
Acumatica Framework
Development Guide

 | Contents | 2

Contents

Copyright..6

Acumatica Framework Overview..7
Introduction...7
Acumatica Framework and Modern Web Development.. 8
Acumatica Framework and Microsoft Technology.. 12
Acumatica Framework Components.. 15
Runtime Tools.. 18
Development Tools... 20
Conclusion... 29

Components and Tools...30

Design Guidelines...34
Database Design Guidelines.. 34
Application Design Guidelines.. 40

Application Programming Overview... 42
Querying the Data... 43
Entity Model Declaration... 45

Handling Entity Data... 45
Implementing Business Logic..53

Programming Tasks... 55
Localizing Applications.. 55
Generating a Data Access Class...58
Working With Images... 59
Adding Widgets to Dashboard..64
Data Representation... 64

Filtering Data on a Webpage.. 64
Creating Lookup Fields.. 71
Adding Lookup Fields Onto a Form and Onto a Grid.. 77

Calculations... 80
Calculating Values of UI Elements...80

Data Input.. 83
Managing Visibility of DAC Fields and UI Elements.. 83
Validating UI Element Values..85
Using Input Mask and Display Mask.. 88

Interaction With the Server...90
Confifuring Webpage UI Elements and Behavior of BLCs.. 91

Creating an Acumatica ERP Add-on Project... 94
Implementing a Credit Card Processing Plug-in.. 101

 | Contents | 3

Using Substitute Keys... 110
Calling a New PXSmartPanel..112

Debugging Applications..114

API Reference.. 116
Event Model...116

Event Model Overview... 116
Scenarios... 118
Events..126

BQL.. 190
Constructing Statements.. 190
Filtering..200
Querying Multiple Tables.. 214
Grouping and Aggregating..219
Using Parameters.. 224
Using Functions...229
Executing Statements.. 236
Appendix.. 240

Core Classes.. 246
PXCache<Table> Class...247
PXSelectBase<Table> Class.. 292
PXGraph Class.. 342
PXView Class.. 375

Attributes.. 391
Bound Field Data Types... 393
Unbound Field Data Types..440
UI Field Configuration.. 465
Default Values...485
Complex Input Controls... 499
Referential Integrity and Calculations...529
Adhoc SQL for Fields... 548
Audit Fields.. 551
Data Projection... 558
Access Control.. 562
Notes... 563
Report Optimization...570
Attributes on DACs..571
Attributes on Actions... 581
Attributes on Data Views... 593
Miscellaneous..599
Alphabetical Index...633

Common Types.. 638
PXEntryStatus Enumeration.. 638
PXErrorHandling Enumeration... 639
PXDbType Enumeration.. 639

 | Contents | 4

PXDBOperation Enumeration...641

Report Designer... 643
Acumatica Report Designer Report Designer User Interface... 643
Creating and Modifying the Reports..647
Selecting Data for the Report.. 647

Loading the Database Schema..648
Building the Database Request... 649

Composing the Report Layout.. 652
Adding and Removing Report Sections...652
Defining the Appearance of a Report Section..656
Defining the Behavior Settings of a Report Section..660
Adding and Removing Visual Elements in the Report... 663

Data Grouping and Sorting..664
Defining the Data Groups and Grouping and Sorting Rules for a Report...................... 664
Defining Parameters for a Report.. 668
Using Filters... 670

Using Expressions...672
Using the Expression Editor..672
Using Globals, Parameters, and Local Variables...674
Using Operators in Expressions...675
Using Functions in Expressions... 678

Creating the Report Content.. 687
Adding a Text Box to the Report Section..687
Adding a Picture Box to the Report Section.. 690
Adding a Panel to the Report Section.. 693
Adding a Line to the Report Section.. 695
Adding Graphics to a Report...696
Adding a Subreport to the Report... 698

Using Variables.. 701
Using the External Parameter Collection Editor...702
Saving and Publishing the Reports... 703
Recommendations...704

Sample Report.. 708

Website Management...714
Configuring the Site Map...714
Registering the Page as a New Webpage...717
Granting Access Rights to a Registered Webpage... 720
Managing the Help Wiki.. 722

Web Services API Developer Guide..728
Quick Start.. 729
Examples of the Web Service API Implementation..737

Exporting Warehouse Data... 737
Exporting Stock Items... 740

 | Contents | 5

Simulating the Behavior of Add Buttons on the Purchase Receipts Form......................743
Copying a Sales Order...748
Adding a New Cash Transaction Document... 751
Adding Records to the Business Accounts and Opportunities Forms............................753
Importing of Data With an Image Into the Journal Transactions Form.........................755
Exporting of Data With an Image From the Journal Transactions Form........................758

 | Copyright | 6

Copyright

© 2013 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.

