != null)
{
sel.WhereAnd<Where<ARRegister.branchID,
Equal<Current<ARDocumentFilter.branchID>>>> () ;
}

// Appending a condition if DocType is specified in the filter
if (header.DocType != null)

{
sel.WhereAnd<Where<ARRegister.docType,
Equal<Current<ARDocumentFilter.docType>>>>() ;

}

// Execution of the data view and iteration through the result set
foreach (PXResult<ARDocumentResult, ARInvoice> reg in sel.Select())
{

ARDocumentResult res = reg;
ARInvoice invoice = reg;

PXSelectBase<Table> Methods

The PXSelectBase<Table> type exposes the following methods.

Ask(string, string, MessageButtons)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
MessageButtons buttons)

| API Reference | 296

Parameters:
e header
The string displayed as the title of the dialog window.
® message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, string, string, MessageButtons)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
string message, MessageButtons buttons)

Parameters:
e key
The identifier of the panel to display.
e header
The string displayed as the title of the dialog window.
e message
The string displayed as the message inside the dialog window.
e Dbuttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, string, MessageButtons, bool)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
MessageButtons buttons, bool refreshRequired)

Parameters:
e header
The string displayed as the title of the dialog window.
e message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e refreshRequired

| API Reference | 297

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

Ask(string, string, MessageButtons, Messagelcon)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
MessageButtons buttons, Messagelcon icon)

Parameters:
e header
The string displayed as the title of the dialog window.
e message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e icon

The value from the Messagelcon enumeration that indicate which icon to display beside the
message in the dialog window.

Ask(string, string, string, MessageButtons, bool)

Displays the dialog window with single or multiple choices for the user. Returns the WebDialogResult
value that indicates which button was clicked.

This method and its overloads provide the interface for the corresponding methods of the pxview class.

Syntax:

public WebDialogResult Ask(string key, string header,
string message, MessageButtons buttons,
bool refreshRequired)

Parameters:
e key
The identifier of the panel to display.
e header
The string displayed as the title of the dialog window.
® message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

| API Reference | 298

Remarks:

The method can be used to display the panel configured by the pxsmartpPanel control. In this case, the
key parameter is set to the Key property of the control, refreshRequired is typically set to true, and
other parameters are set to null. The more common way to display a panel is to call the AskExt(key)
method.

Note that the method is executed asynchronously. When the method invocation is reached for the first
time, execution of the enclosing method stops, and a request is send to the client to display the dialog.
When the user clicks one of the buttons, the webpage sends a request to the server, and the system
starts execution of the method that invoked ask () one more time. This time the ask () method returns
the value that indicates the user's choice, and code execution continues.

Examples:

The code below defines an event handler that asks for confirmation to continue deletion of a data
record.

public PXSelect<INComponent> Components;

protected void INComponent RowDeleting (
PXCache sender, PXRowDeletingEventArgs e)
{
if (Components.Ask("Deleting Revenue Component",
"Are you sure?",
MessageButtons.YesNo) != WebDialogResult.Yes)
e.Cancel = true;

Ask(string, string, string, MessageButtons, Messagelcon)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
string message, MessageButtons buttons,
MessageIcon icon)

Parameters:
e key
The identifier of the panel to display.
e header
The string displayed as the title of the dialog window.
®¢ message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e icon

The value from the Messagelcon enumeration that indicate which icon to display beside the
message in the dialog window.

Ask(string, string, MessageButtons, Messagelcon, bool)

Displays the dialog window with single or multiple choices for the user.

| API Reference | 299

Syntax:

public WebDialogResult Ask(string header, string message,
MessageButtons buttons, MessagelIcon icon,
bool refreshRequired)

Parameters:
e header
The string displayed as the title of the dialog window.
® message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e icon

The value from the Messagelcon enumeration that indicate which icon to display beside the
message in the dialog window.

¢ refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

Ask(string, string, string, MessageButtons, Messagelcon, bool)
Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
string message, MessageButtons buttons,
MessagelIcon icon, bool refreshRequired)

Parameters:
e key
The identifier of the panel to display.
e header
The string displayed as the title of the dialog window.
e message
The string displayed as the message inside the dialog window.
e buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

e Jicon

The value from the Messagelcon enumeration that indicate which icon to display beside the
message in the dialog window.

¢ refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

| API Reference | 300

AskExt()

Displays the dialog window configured by the pxSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement. The method requests repainting of the panel.

Syntax:

public WebDialogResult AskExt ()

AskExt(string)

Displays the dialog window configured by the pxSmartPanel control. The method requests repainting of
the panel.

Syntax:
public WebDialogResult AskExt (string key)

Parameters:
e key
The identifier of the panel to display.

AskExt(bool)

Displays the dialog window configured by the pxSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement.

Syntax:
public WebDialogResult AskExt (bool refreshRequired)

Parameters:
e refreshRequired
The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.
AskExt(PXView.InitializePanel)
Displays the dialog window configured by the pXSmartPanel control.
Syntax:

public WebDialogResult AskExt (PXView.InitializePanel initializeHandler)

Parameters:
e initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(string, bool)
Displays the dialog window configured by the pxSmartPanel control.

Syntax:
public WebDialogResult AskExt (string key, bool refreshRequired)

Parameters:

e key

| API Reference | 301

The identifier of the panel to display.
e refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, PXView.InitializePanel)
Displays the dialog window configured by the pXSmartPanel control.

Syntax:

public WebDialogResult AskExt (string key,
PXView.InitializePanel initializeHandler)

Parameters:
e key
The identifier of the panel to display.
e initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(PXView.InitializePanel, bool)
Displays the dialog window configured by the pxSmartPanel control.

Syntax:

public WebDialogResult AskExt (PXView.InitializePanel initializeHandler,
bool refreshRequired)

Parameters:
e initializeHandler
The delegate of the method that is called before the dialog is displayed.
e refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, PXView.InitializePanel, bool)
Displays the dialog window configured by the pPxSmartPanel control.

Syntax:

public WebDialogResult AskExt (string key,
PXView.InitializePanel initializeHandler,
bool refreshRequired)

Parameters:
e key
The identifier of the panel to display.
e initializeHandler
The delegate of the method that is called before the dialog is displayed.

¢ refreshRequired

| API Reference | 302

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

ClearDialog()
Clears the dialog information saved by the graph on last invocation of the Ask () method.

Syntax:

public void ClearDialog ()

Delete(Table)

Deletes the data record by invoking the Delete(object) method on the cache. Returns the data record
marked as deleted.

Syntax:
public virtual Table Delete (Table item)

Parameters:
e item

The data record to delete.

Extend<Parent>(Parent)

Initializes a data record of the derived DAC from the provided data record of the base DAC and inserts
the new data record into the cache. Returns the inserted data record.

The method relies on the Extend<Parent>(Parent) method called on the cache.

Syntax:

public virtual Table Extend<Parent> (Parent item)
where Parent : class, IBqglTable, new()

Table must derive from Parent. The current cache object should be of PxCache<Table> type.
Parameters:
e item
The instance of the base DAC.
Examples:

Suppose that the 8 DAC derives from the A DAC, as follows.

[Serializable]

public class A : IBglTable { ... }
[Serializable]

public class B : A { ... }

The following data views can be declared in a graph.

PXSelect<A> BaseRecords;
PXSelect Records;

The code above will result in initialization of two caches, of PxCache<A> and PXCache types. The
following code initializes a data record of derived type and inserts it into the cache.

A baseRec = BaseRecords.Insert();

| API Reference | 303

B rec = Records.Extend (baseRec) ;

GetItemType()

Returns the type of the DAC provided as the type parameter of PxSelectBase<> class. For BQL
statements that are derived from PxSelectBase<>, it is the first mentioned DAC.

Syntax:

public Type GetItemType ()

GetValueExt<Field>(Table)

Gets the value of the specified field for the given data record. The method relies on the
GetValueExt<Field>(Table, object) method of the cache, but unlike the cache's method always returns
a value, not a PXFieldState object.

Syntax:

public virtual object GetValueExt<Field> (Table row)
where Field : IBglField

Parameters:
o row

The data record whose field value is returned.

Insert()

Inserts a new data record into the cache by invoking the Insert() method on the cache. Returns the
inserted data record or null-if the insertion fails.

Syntax:

public virtual Table Insert /()

Insert(Table)

Inserts the provided data record into the cache by invoking the Insert(object) method on the cache.
Returns the inserted data record or null-if the insertion fails.

Syntax:
public virtual Table Insert (Table item)

Parameters:
e item

The data record to insert.

Join<join>()
Appends a joining clause to the BQL statement.

Syntax:

public virtual void Join<join> ()
where join : IBglJoin, new()

Examples:

| API Reference | 304

The code below appends the LeftJoin clause to the BQL statement.

PXSelectBase<GLTran> select = new PXSelect<GLTran> (this);

select.Join<LeftJoin<AP.APTran,
On<AP.APTran.refNbr, Equal<GLTran.refNbr>,
And<AP.APTran.lineNbr, Equal<GLTran.tranLineNbr>>>>>();

Locate(Table)

Searches the cache for the data record that has the same key fields as the provided data record, by
invoking the Locate(object) method on the cache. Returns the data record if it is found in the cache or
null otherwise.

Syntax:

public virtual Table Locate (Table item)

Parameters:
e item

The data record that is searched in the cache by the values of its key fields.