4030 Lake Washington Blvd NE, Suite 100
Kirkland, WA 98033

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. All other product names and services herein are
trademarks or service marks of their respective companies.

Software Version - 5.0

Last updated: October 21, 2014

 | Acumatica Framework Overview | 7

Acumatica Framework Overview

This chapter provides a high-level overview of Acumatica Framework architecture and components and
highlights the main concepts behind the platform design, in the following topics:

• Introduction

• Acumatica Framework and Modern Web Development

• Acumatica Framework and Microsoft Technology

• Acumatica Framework Components

• Runtime Tools

• Development Tools

• Conclusion

Introduction
Acumatica Framework is a modern web application development platform designed for developing
business applications. This document provides a high-level overview of Acumatica Framework
architecture and components and highlights the main concepts behind the platform design.

CTOs, Software Architects and Application Developers who are interested in using Acumatica
Framework for commercial or internal software development are the target audience of this document.

In addition to delivering traditional features specific to enterprise resource planning (ERP) development
platforms, Acumatica Framework introduces advanced features and functionality necessary for the
development of web applications, as listed below.

Modern Web Technology

• Desktop-like GUI functionality and accessibility through a web browser

• Security model that eliminates the possibility of browser-side data manipulation

• Excellent application performance, even over latent and unreliable Internet connections

• Cross-platform compatibility at the web browser level

Readiness for Data Center and SaaS Delivery Models

• Ability to scale horizontally and run on server farms behind a load balancer

• High application density, which allows for the maximum number of users per server

• Built-in support for multi-tenancy

• Centralized upgrade and versioning management

Tools for Personalization, Customization, and Integration with External Systems

• Built-in localization and personalization support

• Tools for customizing applications at the graphical user interface (GUI), business logic, and
database levels, including the integrated web interface and Acumatica Extensibility Framework

• Tools for developing add-on modules and components

• Generic Web Service application programming interface (API) for accessing the business logic

 | Acumatica Framework Overview | 8

Acumatica Framework not only enables the development of modern web applications, but also provides
application developers with everything they need to develop and maintain applications in a fast and
cost-efficient way. This maximum efficiency of application development is achieved through the
following items.

Development Environment Built on an Industry-Standard Platform

• Runtime environment built on top of a Microsoft.NET platform

• Development environment built on top of Microsoft Visual Studio IDE

• Ready to host on Microsoft Azure

System Foundation Layer

• Set of low-level components and primitives required for full-cycle application development

• Database access layer and primitives to isolate the application developer from database specific
logic

• Set of integrated UI elements to isolate application developers from HTML, HTTP, and JavaScript

• Application programming model that isolates the business logic layer from the presentation and
data access layers

• Security model that is transparent to the application developer

• Set of wizards and designers to automate the creation of database access and presentation layers

• Set of extendable templates for creating typical application webpages

Application Foundation Layer

• Common application frameset and site management application

• Built-in security management and user management application

• Integrated report designer and report engine

• Integrated Help management system

• Integrated document management system

• Translation and localization tools

Acumatica Framework and Modern Web Development
The inspiration behind Acumatica Framework was the concept of creating a commodity platform that
enables the development of contemporary web applications. To achieve this task two items must be
addressed:

• Providing the technologies and runtime architecture that deliver the features and functionality of a
modern web application

• Providing the development tools and methodology that make it a commodity product for
application development

This section explains the technologies implemented in the runtime design of Acumatica Framework that
that address these items. Development tools and development process are covered in Chapter 7 of this
document.

 | Acumatica Framework Overview | 9

What is a Modern Web Application?