OrderByNew<newOrderBy>()

Replaces the orderBy clause if the BQL statement has one, otherwise the new orderBy clause is simply
attached to the BQL statement.

Syntax:

public virtual void OrderByNew<newOrderBy> ()
where newOrderBy : IBglOrderBy, new()

Examples:

The code below initializes a data view as a local variable and adds different ordering expression
depending on the value of a variable.

// Initialization of a data view
PXSelectBase<INLotSerialStatus> cmd =
new PXSelect<INLotSerialStatus, ...>(this);

// Adding a different ordering expression depending on
// a variable's value
switch (lotSerIssueMethod)
{
case INLotSerIssueMethod.FIFO:
cmd.OrderByNew<
OrderBy<Asc<INLocation.pickPriority,
Asc<INLotSerialStatus.receiptDate,
Asc<INLotSerialStatus.lotSerialNbr>>>>>();
break;
case INLotSerIssueMethod.LIFO:
cmd.OrderByNew<
OrderBy<Asc<INLocation.pickPriority,
Desc<INLotSerialStatus.receiptDate,
Asc<INLotSerialStatus.lotSerialNbr>>>>>();
break;

| API Reference | 305

Search<Field0>(object, params object[])

Searches for a data record by the value of specified field in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified field and
retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0> (
object fieldO, params object[] arguments)
where Field0 : IBglField

Parameters:

e fieldO
The value of Field0 by which the data set is filtered and sorted.

e arguments
The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.
Examples:

The code below finds the data record with the given reference numbe among the possible results of the
data view.

// Defining the data view in a graph
public PXSelect<ARInvoice,
Where<ARInvoice.docType, Equal<Optional<ARInvoice.docType>>>> Document;

// Search a data record with the given value of the RefNbr field
Document.Search<ARInvoice.refNbr> (ardoc.RefNbr, ardoc.DocType) ;

// The Current property is now pointing to the data record found

// by Search<>(...)
Document.Current.InstallmentCntr = Convert.ToIntl6 (installments.Count) ;

Note that the search<>(...) method has two parameters here. The first one is the value of the RefNbr
field to search by, while the second one is the value to replace the Optional parameter in the BQL
command.

Search<FieldO, Field1>(object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl> (
object fieldO, object fieldl, params object[] arguments)
where Field0 : IBglField
where Fieldl : IBglField
Parameters:
e fieldO, fieldl

The values of Field0 and Fieldl by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

| API Reference | 306

Search<FieldO, Fieldl, Field2>(object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2>(
object fieldO, object fieldl, object field2, params object|[] arguments)
where Field0 : IBglField
where Fieldl : IBglField
where Field2 : IBglField

Parameters:

e fieldO - field2

The values of Field0-Field2 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3>(object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2, Field3>(
object fieldO, object fieldl, object field2,
object field3, params object[] arguments)
where Field0 : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField

Parameters:
e field0 - field3

The values of Field0-Field3 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4>(object, object, object, object, object, params
object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2,
Field3, Field4>(
object fieldO, object fieldl, object field2, object field3,
object field4, params object[] arguments)
where Field0 : IBglField
where Fieldl : IBglField

| API Reference | 307

where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField

Parameters:
e field0 - field4
The values of Field0-Field4 by which the data set is filtered and sorted.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5>(object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2,
Field3, Field4, Field5>(
object fieldO, object fieldl, object field2, object field3,
object field4, object field5, params object[] arguments)
where Field0 : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField
where Field5 : IBglField

Parameters:
e field0 - fieldb
The values of Field0-Field5 by which the data set is filtered and sorted.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5, Field6>(object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2, Field3,
Field4, Field5, Field6>(

object fieldO, object fieldl, object field2, object field3,

object field4, object field5, object field6, params object[] arguments)
where Field0O : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

where Field6 : IBglField

| API Reference | 308

Parameters:
e field0 - fieldo6

The values of Field0-Fieldé6 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5, Field6, Field7>(object, object, object,
object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2,

Field3, Field4, Field5,
Field6, Field7>(

object fieldO, object fieldl, object field2, object field3,

object field4, object field5, object field6, object field7,

params object[] arguments)

where Field0O : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

where Field6 : IBglField

where Field7 : IBglField

Parameters:
o field0 - field?

The values of Field0-Field7 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(object, object,
object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2,

Field3, Field4, Field5,
Field6, Field7, Field8>(

object fieldO, object fieldl, object field2, object field3,

object field4, object field5, object field6, object field7,

object field8, params object[] arguments)

where Field0 : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

| API Reference | 309

where Field6 : IBglField
where Field7 : IBglField
where Field8 : IBglField

Parameters:
e field0 - fields8
The values of Field0-Field8 by which the data set is filtered and sorted.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8, Field9>(object,
object, object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Fieldl, Field2, Field3,

Field4, Field5, Field6, Field7,
Field8, Field9>(

object fieldO, object fieldl, object field2, object field3,

object field4, object field5, object field6, object field7,

object field8, object field9, params object[] arguments)

where Field0 : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

where Field6 : IBglField

where Field7 : IBglField

where Field8 : IBglField

where Field9 : IBglField

Parameters:
e field0 - field9
The values of Field0-Field9 by which the data set is filtered and sorted.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Sort>(object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and retrieves all data records from the resulting data set.

Though ordering may seem superfluous here, it is needed for better performance of the selection from
the database.

Syntax:

public virtual PXResultset<Table> SearchAll<Sort>(
object[] searchValues, params object[] arguments)
where Sort : IBglSortColumn

| API Reference | 310

Parameters:

e searchValues

The values of fields referenced in sort by which the data set is filtered and sorted.

e arguments
The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.
Examples:
The code below searches the data view for all data records whose TranClass field has the G value.
// Data view definition in a graph
public PXSelect<GLTran,

Where<GLTran.module, Equal<Current<Batch.module>>,
And<GLTran.batchNbr, Equal<Current<Batch.batchNbr>>>>> Trans;

// Code in some method
foreach (GLTran tran in
Trans.SearchAll<Asc<GLTran.tranClass>>(new object [] {"G"}))

SearchWindowed<Sort>(object[], int, int, params object[])

Retrieves the specified number of contiguous data records starting from the given position in the
filtered data set. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and requests the limited numer of data records.

Syntax:

public virtual PXResultset<Table> SearchWindowed<Sort> (
object[] searchValues, int startRow, int totalRows,
params object[] arguments)
where Sort : IBglSortColumn

Parameters:

e searchValues

The values of fields referenced in sort by which the data set is filtered and sorted.

e startRow

The 0-based index of the first data record to retrieve.

e totalRows

The number of data records to retrieve.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below retrieves the first five data records whose TrancClass field has the G value from the
data view.

// Data view definition in a graph
public PXSelect<GLTran,
Where<GLTran.module, Equal<Current<Batch.module>>,
And<GLTran.batchNbr, Equal<Current<Batch.batchNbr>>>>> Trans;

// Code in some method
PXResultset<GLTran> res =

| API Reference | 311

Trans.SearchWindowed<Asc<GLTran.tranClass>>(new object [] {"G"}, 0, 5);

Select(params object[])
Executes the BQL statement and retrieves all matching data records.

Syntax:

public virtual PXResultset<Table> Select (params object[] arguments)

Parameters:
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectSingle(params object[])
Retrieves the top data record of the data set that corresponds to the BQL statement.

Syntax:

public virtual Table SelectSingle (params object[] arguments)

Parameters:
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed(int, int, params object[])
Retrieves the specified number of data records starting from the given position.

Syntax:

public virtual PXResultset<Table> SelectWindowed (int startRow, int totalRows,
params object([] arguments)

Parameters:
e startRow
The 0-based index of the first data record to retrieve.
e totalRows
The number of data records to retrieve.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below retrieves the first data record from the data set that corresponds to the BQL statement.

// Initializing the data view

PXSelectBase<FinPeriod> select = new PXSelect<FinPeriod,
Where<FinPeriod.finYear, Equal<Required<FinPeriod.finYear>>>,
OrderBy<Asc<FinPeriod.periodNbr>>> (sender.Graph) ;

// Executing the data view

| API Reference | 312

FinPeriod fp = select.SelectWindowed (0, 1, DateTime.Now.Year);

In the third parameter, the method provides the value for the Requried parameter.

SetValueExt<Field>(Table, object)

Sets the value of the specified field in the given data record. The method relies on the
SetValueExt<Field>(Table, object) method of the cache.

Syntax:

public virtual void SetValueExt<Field>(Table row, object value)
where Field : IBglField

Parameters:
¢ row
The data record whose field value is set.
e value

The value to set to the field.

Update(Table)

Updates the data record in the cache by invoking the Update(object) method on the cache. Returns the
updated data record.

Syntax:
public virtual Table Update (Table item)

Parameters:
e item

The updated version of the data record.

WhereAnd<TWhere>()

Appends a filtering expression to the BQL statement via the logical "and". The additional filtering
expression is provided in the type parameter.

Syntax:

public void WhereAnd<TWhere> ()
where TWhere : IBglWhere, new/()

Examples:

The code below appends additional comparison to the BQL statement when the corresponding field in
the filter is set to a value.