In our vision, a modern web application can be differentiated from traditional desktop or web
applications by combining the following features:

• The primary client interface is a web browser and can be accessed from anywhere via an ordinary
Internet connection

• The application does not require any files or components to be installed on the client's computer

• The application is easy and convenient to use, especially when compared to similar Desktop
applications

• The application addresses issues related to slow and unreliable Internet connections without
affecting the user experience.

• The application addresses security issues related to the exchange of confidential data over a
public Internet connection and eliminates the possibility of client-side data manipulation

• The application can be configured and operated in high-availability mode so that the failure of one
of the deployment infrastructure nodes does not result in data loss or prevent the application from
its normal operations

• It should be possible to scale the application horizontally, which means there is a nearly linear
increase of the application throughput in terms of number of users, number of tenants and
number of transactions by adding more computing power

• The application is designed for datacenter deployment and natively supports deployment and
operation in a multi-tenant environment

• Operating in a multi-tenant environment does not compromise application density, application
performance or application security

Each of the points above can be addressed individually, but when combined, they present quite a
challenge to application development and the runtime architecture. The articles below explain how
these challenges were addressed during the design of the Acumatica Framework runtime components.

Interactive GUI using an Internet Browser

To provide an interactive GUI through the web browser interface Acumatica Framework exposes a
set of advanced web controls through the browser Document Object Model (DOM) and implements a
communication layer between these controls and the application server through the XMLHttpRequest
object in the web browser. This technology can be referred to as an AJAX application model.

The client-side Acumatica Framework web controls are designed as a set of JavaScripts functions that
are downloaded during the initial application load and then cached by the web browser. Each application
screen is a standard HTML page that contains the details of the screen layout and references to the
client side web controls. When combined, the HTML page and the web controls produce an interactive
web page that is similar in functionality and behavior to traditional Desktop applications.

Additionally, this technology only requires a standard web browser and does not require the installation
of any client-side software or redistributable components. It also works over HTTP or HTTPS protocol
which makes it available virtually everywhere.

Performance over Unreliable and Latent Connections

An application written with Acumatica Framework provides good performance even over unreliable and
latent Internet connections. This is achieved through the following techniques:

• JavaScript is moved into static generic classes that are loaded one time, when opening the
application, and then cached by the browser.

• The static HTML part of the form is minimized to present only the visible screen area. The rest of
the form is loaded on demand.

 | Acumatica Framework Overview | 10

• After the initial form load, only the modified data is sent between the client and server to
minimize network traffic and improve response time.

• Server is optimized for the fastest possible request execution.

Browser Level Cross-Platform Compatibility

Generally, an application written with Acumatica Framework is supported by any browser that is
compatible to the Level 2 Domain Object Model standard maintained by W3C.

An application written with Acumatica Framework can be accessed through the following Web browsers:

• Internet Explorer

• Mozilla Firefox

• Apple Safari

• Google Chrome

These browsers are available on Windows, Linux and Mac OS platforms providing cross-platform
application compatibility.

The list of supported Internet browsers will be extended in the future.

Prevention of Client Side Data Manipulation

The AJAX programming model assumes the use of browser side JavaScript. The JavaScript executed
in the browser is not protected, enabling a user to take control of the executed code using a
JavaScript debugger. This means that any application logic written with JavaScript is vulnerable to data
manipulation. For business applications this means that any data received from the client cannot be
trusted and needs to be re-validated when received by the server1.

With Acumatica Framework, JavaScript is only used for handling initial data format validation, GUI
related logic and synchronizing the browser content with data located on the application server. All
business logic is executed exclusively on the application server. All data validation logic is duplicated on
the application server to prevent any possibility of data manipulation on the client-side.
1This assumption is only valid for applications where data manipulation on the client side is not
acceptable. For a large range of applications where data manipulation on the client side is not critical,
business logic can be moved to the client browser.

Exchange of Confidential Data over the Internet

Acumatica Framework relies on and supports the HTTPS protocol to provide confidentiality of data
transmitted over the Internet. This is the same technology the banking industry uses to provide on-line
Internet banking services.