// Initializing the data view

PXSelectBase<APDocumentResult> sel = new PXSelect<APDocumentResult,
Where<APRegister.vendorID, Equal<Current<APDocumentFilter.vendorID>>>,
OrderBy<Desc<APDocumentResult.docDate>>>> (this) ;

// Checking whether a filter object has a value in the BranchID field
if (Filter.Current.BranchID != null)
{
// Extending the Where clause with additional condition
sel.WhereAnd<Where<APRegister.branchID,
Equal<Current<APDocumentFilter.branchID>>>> () ;

| API Reference | 313

WhereNew<newWhere>()

Replaces the filtering expression in the BQL statement. The new filtering expression is provided in the
type parameter.

Syntax:
public void WhereNew<newWhere> ()
where newWhere : IBglWhere, new/()
Examples:

The code below replaces the where clause in a data view

// Defining the data view in a graph
public PXSelect<ARInvoice,
Where<ARInvoice.docType, Equal<Current<ARInvoice.docType>>,
And2<Where<ARInvoice.origModule, Equal<BatchModule.moduleAR>,
Or<ARInvoice.released, Equal<True>>>>>> Document;

// Replacing the Where clause
Document .WhereNew<
Where<ARInvoice.docType, Equal<Required<ARInvoice.docType>>>>();

// Getting an ARInvoice data record
ARInvoice ardoc = (ARInvoice)resultsetRecord;

// Executing the modified data view
Document.Select (ardoc.DocType) ;

WhereNot()

Adds logical "not" to the whole where clause of the BQL statement, reversing the condition to the
opposite.

Syntax:

public void WhereNot ()

WhereOr<TWhere>()

Appends a filtering expression to the BQL statement via the logical "or". The additional filtering
expression is provided in the type parameter.

Syntax:

public void WhereOr<TWhere> ()
where TWhere : IBglWhere, new/()

WebDialogResult Enumeration
Defines values that indicate which button the user cliked in the dialog opened by the ask () method.

Members
e None
None of the buttons was clicked
e OK
The user clicked OK
e Cancel

The user clicked Cancel

| API Reference | 314

e Abort

The user clicked Abort
e Retry

The user clicked Retry
e TIgnore

The user clicked Ignore
* Yes

The user clicked Yes
e No

The user clicked No

MessageButtons Enumeration

Defines possible sets of standard buttons that can be displayed in a dialog window created by the ask ()
method.

Members
e OK
Only the OK button is displayed.
e OKCancel
The OK and Cancel buttons are displayed.
e AbortRetrylIgnore
The Abort, Retry, and Ignore buttons are displayed.
e YesNoCancel
The Yes, No, and Cancel buttons are displayed.
e YesNo
The Yes and No buttons are displayed.
e RetryCancel
The Retry and Cancel buttons are displayed.
e None
No buttons are displayed.

Messagelcon Enumeration

Defines possible icons that can be displayed beside the message in the dialog window opened by the
Ask () method.

Members
e None
No icon is displayed.
e Error
The error sign is displayed.

e Question

The question mark sign is displayed.
e Warning

The warning sign is displayed.
e Information

The information sign is displayed.

PXSelect<Table> Class

| API Reference | 315

Defines a data view for retrieving a particular data set from the database and provides the interface to
the cache for inserting, updating, and deleting the data records.

See Remarks for more details and Examples for examples of usage.

Inheritance Hierarchy

PXSelectBase<Table>

Syntax

public class PXSelect<Table> :
where Table :

class, IBqglTable,

PXSelectBase<Table>
new ()

There are a number of other types derived from PxSelectBase<Table> that are used in the same way
and have exactly the same set of methods as pxSelect<Table> has, and only allow building more

complex BQL expressions.

The pxSelect type exposes the following members.

Constructors
Constructor Description
PXSelect(PXGraph) Initializes a new instance of a data view bound to the

specified graph.

PXSelect(PXGraph, Delegate)

Initializes a new instance of a data view that is bound
to the specified graph and uses the provided method
to retrieve data.

Methods

Method Description

Clear(PXGraph) Clears the results of BQL statement execution stored in
the provided graph

GetCommand() Returns the Bgqlcommand object representing the BLQ

statement

Search<Field0>(PXGraph, object, params
object[])

Searches for a data record by the value of specified
field in the data set that corresponds to the BQL
statement

Search<Field0, Field1>(PXGraph, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

| API Reference | 316

Method

Description

Search<Field0, Fieldl, Field2>(PXGraph,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2,
Field3>(PXGraph, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3,
Field4>(PXGraph, object, object, object,
object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5>(PXGraph, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6>(PXGraph, object, object,
object, object, object, object, object, params
object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(PXGraph, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(PXGraph,
object, object, object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<FieldO, Field1, Field2, Field3,
Field4, Field5, Field6, Field7, Field8,
Field9>(PXGraph, object, object, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

SearchAll<Sort>(PXGraph, object[], params
object[])

Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchAll<Resultset, Sort>(PXGraph,
object[], params object[])

Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchWindowed<Resultset, Sort>(PXGraph,
object[], int, int, params object[])

Searches the data set that corresponds to the BQL
statement for the data records whose fields have the
specified values

Select(PXGraph, params object[])

Executes the BQL statement and retrieves all matching
data records

Select<Resultset>(PXGraph, params
object[])

Executes the BQL statement and retrieves all matching
data records

SelectMultiBound(PXGraph, object[], params
object[])

Executes the BQL statement with the specified values
to substitute current object and retrieves all matching
data records

| API Reference | 317

Method Description

SelectWindowed(PXGraph, int, int, params Retrieves the specified humber of data records starting
object[]) from the given position
SelectWindowed<Resultset>(PXGraph, int, Retrieves the specified humber of data records starting
int, params object[]) from the given position

StoreCached(PXGraph, PXCommandKey, Stores in the caches the results of BQL statement
List<object>) execution

Remarks

A PXSelect<Table> object wraps the select<Table> object, which represents the BQL command, and
the PXView object, which executes this BQL command. The pPxSelect<Table> object also holds the
reference of the cache of the Table data records and the graph.

The PXSelect<Table> type provides interfaces to both the pxview object and the cache. So you
can execute the underlying BQL command and invoke cache methods through the methods of the

PXSelect<Table>.

Examples
The code below shows the declaration of a data view in a graph and execution of this data view.

public class VendorClassMaint : PXGraph<VendorClassMaint>

{
public PXSelect<Vendor,
Where<Vendor.vendorClassID, Equal<Current<VendorClass.vendorClassID>>>>

Vendors;

public void SomeMethod ()
{

// Data view execution
foreach (Vendor vend in Vendors.Select())

}

Note that the data view is not initialized. The graph initializes it automatically.
Suppose the following data view is defined in a graph. This data view cannot be used as the data
member of a webpage control, because the BQL expression includes the Required parameter.

public PXSelect<ARPayment,
Where<ARPayment.refNbr, Equal<Required<ARPayment.refNbr>>>> arPayment;

The code below executes this data view, selects the top data record, and initializes a new data record
with values from the retrieved data record.

// Execute the data view
ARPayment rec = arPayment.SelectSingle (refNbrValue) ;

// Create a new data record
ARPayment payment = new ARPayment () ;
payment.CustomerID = rec.CustomerID;

// Insert the new data record into the cache of ARPayment data records
arPayment.Insert (payment) ;

See Executing Statements for more examples of BQL statements execution.
PXSelect<Table> Constructors

The PXSelect<Table> type exposes the following constructors.

| API Reference | 318

PXSelect(PXGraph)
Initializes a new instance of a data view bound to the specified graph.

Syntax:

public PXSelect (PXGraph graph)

Parameters:
e graph

The graph with which the data view is associated.

PXSelect(PXGraph, Delegate)

Initializes a new instance of a data view that is bound to the specified graph and uses the provided
method to retrieve data.

Syntax:

public PXSelect (PXGraph graph, Delegate handler)

Parameters:
e graph
The graph with which the data view is associated.

e handler

The delegate of the method that is used to retrieve the data from the database (or other source).
This method is invoked when one of the select () methods is called.

Examples

The code below shows declaration of a data view in a graph. The data view is not initialized explicitly.
The graph automatically initializes the data view.

public class MyGraph : PXGraph<MyGraph>
{

public PXSelect<MyDAC> Records;
}

The code below shows declaration of a data view that have the optional method.

public class MyGraph : PXGraph<MyGraph>

{
public PXSelect<MyDAC> Records;

protected IEnumerable records ()
{
}

}
The code below shows explicit initialization of a data view in code in a graph.

PXSelectBase<MyDAC> records = new PXSelect<MyDAC,
Where<MyDAC.fieldl, IsNotNull>>(this);

PXSelect<Table> Methods
The PXSelect<Table> type exposes the following methods.

| API Reference | 319

Clear(PXGraph)
Clears the results of BQL statement execution stored in the provided graph.

Syntax:
public static void Clear (PXGraph graph)

Parameters:
e graph
The graph where the data is cleared.
Examples:

The code below clears the query cache to load the records directly from the database (the data records
are still merged with the modifications stored in the pxcache object).

// Clearing the query cache

PXSelect<CRMergeCriteria,
Where<CRMergeCriteria.mergeID, Equal<Required<CRMerge.mergeID>>>>.
Clear (this);

// Selecting data records directly from the database (not from the query
// cache) and merging with the PXCache<> object
foreach (CRMergeCriteria item in
PXSelect<CRMergeCriteria,
Where<CRMergeCriteria.mergelID, Equal<Required<CRMerge.mergelD>>>>.
Select (this, document.MergelD))

Criteria.Cache.Delete (item) ;

GetCommand()
Returns the BglCcommand object representing the BLQ statement.