High Performance, Scalability and Availability Support

To achieve horizontal scalability and fault tolerance an application written with Acumatica Framework
can be configured to run on multiple application servers behind a load balancer. With this configuration,
it is not possible to predict the application server that will receive the next request from the client.
In this model, session specific data must be shared between the application servers. The cost of
serialization and the amount of data that need to be shared between application servers is often the
main challenge to scaling complex business applications horizontally.

Acumatica Framework implements the following techniques to address issues related to session-state
management without sacrificing performance, fault tolerance, or scalability:

• Objects on the application server are created on each request and disposed after the request
execution. The applicaiton state is preserved in the session through the serialization mechanism.

 | Acumatica Framework Overview | 11

• Data serialized into the session is minimized1 to store only modified data (inserted, deleted, or
modified records). The rest of the data is extracted from the database on demand2 and built
around the session data.

• A custom serialization mechanism is implemented to serialize only relevant data and reduce the
amount of service information.3

• Hash tables, constraints, relations, and indexes concerned with the execution of business logic are
created strictly on demand. This technique allows the user to avoid execution of these operations
on each request if not needed.4

1Serialization and retrieval times are directly proportional to the size of the serialized data.
2A custom algorithm that extracts only the data required for the current request execution from the
database is implemented.
3The standard serialization mechanism implemented in the Microsoft .NET platform is generic and
cannot be optimized when used for a specific task.
4Creation of indexes, constrains, hash tables, and relations consumes a significant amount of CPU and
runtime memory.

High Application Density
An application created with Acumatica Framework provides an excellent per-user density. In general,
a web-based application provides a better per-user density compared with traditional applications
deployed through Microsoft Remote Desktop, Citrix, or Virtual Desktop Infrastructure technologies.
This is because of lower memory consumption and extensive pooling of shared resources. The use of
AJAX technology in Acumatica Framework allows the user to achieve an even better application density1

compared with standard web-based applications. Two factors take place here:

• Expensive HTML rendering operations are performed only once: on the initial page load. All
subsequent requests to the same page do not trigger HTML rendering, which reduces the load on
the application server.

• Exchange with only modified data between client and server reduces network traffic.
1It should be pointed out that because of the rich GUI functionality a user can generate more requests
to the server within the same period of time when compared to traditional web-based applications. This
may result in a higher server load generated by a single user within the same time period. But, at the
same time, the rich GUI allows the user to execute the same job faster compared to traditional web
applications, providing better user experience. Overall the number of transactions per second that could
be handled in an AJAX model on the same hardware is higher.

Designed for Datacenter Deployment

Combination of the following factors makes applications created with Acumatica Framework perfect for
deployment in datacenters:

• Build-in support for deployment of single instance of application on multiple application servers
behind a load balancer. This mean that highly reliable and scalable configurations can be
supported.

• An excellent per-user density. This means lower investments into hardware infrastructure.

• Web-based and accessible through HTTP and/or HTTPS protocol, a set of technologies to minimize
network traffic. This means simple network configuration and lower requirements for network
bandwidth.

• Zero footprint on client computers. This means simple upgrade and update management and
lower maintenance costs.

• All the benefits of underlying Microsoft.NET technology in regards to datacenter deployment.

 | Acumatica Framework Overview | 12

Ability to Scale Up or Down

Scaling an application down is as important as scaling an application up. With minimum deployment
an application created with Acumatica Framework can be installed on a single desktop or notebook
computer in both production or development environment. With a single code base an application can
be scaled up or down.

Built in Multi-tenancy Support

With the development of microprocessor technologies and increasing computing power it becomes
possible to host multiple tenants on a single application server. This approach can be referred to
as multi-tenancy. The multi-tenant approach allows for the best application density and hardware
utilization. In addition, the use of a multi-tenant approach opens the questions related to tenants
isolation and quality of the services monitored.

Acumatica Framework has a build-in multi-tenancy architecture and applications created with Acumatica
Framework can be configured to operate in multi-tenant mode. Acumatica Framework supports both the
execution of a single application instance that hosts multiple tenants and the execution of an individual
application instance for each tenant. The following items are addressed on the platform level:

• Isolation of custom code that is submitted by tenants as customization and the quality of service
for each of these tenants1 are addressed by starting the application in a different application
domain2.