Syntax:

public static BglCommand GetCommand ()

Search<Field0>(PXGraph, object, params object[])

Searches for a data record by the value of specified field in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified field and
retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0> (
PXGraph graph, object field0O, params object[] arguments)
where Field0 : IBglField

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e fieldO
The value of Field0 by which the data set is filtered and sorted.

* arguments

| API Reference | 320

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1>(PXGraph, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl>(
PXGraph graph, object field0O, object fieldl, params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField

Parameters:
e graph
The graph that is used to cache the retrieved data record and merge them with the modified data
records.
e field0 - fieldl

The values of Field0 and Fieldl by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below checks whether a duplicate of the APInvoice data record exists by searching by the key
fields.

APInvoice duplicate = PXSelect<APInvoice>.
Search<APInvoice.docType, APInvoice.refNbr>(
this, invoice.DocType, invoice.OrigRefNbr) ;

// If the data record exists, throw an exception
if (duplicate != null)
throw new PXException (ErrorMessages.RecordExists) ;

Search<FieldO, Field1, Field2>(PXGraph, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2>(
PXGraph graph, object field0O, object fieldl,
object field2,params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField
where Field2 : IBglField

Parameters:

e graph

| API Reference | 321

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0 - field2
The values of Field0-Field2 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3>(PXGraph, object, object, object, object, params
object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2, Field3>(
PXGraph graph, object fieldO, object fieldl, object field2,
object field3, params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0 - fields3
The values of Field0-Field3 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1, Field2, Field3, Field4>(PXGraph, object, object, object, object, object,
params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0O, Fieldl, Field2,
Field3, Field4>(

PXGraph graph, object field0O, object fieldl, object field2,
object field3, object field4, params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField

Parameters:

| API Reference | 322

e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0O - field4

The values of Field0-Field4 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1, Field2, Field3, Field4, Field5>(PXGraph, object, object, object, object,
object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0O, Fieldl, Field2,
Field3, Field4, Field5>(
PXGraph graph, object fieldO, object fieldl, object field2,
object field3, object field4, object field5, params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField
where Field5 : IBglField

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0 - fieldb

The values of Field0-Field5 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5, Field6>(PXGraph, object, object, object,
object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2, Field3,
Field4, Field5, Field6>(

PXGraph graph, object field0O, object fieldl, object field2, object field3,
object field4, object field5, object field6, params object|[] arguments)
where Field0 : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

| API Reference | 323

where Field4 : IBglField
where Field5 : IBglField
where Field6 : IBglField

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0 - fieldéb

The values of Field0-Fieldé6 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5, Field6, Field7>(PXGraph, object, object,
object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2, Field3,
Field4, Field5, Field6, Field7>(

PXGraph graph, object fieldO, object fieldl, object field2,

object field3, object field4, object field5, object fieldeo,

object field7, params object[] arguments)

where Field0 : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

where Field6 : IBglField

where Field7 : IBglField

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e field0 - field7?

The values of Field0-Field7 by which the data set is filtered and sorted.

e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(PXGraph, object,
object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

| API Reference | 324

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2,

Field3, Field4, Field5,
Field6, Field7, Field8>(
PXGraph graph, object field0O, object fieldl, object field2,
object field3, object field4, object field5, object fielde,
object field7, object field8, params object[] arguments)
where Field0O : IBglField
where Fieldl : IBglField
where Field2 : IBglField
where Field3 : IBglField
where Field4 : IBglField
where Field5 : IBglField
where Field6 : IBglField
where Field7 : IBglField
where Field8 : IBglField

Parameters:

graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

field0 - field8
The values of Field0-Field8 by which the data set is filtered and sorted.
arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<FieldO, Fieldl, Field2, Field3, Field4, Field5, Field6, Field7, Field8, Field9>(PXGraph,
object, object, object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Fieldl, Field2, Field3,

Field4, Field5, Field6, Field7,
Field8, Field9>(

PXGraph graph, object field0O, object fieldl, object field2,

object field3, object field4, object field5, object fielde,

object field7, object field8, object field9, params object[] arguments)

where Field0O : IBglField

where Fieldl : IBglField

where Field2 : IBglField

where Field3 : IBglField

where Field4 : IBglField

where Field5 : IBglField

where Field6 : IBglField

where Field7 : IBglField

where Field8 : IBglField

where Field9 : IBglField

Parameters:

graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

field0 - field9

| API Reference | 325

The values of Field0-Field9 by which the data set is filtered and sorted.

® arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Sort>(PXGraph, object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and retrieves all data records from the resulting data set.

Syntax:

public static PXResultset<Table> SearchAll<Sort> (PXGraph graph,
object[] searchValues,
params object[] pars)
where Sort : IBglSortColumn

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e searchValues
The values of fields referenced in sort by which the data set is filtered and sorted.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Resultset, Sort>(PXGraph, object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values.

The fields are specified in the sort type parameter. The method extends the BQL statement with
filtering and ordering by the fields and retrieves all data records from the resulting data set. A specific
PXResultset<> type can be specified in the Resultset type parameter.

Syntax:

public static Resultset SearchAll<Resultset, Sort>(PXGraph graph,
object[] searchValues,
params object[] pars)
where Resultset : PXResultset<Table>, new ()
where Sort : IBglSortColumn

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e searchValues

The values of fields referenced in sort by which the data set is filtered and sorted.

e arguments

| API Reference | 326

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchWindowed<Resultset, Sort>(PXGraph, object[], int, int, params object[])

Searches the data set that corresponds to the BQL statement for the data records whose fields have the
specified values. Retrieves the specified nhumber of such data records starting from the given position.

The fields are specified in the sort type parameter. The method extends the BQL statement with
filtering and ordering by the fields and retrieves all data records from the resulting data set. A specific
PXResultset<> type can be specified in the Resultset type parameter.

Syntax:

public static Resultset SearchWindowed<Resultset, Sort>(
PXGraph graph, object[] searchValues,
int startRow, int totalRows, params object[] pars)
where Resultset : PXResultset<Table>, new()
where Sort : IBglSortColumn

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e searchValues
The values of fields referenced in sort by which the data set is filtered and sorted.
e startRow
The 0-based index of the first data record to retrieve.
e totalRows
The number of data records to retrieve.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Select(PXGraph, params object[])
Executes the BQL statement and retrieves all matching data records.

Syntax:

public static PXResultset<Table> Select (PXGraph graph,
params object[] pars)

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

| API Reference | 327

Select<Resultset>(PXGraph, params object[])

Executes the BQL statement and retrieves all matching data records. A specific PXResultset<>
type can be specified in the type parameter. To wrap the retrieved data records, the non-generic
Select () method uses the PXxResultset<Table> type, where Table is the first DAC specified in the
BQL statement.

Syntax:

public static Resultset Select<Resultset> (PXGraph graph, params object[] pars)
where Resultset : PXResultset<Table>, new()

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectMultiBound(PXGraph, object[], params object[])

Executes the BQL statement with the specified values to substitute current object and retrieves all
matching data records.

Syntax:
public static PXResultset<Table> SelectMultiBound (
PXGraph graph, object[] currents, params object[] pars)
Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e currents

The objects to be used instead of the data records referenced by the Current property of the
caches.

e pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed(PXGraph, int, int, params object[])
Retrieves the specified humber of data records starting from the given position.

Syntax:

public static PXResultset<Table> SelectWindowed (
PXGraph graph, int startRow, int totalRows, params object[] pars)

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

| API Reference | 328

e startRow

The 0-based index of the first data record to retrieve.
e totalRows

The number of data records to retrieve.
e arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed <Resultset>(PXGraph, int, int, params object[])

Retrieves the specified humber of data records starting from the given position. A specific
PXResultset<> type can be specified in the type parameter.

Syntax:

public static Resultset SelectWindowed<Resultset>(
PXGraph graph, int startRow, int totalRows, params object[] pars)
where Resultset : PXResultset<Table>, new()

Parameters:
e graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

e startRow

The 0-based index of the first data record to retrieve.
e totalRows

The number of data records to retrieve.
e pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

StoreCached(PXGraph, PXCommandKey, List<object>)
Stores in the caches the results of BQL statement execution.

Syntax:

public static void StoreCached (PXGraph graph, PXCommandKey queryKey,
List<object> records)

Parameters:
e graph
The graph object whose caches are used to store the data records.

e queryKey
e records

PXProcessing<Table> Class

Defines a special data view used on processing webpages, which are intended for mass processing of
data records.

| API Reference | 329

The pPXProcessing<Table> type is used to define the data view in a graph bound to a processing
webpage. A data view of this type includes definitions of two actions, Process and Processall, which
are added to the graph and are used to invoke the processing. You should set the processing method by
invoking one of the SetProcessDelegate(...) methods in the constructor of the graph.

Inheritance Hierarchy

PXSelectBase<Table>

Syntax

public class PXProcessing<Table> : PXSelectBase<Table>, IPXProcessing,
IPXProcessingWithCustomDelegate
where Table : class, IBglTable, new(),

The PXProcessing<Table> type exposes the following members.

Constructors

Constructor Description

PXProcessing(PXGraph) Initializes a new instance of a data view bound to the
specified graph.

PXProcessing(PXGraph, Delegate) Initializes a new instance of a data view that is bound
to the specified graph and uses the provided method
to retrieve data.

Properties

e public virtual Delegate CustomViewDelegate

Gets or sets the delegate of the method that retrieves the data (the optional method of the data
view).

Delegates

The pPXProcessing<Table> type defines the following delegates, which may be passed to
SetProcessDelegate (...) methods.

e public delegate void ProcessListDelegate (List<Table> list);
The delegate of the method for processing a list of data records.

e public delegate void ProcesslItemDelegate (Table item);
The delegate of the method for processing a single data record.

e public delegate void ProcesslItemDelegate<Graph> (Graph graph, Table item)
where Graph : PXGraph, new();

The delegate of the method for processing a single data record. The delegate allows you to
receive the same instance of the provided graph type to each invocation of the processing method
during the processing operation.

e public delegate void FinallyProcesselegate<Graph> (Graph graph) where
Graph : PXGraph, new();

The delegate of the method that is executed after all data records are processed. In the
parameter, the method receives the graph that was passed to each invocation of the data record
processing method during the processing operation.

| API Reference | 330

Methods

Method Description

GetProcessDelegate() Returns the delegate of the processing method, which
is set by one of the SetProcessDelegate() methods

Join<join>() Appends the join clause to the underlying BQL

command

OrderByNew<newOrderBy>()

Replaces the sorting expression in the underlying BQL
command

SetAutoPersist(bool)

Sets the value that indicates whether the changes
in the graph should be automatically saved in the
database before the data records are processed

SetCurrentitem(Table)

Sets the current data record to process

SetError(string) Sets the provided string as the error message of the
processing operation
SetError(Exception) Sets the provided exception as the error of the

processing operation

SetError(int, string)

Sets the error message on the data record with the
specified index

SetError(int, Exception)

Sets the provided exception as the error on the data
record with the specified index

SetInfo(string) Sets the information message for the processing
operation
SetInfo(Exception) Sets the provided exception as the information-level

error for the processing operation

SetiInfo(int, string)

Attaches the provided information message to the data
record with the specified index

SetInfo(int, Exception)

Attaches the provided exception as the information-
level error to the data record with the specified index

SetProcessAllCaption(string)

Sets the display name of the button that processes all
data records selected by the data view

SetProcessAllEnabled(bool)

Enables or disables the button that processes all data
records selected by the data view

SetProcessAllTooltip(string)

Sets the tooltip for the button that processes all data
records selected by the data view

SetProcessAllVisible(bool)

Displays or hides the button that processes all data
records selected by the data view

SetProcessCaption(string)

Sets the display name of the button that processes the
selected data records

SetProcessDelegate(ProcessListDelegate)

Sets the method that is invoked to process multiple
data records

SetProcessDelegate(ProcessItemDelegate)

Sets the method that is invoked to process each data
record

| API Reference | 331

Method Description

SetProcessDelegate<Graph> Sets the method that is invoked to process each data
(ProcessItemDelegate<Graph>) record

SetProcessDelegate<Graph> Sets the method that is invoked to process each data
(ProcessItemDelegate<Graph>, record and the method that is invoked after all data
FinallyProcesselegate<Graph>) records are processed

SetProcessEnabled(bool) Enables or disables the button that processes the

selected data records

SetProcessTooltip(string) Sets the tooltip for the button that processes the
selected data records

SetProcessVisible(bool) Displays or hides the button that processes the
selected data records

SetProcessed() Sets the information message confirming that a data
record has been processed successfully

SetSelected<Field>() Sets the DAC field by which the user can mark data
records that should be processed

SetWarning(string) Sets the warning message for the processing operation

SetWarning(Exception) Sets the provided exceptiona as the warning-level

error of the processing operation

SetWarning(int, string) Sets the warning message on the data record with the
specified index

SetWarning(int, Exception) Attaches the provided exception as the warning-level
error to the data record with the specified index

The following classes derive from PXProcessing<Table>. These classes expose exactly the same
members as PXProcessing<Table> and serve only for specifying more complex BQL expressions.

PXProcessing<Table, Where> Class
Selects data records from one table filtered by the expression set in Wihere.

Syntax:

public class PXProcessing<Table, Where> : PXProcessing<Table>
where Table : class, IBglTable, new ()
where Where : IBglWhere, new ()

PXProcessing<Table, Where, OrderBy> Class

Selects data records from one table filtered by the expression set in Wwhere and ordered by the fields
specified in OrderBy.

Syntax:

public class PXProcessing<Table, Where, OrderBy> : PXProcessing<Table, Where>
where Table : class, IBglTable, new()
where Where : IBglWhere, new/()
where OrderBy : IBglOrderBy, new|()

PXProcessingJoin<Table, Join> Class

Selects data records from multiple tables linked by the Join clause.

| API Reference | 332

Syntax:

public class PXProcessingJoin<Table, Join> : PXProcessing<Table>
where Table : class, IBglTable, new()
where Join : IBglJoin, new()

PXProcessingloin<Table, Join, Where> Class

Selects data records from multiple tables linked by the Join clause and filtered according to the
expression set in Where.

Syntax:

public class PXProcessingJoin<Table, Join, Where> : PXProcessingJoin<Table, Join>
where Table : class, IBglTable, new()
where Join : IBglJoin, new ()
where Where : IBglWhere, new/()

PXProcessingloin<Table, Join, Where, OrderBy> Class

Selects data records from multiple tables linked by the Join clause, filtered according to the expression
set in Where, and ordered by the fields specified in OrderBy.

Syntax:

public class PXProcessingJoin<Table, Join, Where, OrderBy> : PXProcessingJoin<Table,
Join, Where>
where Table : class, IBglTable, new()
where Join : IBglJoin, new ()
where Where : IBglWhere, new/()
where OrderBy : IBglOrderBy, new()

PXFilteredProcessing<Table, FilterTable> Class
Selects data records from one table and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable> : PXProcessing<Table>
where FilterTable : class, IBglTable, new()
where Table : class, IBglTable, new()

PXFilteredProcessing<Table, FilterTable, Where> Class
Selects data records from one table filtered by the expression set in Wwhere and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable, Where>
PXFilteredProcessing<Table, FilterTable>
where FilterTable : class, IBglTable, new()
where Table : class, IBqglTable, new ()
where Where : IBglWhere, new()

PXFilteredProcessing<Table, FilterTable, Where, OrderBy> Class

Selects data records from one table filtered by the expression set in Where and ordered by the fields
specified in orderBy and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable, Where, OrderBy>
PXFilteredProcessing<Table, FilterTable, Where>

| API Reference | 333

where FilterTable : class, IBglTable, new()
where Table : class, IBqglTable, new ()

where Where : IBglWhere, new()

where OrderBy : IBglOrderBy, new ()

PXFilteredProcessingJloin<Table, FilterTable, Join> Class
Selects data records from multiple tables linked by the Join clause and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join>
PXFilteredProcessing<Table, FilterTable>
where FilterTable : class, IBglTable, new()
where Table : class, IBglTable, new ()
where Join : IBglJoin, new()

PXFilteredProcessingJloin<Table, FilterTable, Join, Where> Class

Selects data records from multiple tables linked by the Join clause and filtered according to the
expression set in where and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join, Where>
PXFilteredProcessingJoin<Table, FilterTable, Join>
where FilterTable : class, IBglTable, new()
where Table : class, IBqglTable, new ()
where Join : IBglJoin, new ()
where Where : IBglWhere, new/()

PXFilteredProcessingloin<Table, FilterTable, Join, Where, OrderBy> Class

Selects data records from multiple tables linked by the Join clause, filtered according to the expression
set in Wwhere, and ordered by the fields specified in 0OrderBy and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join, Where, OrderBy>
PXFilteredProcessingJoin<Table, FilterTable, Join>
where FilterTable : class, IBglTable, new()
where Table : class, IBqglTable, new ()
where Join : IBglJoin, new ()
where Where : IBglWhere, new/()
where OrderBy : IBglOrderBy, new()

PXFilteredProcessingJoinGroupBy<Table, FilterTable, Join, Where, Aggregate> Class

Selects aggregated data records from multiple tables linked by the Join clause, filtered according to the
expression set in Wwhere, and ordered by the fields specified in orderBy and applies the user filter.

Syntax:

public class PXFilteredProcessingJoinGroupBy<Table, FilterTable, Join, Where,
Aggregate> : PXFilteredProcessingJoin<Table, FilterTable, Join>

where FilterTable : class, IBglTable, new()

where Table : class, IBglTable, new()

where Join : IBglJoin, new ()

where Where : IBglWhere, new/()

where Aggregate : IBglAggregate, new ()

| API Reference | 334

Examples
The code below shows definition of the graph that contains the processing data view.

public class ARPaymentsProcessing : PXGraph<ARPaymentsProcessing>

{

// Definition of the data view to process
public PXProcessing<ARPaymentInfo> ARDocumentList;

// The constructor of the graph
public ARPaymentsAutoProcessing /()

{

// Specifying the field to mark data records for processing
ARDocumentList.SetSelected<ARPaymentInfo.selected> () ;

// Setting the processing method
ARDocumentList.SetProcessDelegate (Process) ;

}

// The processing method (must be static)
public static void Process (List<ARPaymentInfo> products)

{
}
}

PXProcessing<Table> Constructors

The PXProcessing<Table> type exposes the following constructors.

PXProcessing(PXGraph)
Initializes a new instance of a data view bound to the specified graph.