• Tenants database isolation is implemented by providing a single tenant identifying field in all
database structures1. This mechanism is generic, the name and value of the field are linked to the
tenant's application domain and are not exposed to application code or logic3.

• Database isolation can also be achieved by linking the tenant's application domain to the
individual tenant database.

• Acumatica Framework provides a set of tools for automated tenant deployment, monitoring of
services quality and upgrade management of multi-tenant deployments4.

Configuring an application, created with Acumatica Framework, to operate in multi-tenant mode creates
close to zero overhead compared to running in single tenant mode.
1This is a configurable option and can be activated if required.
2Application domain is a term specific for Microsoft.NET platform. Please, refer to Microsoft
documentation for mode detailed explanation.
3This is important, because if the multi-tenancy isolation mechanism is exposed to application logic it
becomes vulnerable to mistakes made by application programmers.
4These tools are not a part of standard Acumatica Framework and must be purchased separately.

Acumatica Framework and Microsoft Technology
Acumatica Framework is built on top of Microsoft.NET and Microsoft Visual Studio IDE technologies.
This choice makes it easy for an application developer who is familiar with Microsoft.NET technology to
learn Acumatica Framework and start application development. Also, the use of Microsoft Visual Studio
IDE provides an efficient and productive environment for programmers. This section explains the use of
Microsoft technologies in Acumatica Framework.

Acumatica Framework and Microsoft.NET Technology

Acumatica Framework is designed and created on top of Microsoft.NET technology. It is written using
C# programming language as a managed code. Acumatica Framework extensively uses core services
and components of Microsoft.NET technology such as:

• CLR and JIT compilation

 | Acumatica Framework Overview | 13

• Thread and memory management

• Session Management

• Build Providers

• SOAP Implementation

• C# Programming Language

• Generics and Attributes

• Code Reflection

• Dynamic Methods

• Web Site Code Compiler

• Code Security

• Application Domain model

Additionally, Acumatica Framework does not rely on or use the high level components, primitives
or application building blocks provided with Microsoft.NET. Instead, it implements its own stack of
primitives and components on top of core Microsoft.NET technologies. This stack includes:

• Application programing API and application event model

• Database access layer and support of multiple database access engines

• Transaction management and thread pooling

• Serialization, searching and indexing primitives

• Caching

• SOAP proxy builder

• Membership and access providers

• Site management

• Localization

• Audit tools

• Help system

• Session splitter

• Web controls

Microsoft.NET technology was selected as a foundation for Acumatica Framework because:

• It fits Acumatica Framework runtime performance and scalability requirements

• It provides all the features and technologies required for Acumatica Framework design

• It provides a complete set of high quality services, components and primitives required to build
Acumatica Framework

• Wide acceptance of the technology and programmers familiarity of Microsoft.NET platform

• Microsoft Visual Studio IDE environment

• Support and maintenance from industry leader

The reasons for implementing its own stack of primitives, components, and building blocks instead of
one supplied with Microsoft.NET platform are:

• Implementation of functionality that is specific for Acumatica Framework

 | Acumatica Framework Overview | 14

• Optimization of components and primitives to meet performance requirements of Acumatica
Framework

• Elimination of wrappers and additional code layers related to modification of generic components
behavior for Acumatica Framework requirements

• Independence from software vendor on possible components and primitives modification1

1Core features and services of Microsoft.NET platform that are used as a base for Acumatica Framework
are stable, reliable and not subjected to significant changes from the vendor. At the same time, high
level components, primitives, and services are less generic and subjected to significant functionality and
code changes.

Acumatica Framework and Microsoft Visual Studio IDE

The Acumatica Framework development environment is implemented as a set of extensions to Microsoft
Visual Studio IDE. These extensions include:

• Template project for Microsoft Visual Studio

• Master pages and a set of Page Templates to create typical application screens

• Web controls integrated with Visual Web Designer

• Wizards for creating data access, business logic, and presentation layers

• Design time libraries and components of Acumatica Framework

The choice of Microsoft Visual Studio IDE is quite natural considering the use of Microsoft.NET
technology.