Syntax:
public PXProcessing (PXGraph graph) : this(graph, null)

Parameters:
e graph

The graph with which the data view is associated.

PXProcessing(PXGraph, Delegate)

Initializes a new instance of a data view that is bound to the specified graph and uses the provided
method to retrieve data.

Syntax:

public PXProcessing (PXGraph graph, Delegate handler)

Parameters:
e graph
The graph with which the data view is associated.
e handler
The delegate of the method that is used to retrieve the data from the database (or other source).

PXProcessing<Table> Methods

The PXProcessing<Table> type exposes the following methods.

| API Reference | 335

GetProcessDelegate()

Returns the delegate of the processing method, which is set by one of the SetProcessDelegate()
methods.

Syntax:

public Delegate GetProcessDelegate ()

Join<join>()
Appends the join clause to the underlying BQL command.

Syntax:

public override void Join<join> ()

OrderByNew<newOrderBy>()
Replaces the sorting expression in the underlying BQL command.

Syntax:

public override void OrderByNew<newOrderBy> ()

SetAutoPersist(bool)

Sets the value that indicates whether the changes in the graph should be automatically saved in the
database before the data records are processed. By default, the changes are not saved automatically.

Syntax:
public virtual void SetAutoPersist (bool autoPersist)

Parameters:
e autoPersist

The value indicating whether to save the changes.

SetCurrentltem(Table)
Sets the current data record to process.

Syntax:
public static void SetCurrentlItem(Table currentItem)

Parameters:
e currentlItem

The data record to be set as the current.

SetError(string)
Sets the provided string as the error message of the processing operation.

Syntax:
public static bool SetError (string message)

Parameters:

® message

The error message.

SetError(Exception)
Sets the provided exception as the error of the processing operation.
Syntax:

public static bool SetError (Exception e)

Parameters:
¢ c

The exception containing information about the error.

SetError(int, string)
Sets the error message on the data record with the specified index.
Syntax:

public static bool SetError (int index, string message)

Parameters:
e index
The index of the data record marked with error.
® message

The error message.

SetError(int, Exception)

Sets the provided exception as the error on the data record with the specified index.

Syntax:
public static bool SetError (int index, Exception e)

Parameters:
e index
The index of the data record marked with error.
e e

The exception containing information about the error.

SetInfo(string)
Sets the information message for the processing operation.

Syntax:
public static bool SetInfo(string message)

Parameters:
e message

The information message.

| API Reference | 336

| API Reference | 337

SetInfo(Exception)
Sets the provided exception as the information-level error for the processing operation.

Syntax:
public static bool SetInfo (Exception e)

Parameters:
e ¢

The exception containing information.

SetInfo(int, string)
Attaches the provided information message to the data record with the specified index.

Syntax:

public static bool SetInfo (int index, string message)

Parameters:
e index
The index of the data record to which the message is attached.
e message

The information message.

SetInfo(int, Exception)

Attaches the provided exception as the information-level error to the data record with the specified
index.

Syntax:

public static bool SetInfo (int index, Exception e)

Parameters:
e index
The index of the data record that is marked with the exception.
e e

The exception containing information.

SetProcessAllCaption(string)
Sets the display name of the button that processes all data records selected by the data view.

Syntax:
public virtual void SetProcessAllCaption(string caption)
Parameters:

e caption

The string used as the display name.

| API Reference | 338

SetProcessAllEnabled(bool)
Enables or disables the button that processes all data records selected by the data view.

Syntax:
public virtual void SetProcessAllEnabled (bool enabled)

Parameters:
e cnabled

The value indicating whether the button is enalbed.

SetProcessAllTooltip(string)
Sets the tooltip for the button that processes all data records selected by the data view.

Syntax:
public virtual void SetProcessAllTooltip(string tooltip)

Parameters:
e tooltip

The string used as the tooltip.

SetProcessAllVisible(bool)
Displays or hides the button that processes all data records selected by the data view.

Syntax:
public virtual void SetProcessAllVisible (bool visible)

Parameters:
e visible

The value indicating whether the button is visible.

SetProcessCaption(string)
Sets the display name of the button that processes the selected data records.

Syntax:
public virtual void SetProcessCaption(string caption)

Parameters:
e caption

The string used as the display name.

SetProcessDelegate(ProcessListDelegate)
Sets the method that is invoked to process multiple data records.

The method receives the list of the data records to process in the parameter. Depending on the buttion
the user clicked to start processing, the data records are either the data records selected by the user in
the grid or all data records selected by the data view.

| API Reference | 339

Syntax:
public virtual void SetProcessDelegate (ProcessListDelegate handler)

Parameters:
e handler
The delegate of the processing method.
Examples:

The code below sets the processing method for a processing data view in a graph.

// Definition of the processing data view
public PXProcessingJoin<BalancedAPDocument, ... > APDocumentList;

// The constructor of the graph
public APDocumentRelease ()

{

// Setting the delegate of a processing method and defining the
// processing method in place
APDocumentList.SetProcessDelegate (
delegate (List<BalancedAPDocument> list)
{
List<APRegister> newlist = new List<APRegister>(list.Count);
foreach (BalancedAPDocument doc in list)

{
newlist.Add (doc) ;
}

ReleaseDoc (newlist, true);

)i
}

// Definition of the method that does actual processing
public static void ReleaseDoc (List<APRegister> list, bool isMassProcess)

{
}

SetProcessDelegate(ProcessItemDelegate)
Sets the method that is invoked to process each data record.

The method receives the data records to process in the parameter. Depending on the buttion the user
clicked to start processing, the method is invoked for each data record selected by the user in the grid,
or for each data record selected by the data view.

Syntax:
public virtual void SetProcessDelegate (ProcessItemDelegate handler)

Parameters:
e handler

The delegate of the processing method.

SetProcessDelegate<Graph>(ProcessItemDelegate<Graph>)

Sets the method that is invoked to process each data record.

| API Reference | 340

The method should have two parameters, the graph and the data record. When the user initiates
processing, the data view initializes the instance of the specified graph type and passes it to the
processing method while it is invoked for each data record.

Syntax:

public void SetProcessDelegate<Graph> (ProcessItemDelegate<Graph> handler)
where Graph : PXGraph, new()

Parameters:
e handler
The delegate of the processing method.
Examples:
The code below sets the processing method, which will process each data record, for a processing data

view in a graph.

// Definition of the processing data view
public PXFilteredProcessing<ARPaymentInfo> ARDocumentList;

ARDocumentList.SetProcessDelegate<ARPaymentCCProcessing> (
delegate (ARPaymentCCProcessing aGraph,ARPaymentInfo doc)
{
ProcessPayment (aGraph, doc);
}
)i

The ProcessPayment (...) should be the static method of the current graph.

SetProcessDelegate<Graph>(ProcessItemDelegate<Graph>, FinallyProcesselegate<Graph>)

Sets the method that is invoked to process each data record and the method that is invoked after all
data records are processed.

The processing method should have two parameters, the graph and the data record. When the user
initiates processing, the data view initializes the instance of the specified graph type and passes it to
the processing method while it is invoked for each data record.

The second method has the only parameter, the graph. This method is invoked once when all data
record are processed. The parameter of the method is set to the graph that was passed to the
processing method for each data record.

Syntax:

public virtual void SetProcessDelegate<Graph> (
ProcessItemDelegate<Graph> handler,
FinallyProcesselegate<Graph> handlerFinally)
where Graph : PXGraph, new()

Parameters:
e handler
The delegate of the processing method.
e handlerFinally

The delegate of the method invoked when all data records are processed.

SetProcessEnabled(bool)

Enables or disables the button that processes the selected data records.

| API Reference | 341

Syntax:
public virtual void SetProcessEnabled (bool enabled)

Parameters:
e cnabled

The value indicating whether the button is enabled.

SetProcessTooltip(string)
Sets the tooltip for the button that processes the selected data records.

Syntax:
public virtual void SetProcessTooltip (string tooltip)

Parameters:
e tooltip
The string used as the tooltip.

SetProcessVisible(bool)
Displays or hides the button that processes the selected data records.

Syntax:
public virtual void SetProcessVisible (bool visible)

Parameters:
e visible

The value indicating whether the button is visible.

SetProcessed()
Sets the information message confirming that a data record has been processed successfully

Syntax:

public static bool SetProcessed()

SetSelected<Field>()

Sets the DAC field by which the user can mark data records that should be processed. The method
enables this field and disabled all other fields.

Syntax:

public virtual void SetSelected<Field> ()
where Field : IBglField

SetWarning(string)
Sets the warning message for the processing operation.

Syntax:

public static bool SetWarning (string message)

| API Reference | 342

Parameters:
® message

The warning message.

SetWarning(Exception)
Sets the provided exceptiona as the warning-level error of the processing operation.

Syntax:
public static bool SetWarning (Exception e)

Parameters:
e e

The exception containing warning information.

SetWarning(int, string)
Sets the warning message on the data record with the specified index.

Syntax:
public static bool SetWarning (int index, string message)

Parameters:
e index
The index of the data record to which the message is attached.
e message

The warning message.

SetWarning(int, Exception)
Attaches the provided exception as the warning-level error to the data record with the specified index.

Syntax:
public static bool SetWarning (int index, Exception e)

Parameters:
e index
The index of the data record to which the exception is attached.
LIS

The exception containing warning information.