Acumatica Report Designer is implemented as a standalone WinForms application and does not utilize
Microsoft Visual Studio IDE.

Acumatica Framework and External Components

Acumatica Framework does not rely, use, or depend on any external non-Microsoft tools or components.
This is a principal decision, chosen for the following reasons:

• All Acumatica Framework components are designed to be integrated to provide the best
performance and development experience. The use of external components significantly restricts
this integrated design.

• Acumatica Framework does not contain any unmanaged code and extensively uses the code
security model provided by Microsoft.NET. Most of the external components do not use the same
standards.

• Use of external components raises the question of functionality and security issues and at the
same time triggers compatibility issues on components, updates, and upgrades.

• Use of external components also increases the cost of software through licensing and royalty fees.

In fact, it is the same set of reasons why the use of Microsoft.NET technology is limited to core services
and components.

However, Acumatica Framework does not restrict the use of external components if the developer needs
them.

Acumatica Framework and Microsoft Azure

Applications developed with the Acumatica Framework are easily hosted with Microsoft Azure for the
following reasons:

• Hosting at Microsoft Azure out of the box with one code base

 | Acumatica Framework Overview | 15

• Full support of Microsoft SQL Azure

• Unique load-balancing proxy for effective multi-server deployment

Acumatica Framework Components
This section provides an overview of the Acumatica Framework component structure.

Figure: Acumatica Framework components

Acumatica Framework consists of the System Foundation Layer that provides core platform services and
the Application Foundation Layer that provides a template application and a set of application building
blocks.

System Foundation Layer

System Foundation Layer is a set of core components and primitives with functionality required to
develop and run an Acumatica Framework-based application.

The primary reasons behind the inclusion of the system foundation layer are:

• Isolate application programmer from complexities related to coding of a web application and from
direct use of HTML, CSS, HTTP, and JavaScript.

• Provide the application programmer with a development environment where all pieces of the GUI,
business logic, and database access are programmed with the same language and technology.

• Provide the application programmer with development API and methodology to create an
application.

 | Acumatica Framework Overview | 16

• Provide transparent to application programmer runtime services to handle application security,
customization, localization, and personalization.

• Provide a set of high level tools and utilities to speed up and automate the creation of business
and GUI components and at the same time enforce application integrity.

The System Foundation Layer consists of the following main components:

• Data Access Layer - set of components responsible for database access, data manipulations, and
data persistence management.

• Security Layer - set of components responsible for user authorization, access rights verification,
and audit on data access and business logic levels.

• Customization Layer - set of components responsible for providing runtime customization features
on the GUI, database access, and business logic layers.

• Development API - set of templates and API for implementing application business logic.

• Web Controls - set of web controls implementing access to business logic through the Web GUI
interface.

• Web Services - the component that provides access to application business logic through the
generic Web Service API.

• Reporting Services - Acumatica Report Designer and components responsible for runtime report
execution.

• Designers and Wizards - set of components to automate creation of the application data access
classes from the database tables and the GUI (Web Forms) during application development.

Application Foundation Layer

Application Foundation Layer is a set of application building blocks and database structures
implemented on top of the system foundation layer components. It provides the application
programmer with ready to use components and framework for creating and extending Acumatica
Framework-based applications. By using the System Foundation Layer components, the programmer
will be able to focus on implementing the application business logic and then plug it into the template
application, delivering it to the end user as a full functioning business application.

The application foundation layer consists of the following components:

• Application Frameset, also referred to as the template application, - application and database
structures providing frameset, layout, and navigation services.

• User Management System - set of components and database structures for managing users and
storing users personal settings and user preferences.

• Security Management - set of components and database structures for managing application
security, application access policies, and security audit.

• Help Management System - the integrated Wiki-based help content editing, management, and
search system.

• Document Management System - the integrated document storage and management system.

• Report Management System - set of tools, components, and database structures that allow
registration, listing, and execution of reports created with the Acumatica Report Designer.

• Customization Tools - set of tools, components, and database structures for creating, storing,
and applying the customization of the standard application on the representation, functional, and
database levels.