PXGraph Class

The base type that defines the common interface of business logic controllers (graphs), which you
should derive from either PXGraph<TGraph> or PXGraph<TGraph, TPrimary>.

Each webpage references a graph (through the pxbatasource control). An instance of this graph is
created and destroyed on each user's request, while the modified data records are preserved between
requests in the session.

| API Reference | 343

Syntax

[System.Security.Permissions.ReflectionPermission (
System.Security.Permissions.SecurityAction.Assert,
Unrestricted = true)]

[System.Security.Permissions.SecurityPermission (
System.Security.Permissions.SecurityAction.Assert,
Unrestricted = true)]

[DebuggerTypeProxy (typeof (PXGraph.PXDebugView))]

public class PXGraph: IXmlSerializable

The pXGraph type exposes the following members.

Constructors

The pPxGraph constructor is not called directly. To initialize a new instance of the PXGraph or PXGraph<>
class, use the Createlnstance<>() method.

Classes that derive from pxGraph<> (graphs) can define their own constructors without parameters to
perform layout configuration or configure background processing operations.

Properties
e public AccessInfo Accessinfo

Get an instance of the AccessInfo DAC, which contains some application settings of the current
user, such as the branch ID, user ID and name, webpage ID, and other settings. The fields of
this DAC can be referenced in BQL statements through the current parameter. For example,
Current<AccessInfo.branchID>.

e public object UID
Gets or sets the uniquer identifier that is used for setting up the processing operations.
e public CultureInfo Culture
Gets or sets the culture information.
e public byte[] TimeStamp
Gets or sets the value of the global timestamp.
e public virtual bool IsDirty

Gets the value that indicates whether there are modified data records not saved to the database
in the caches related to the graph data views. If the IsDirty property of at least one cache object
is true, the IsDirty property of the graph is also true.

The following properties provide access to the collections of event handlers defined in the graph or
added at run time:

e public RowSelectingEvents RowSelecting

Gets the instance of RowSelectingEvents type that represents the collection of RowSelecting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

e public RowSelectedEvents RowSelected

Gets the instance of RowSelectedEvents type that represents the collection of RowSelected event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

e public RowlInsertingEvents RowInserting

| API Reference | 344

Gets the instance of RowlnsertingEvents type that represents the collection of RowlInserting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowlInsertedEvents RowInserted

Gets the instance of RowlInsertedEvents type that represents the collection of RowInserted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowUpdatingEvents RowUpdating

Gets the instance of RowUpdatingEvents type that represents the collection of RowUpdating event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowUpdatedEvents RowUpdated

Gets the instance of RowUpdatedEvents type that represents the collection of RowUpdated event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowDeletingEvents RowDeleting

Gets the instance of RowDeletingEvents type that represents the collection of RowDeleting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowDeletedEvents RowDeleted

Gets the instance of RowDeletedEvents type that represents the collection of RowDeleted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public RowPersistingEvents RowPersisting

Gets the instance of RowPersistingEvents type that represents the collection of RowPersisting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

public RowPersistedEvents RowPersisted

Gets the instance of RowPersistedEvents type that represents the collection of RowPersisted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

public CommandPreparingEvents CommandPreparing

Gets the instance of CommandPreparingEvents type that represents the collection of
CommandPreparing event handlers related to the graph. The collection initially contains the event
handlers defined in the graph, but it can be modified at run time.

public FieldDefaultingEvents FieldDefaulting

Gets the instance of FieldDefaultingEvents type that represents the collection of FieldDefaulting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

public FieldUpdatingEvents FieldUpdating

Gets the instance of FieldUpdatingEvents type that represents the collection of FieldUpdating
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

public FieldVerifyingEvents FieldVerifying

| API Reference | 345

Gets the instance of FieldVerifyingEvents type that represents the collection of FieldVerifying
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

e public FieldUpdatedEvents FieldUpdated

Gets the instance of FieldUpdatedEvents type that represents the collection of Fie/ldUpdated event
handlers related to the graph. The collection initially contains the event handlers defined in the

graph, but it can be modified at run time.

e public FieldSelectingEvents FieldSelecting

Gets the instance of FieldSelectingEvents type that represents the collection of FieldSelecting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

e public ExceptionHandlingEvents ExceptionHandling

Gets the instance of ExceptionHandlingEvents type that represents the collection of
ExceptionHandling event handlers related to the graph. The collection initially contains the event
handlers defined in the graph, but it can be modified at run time.

Methods

Method Description

AllowDelete(string) Returns the value indicating if the cache related to the
data view allows deleting data records through the
user interface

AllowInsert(string) Returns the value indicating if the cache related to the
data view allows inserting data records through the
user interface

AllowSelect(string) Returns the value indicating if the cache related to the
data view allows selecting data records through the
user interface

AllowUpdate(string) Returns the value indicating if the cache related to the
data view allows updating data records through the
user interface

Clear() Clears the graph state stored in the session by clearing
the data from each cache

Clear(PXClearOption) Clears a part of the graph state according to the
provided option

Createlnstance(Type) Initializes a new graph instance of the specified type

and extension types if the customization exists

Createlnstance<Graph>()

Initializes a new graph instance of the specified type
and extension types if the customization exists

ExecuteDelete(string, IDictionary,
IDictionary, params object[])

Deletes the data record from the cache related to the
data view by invoking the Delete(IDictionary) method
on the cache

Executelnsert(string, IDictionary, params
object[])

Inserts a new data record into the cache related to the
data view by invoking the Insert(IDictionary) method
on the cache

| API Reference | 346

Method

Description

ExecuteSelect(string, object[], object[],
string[], bool[], PXFilterRow[], ref int, int, ref
int)

Executes the specified data view and returns the data
records the data view selects

ExecuteUpdate(string, IDictionary,
IDictionary, params object[])

Updates a data record in the cache related to the data
view by invoking the Update(IDictionary) method on
the cache

GetAttributes(string, string)

Gets all instances of attributes placed on the specified
field from the cache related to the data view

GetExtension<Extension>()

Returns the instance of the graph extension of the
specified type

GetFieldNames(string)

Returns the names of all fields from all DACs
referenced by the BQL command of the data view

GetltemType(string) Returns the type of the first DAC referenced by the
data view
GetKeyNames(string) Returns the names of the keys fields of the cache

related to the data view

GetParameterNames(string)

Returns the names of parameters of the data view by
invoking the GetParameterNames(string) method on
the data view

GetSortColumns(string)

Returns pairs of the names of the fields by which the
data view result will be sorted and values indicating if
the sort by the field is descending

GetStateExt(string, object, string)

Gets the value as the pxFieldstate object of the
specified field in the data record

GetStatus(string) Returns the status of the current data record of the
cache related to the data view
GetUpdatable(string) Returns the value indicating if the data view is read-

only

GetValue(string, object, string)

Gets the value of the specified field in the data record
without raising any events

GetValueExt(string, object, string)

Gets the value or the pXFieldState object of the
specified field in the data record

GetViewNames() Retrieves the names of all data views defined in the
graph

HasException() Returns the value indicating if any updatable cache has
an exception

Load() Loads the state of the graph and caches from the
session

Persist() Saves the modified data records kept in the caches to

the database

Persist(Type, PXDBOperation)

Saves the modifications of a particular type from the
specified cache to the database

| API Reference | 347

Method

Description

ProviderDelete(Type, params
PXDataFieldRestrict[])

Performs a database delete operation

ProviderDelete<Table>(params
PXDataFieldRestrict[])

Performs a database delete operation

ProviderEnsure(Type, PXDataFieldAssign[],
PXDataField[])

ProviderExecute(string, params
PXSPParameter([])

Executes a database stored procedure

ProviderInsert(Type, params
PXDataFieldAssign[])

Performs a database insert operation

ProviderInsert<Table>(params
PXDataFieldAssign[])

Performs a database delete operation

ProviderSelect(BglCommand, int, params
PXDataValue[])

Selects the specified amount of top records from the
database table

ProviderSelectMulti(Type, params
PXDataField[])

Selects multiple records from the database table

ProviderSelectMulti<Table>(params
PXDataField[])

Selects multiple records from the database table

ProviderSelectSingle(Type, params
PXDataField[])

Selects a single record from the database table

ProviderSelectSingle<Table>(params
PXDataField[])

Selects a single record from the database table

ProviderUpdate(Type, params

Performs a database update operation

PXDataFieldParam[])

ProviderUpdate<Table>(params Performs a database update operation
PXDataFieldParam[])

SelectTimeStamp() Retrieves the timestamp value from the database and

stores this value in the TimeStamp property of the
graph

SetValue(string, object, string, object)

Sets the value of the field by field name in the data
record without raising any events

SetValueExt(string, object, string, object)

Sets the value of the specified field in the data record

Unload() Stores the graph state and the modified data records
from all caches to the user session

UpdateRights(string) Returns a value that indicates if updating of the cache
related to the data view is allowed

Fields

e public PXCacheCollection Caches

The dictionary that maps DACs to the related cache objects. An access to the indexer [] of this
collection implicitly adds an element to the dictionary if the appropriate element does not exist.

e public readonly PXActionCollection Actions

| API Reference | 348

The collection of actions defined in the graph.
e public PXViewCollection Views

The collection of data views defined in the graph.
e public readonly Dictionary<PXView, string> ViewNames

The dictionary that allows getting the name of the data view by the corresponding pxview object.
e public PXTypedViewCollection TypedViews

The collection of pxview objects indexed by the first DACs referenced by the corresponding BQL
commands.

e public static InstanceCreatedEvents InstanceCreated

The instance of InstanceCreatedEvents type representing the collection of InstanceCreated event
handlers.

Nested Classes

The pxGraph type includes definitions of a number of nested classes, which all represent collections

of graph event handlers of specific types. The methods of these classes can be used to modify the
collections at run time, adding and removing event handlers. Note that, depending on the type of
event, new event handlers are added to either the start or the end of the collection. Also, the collections
do not include event handlers that are defined in attributes, because attribute event handlers are
maintained by caches.

PXGraph Methods
The PXGraph type exposes the following methods.

AllowDelete(string)

Returns the value indicating if the cache related to the data view allows deleting data records through
the user interface. This flag does not affect the ability to delete a data record through code.

Syntax:

public virtual bool AllowDelete (string viewName)

Parameters:
e viewName

The name of the data view.

AllowInsert(string)

Returns the value indicating if the cache related to the data view allows inserting data records through
the user interface. This flag does not affect the ability to insert a data record through code.

Syntax:
public virtual bool AllowInsert (string viewName)
Parameters:

e viewName

The name of the data view.

| API Reference | 349

AllowSelect(string)

Returns the value indicating if the cache related to the data view allows selecting data records through
the user interface. This flag does not affect the ability to select data records through code.

Syntax:
public virtual bool AllowSelect (string viewName)

Parameters:
e viewName

The name of the data view.

AllowUpdate(string)

Returns the value indicating if the cache related to the data view allows updating data records through
the user interface. This flag does not affect the ability to update a data record through code.

Syntax:
public virtual bool AllowUpdate (string viewName)

Parameters:
o viewName

The name of the data view.

Clear()
Clears the graph state stored in the session by clearing the data from each cache.

Syntax:

public virtual void Clear ()

Clear(PXClearOption)
Clears a part of the graph state according to the provided option.
Syntax:

public virtual void Clear (PXClearOption option)

Parameters:
e option

The value of PXClearOption type that specifies which data to clear.

CreatelInstance(Type)

Initializes a new graph instance of the specified type and extension types if the customization exists.
This method provides a preferred way of initializing a graph.

Syntax:
public static PXGraph Createlnstance (Type graphType)

Parameters:

e graphType

| API Reference | 350

A type derived from PXGraph.

CreateInstance<Graph>()

Initializes a new graph instance of the specified type and extension types if the customization exists.
This method provides a preferred way of initializing a graph. The graph type is specified in the type
parameter.

Syntax:

public static Graph CreateInstance<Graph> ()
where Graph : PXGraph, new()

Examples:

The code below initializes an instance of the JournalEntry graph.

JournalEntry graph = PXGraph.CreatelInstance<JournalEntry>();

ExecuteDelete(string, IDictionary, IDictionary, params object[])

Deletes the data record from the cache related to the data view by invoking the Delete(IDictionary)
method on the cache. Returns 1 in case of successful deletion and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int ExecuteDelete (string viewName, IDictionary keys, IDictionary
values, params object[] parameters)

Parameters:
e viewName
The name of the data view.
e keys
The keys that identify the data record.
e values

The values of the data record fields.

ExecutelInsert(string, IDictionary, params object[])

Inserts a new data record into the cache related to the data view by invoking the Insert(IDictionary)
method on the cache. Returns 1 in case of successful insertion and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int Executelnsert (string viewName, IDictionary values, params
object[] parameters)

Parameters:
e viewName
The name of the data view.
e values

The values to populates the data record fields .

| API Reference | 351

ExecuteSelect(string, object[], object[], string[], bool[], PXFilterRow[], ref int, int, ref int)
Executes the specified data view and returns the data records the data view selects.

The method raises the RowSelected event for each retrieved data record and sets the current property
of the cache to the last data record retrieved.

The method is used by the user interface. The application code does not typically need to use this
method and selects the data directly through the data views.

Syntax:

public virtual IEnumerable ExecuteSelect (
string viewName, object[] parameters,
object[] searches, string[] sortcolumns,
bool[] descendings, PXFilterRow[] filters,
ref int startRow, int maximumRows, ref int totalRows)

Parameters:
e viewName
The name of the data view.
e parameters
Parameters for the BQL command.
e searches
The values by which the data is filtered.
e sortcolumns

The fields by which the if sorted and filtered (the filtering values are provided in the searches
parameter)

e (ref) startRow

The index of the data record to start retreiving with (after filtering by the searches parameter).
e maximumRows

The maximum number of data records to retrieve.
e (ref) totalRows

The total amount of data records in the resultset.

ExecuteUpdate(string, IDictionary, IDictionary, params object[])

Updates a data record in the cache related to the data view by invoking the Update(IDictionary) method
on the cache. Returns 1 in case of successful update and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int ExecuteUpdate (string viewName, IDictionary keys, IDictionary
values, params object[] parameters)

Parameters:
e viewName
The name of the data view.
e Xkeys
The keys that identify the data record.

| API Reference | 352

e values

The new values of the data record fields.

GetAttributes(string, string)

Gets all instances of attributes placed on the specified field from the cache related to the data view. The
method relies on the GetAttributes(string) method of the cache.

Syntax:

public PXEventSubscriberAttribute[] GetAttributes (string viewName, string name)

Parameters:
e viewName
The name of the data view.
® name

The name of the field whose attributes are returned. If null, the attributes from all fields are
returned.

GetExtension<Extension>()

Returns the instance of the graph extension of the specified type. The type of the extension is specified
in the type parameter.

Syntax:
public virtual Extension GetExtension<Extension> ()
where Extension : PXGraphExtension
Examples:

An extension of a graph is a class that derives from the PXGraphExtension<> type. The example below
shows the definition of an extension on the InventoryItemMaint graph.

public class InventoryltemMaintExtension
PXGraphExtension<InventoryIltemMaint>

{
public void SomeMethod ()

{

// The Base variable references the instance of InventoryItemMaint
InventoryItemMaintExtension ext =
Base.GetExtension<InventoryIltemMaintExtension> () ;

GetFieldNames(string)
Returns the names of all fields from all DACs referenced by the BQL command of the data view.

Syntax:
public string[] GetFieldNames (string viewName)

Parameters:
e viewName

The name of the data view.

| API Reference | 353

GetItemType(string)
Returns the type of the first DAC referenced by the data view.
Syntax:

public Type GetItemType (string viewName)

Parameters:
e viewName

The name of the data view.

GetKeyNames(string)
Returns the names of the keys fields of the cache related to the data view.

Syntax:
public string[] GetKeyNames (string viewName)

Parameters:
o viewName

The name of the data view.

GetParameterNames(string)

Returns the names of parameters of the data view by invoking the GetParameterNames(string) method
on the data view.

Syntax:
public string[] GetParameterNames (string viewName)

Parameters:
e viewName

The name of the data view.

GetSortColumns(string)

Returns pairs of the names of the fields by which the data view result will be sorted and values
indicating if the sort by the field is descending.

Syntax:
public virtual KeyValuePair<string, bool>[] GetSortColumns (string viewName)
Parameters:

e viewName

The name of the data view.

GetStateExt(string, object, string)

Gets the value as the pxFieldState object of the specified field in the data record. The method relies
on the GetStateExt(object, string) method of the cache.

| API Reference | 354

Syntax:
public virtual object GetStateExt (string viewName, object data, string fieldName)

Parameters:
e viewName
The name of the data view.
e data
The data record from the cache related to the data view.
e fieldName

The name of the field whose state is returned.

GetStatus(string)

Returns the status of the current data record of the cache related to the data view. If the current
property of the cache is null, the method returns the Notchanged status.

Syntax:
public PXEntryStatus GetStatus (string viewName)

Parameters:
e viewName

The name of the data view.

GetUpdatable(string)
Returns the value indicating if the data view is read-only.

Syntax:
public virtual bool GetUpdatable (string viewName)

Parameters:
e viewName

The name of the data view.

GetValue(string, object, string)

Gets the value of the specified field in the data record without raising any events. The method relies on
the GetValue(object, string) method of the cache related to the data view.

Syntax:
public virtual object GetValue (string viewName, object data, string fieldName)

Parameters:
e viewName
The name of the data view.
e data
The data record from the cache related to the data view.

e fieldName

| API Reference | 355

The name of the field whose value is returned.

GetValueExt(string, object, string)

Gets the value or the PxFieldState object of the specified field in the data record. The method relies
on the GetValueExt(object, string) method of the cache related to the data view.

Syntax:
public virtual object GetValueExt (string viewName, object data, string fieldName)

Parameters:
e viewName
The name of the data view.
e data
The data record from the cache related to the data view.
e fieldName

The name of the field whose value or state is returned.

GetViewNames()
Retrieves the names of all data views defined in the graph.

Syntax:

public virtual IEnumerable<string> GetViewNames ()

HasException()
Returns the value indicating if any updatable cache has an exception.

Syntax:

public bool HasException ()

Load()
Loads the state of the graph and caches from the session.
The state is stored in the session through the Unload() method.

Syntax:

public virtual void Load()

Persist()
Saves the modified data records kept in the caches to the database.

All data records are saved within a single transaction context. The method takes into account only the
caches from Views.Caches collection.

The method saves the data records in the following order:
1. Data records with the Inserted status from all caches.
2. Data records with the Updated status