• Localization Tools - the component that allows localization of the application to the different
languages.

 | Acumatica Framework Overview | 17

Application Layer

An application written with Acumatica Framework has the n-tier architecture with a clear separation
of the presentation, business, and data access layers. All these layers are implemented by application
programmers on top of System Foundation Layer and Application Foundation Layer.

Figure: Application architecture

The picture above illustrates the application component model from the point of view of the application
programmer.

Data Access Layer

Data Access Layer is implemented as a set of data access classes which wrap data from database tables
or data received through other external sources. A data access class associated with a database table
may be generated with the help of the Data Access Class Generator wizard, which reads database meta
data and allows the application developer to select a table and specify columns that should be reflected
in the data access class.

Instances of data access classes are maintained by the Business Logic Layer. Between request they are
stored in the session through a custom optimized serialization mechanism.

 | Acumatica Framework Overview | 18

Business Logic Layer

The business logic is implemented though the business logic controller. These objects are classes
derived by the application programmer from the special API class and tied to one or more data access
classes.

Each business logic controller consists conceptually of two parts: (i) Object Model, which includes the
required data access classes, their relationships, and other meta information, and (ii) Business Logic
section, which implements the business logic. Each business logic controller could be accessed from
Presentation Layer or from the application code that is implemented within another business logic
controller.

When the business logic controller receives an execution request, it extracts data required for request
execution from the data access classes included in the Object Model, triggers business logic execution,
returns its result to the requesting party, and updates data access classes instances with modified data.

Presentation Layer

Presentation Layer is responsible for providing access to the application business logic through the GUI.
It consists of a set of declarative Web Forms bound to particular business logic controllers. Web Forms
are created by the application developer from the templates provided with Acumatica Framework and
customized with the help of the Layout Editor wizard, which utilizes meta data information extracted
from the business logic controller.

When the user requests a new web page, the Presentation Layer is responsible for processing this
request. Web Forms are used for generating static HTML page content and providing additional
service information required for dynamic configuration of the Web Controls. When the user receives
the requested page and starts browsing or entering data, the Presentation Layer is responsible for
handling asynchronous HTTP requests. During processing, the Presentation Layer submits a request to
the Business Logic Layer for execution. Once execution is completed, it analyzes any changes in the
business logic container state and generates the response that is sent back to the browser as an XML
document.

Business logic can also be accessed through the generic Web Services that are part of the Presentation
Layer as well. Web Services provide an alternative interface to the application business logic associated
with a particular Web Form. From the point of view of the related business logic controller, request
from the Web Form and the Web Service are identical and, thus, cause execution of exactly the same
business logic. Unlike Web Forms, Web Services are generic and automatically generated by the
Acumatica Framework runtime component, based on meta data information extracted from the business
logic container and the Web Form.

The Presentation Layer also includes reports created with the Acumatica Report Designer. At runtime,
reports are loaded and executed through Reporting Services, which interface with the Presentation
Layer through the special, predefined, business logic controller included in the Application Foundation
Layer.

Runtime Tools
The previous section explained the ability of Acumatica Framework to deliver a set of core services
and tools that are important for building and deploying large business applications. All these tools
and services are generic and transparent to the application developer. This means that the application
developer should not worry about implementing them during the design or application programming
stages. In this section, the tools and services used at run time are explained in more detail.

Role-Based Security

Applications created with Acumatica Framework automatically implement role-based security. Access
rights can be assigned to:

 | Acumatica Framework Overview | 19

• A group of screens and reports that have similar logic and are listed under the same namespace

• A screen or report

• Fields used in a particular screen or report

• Methods that can be executed from a particular screen or report

The following access rights can be granted:

• Namespace: Denied, View Only, Granted

• Screen or report: Denied, View Only, Edit, Insert, Delete, Undefined (inherited from the
namespace level)

• Field: Denied, View Only, Edit, Undefined (inherited from the screen level)

• Method: Denied, Granted, Undefined (inherited from the screen level)

Assess rights are implemented on the Business Logic Level. Access rights are validated each time the
business logic is accessed through both GUI or Web Services.

Personalization

Applications created with Acumatica Framework can be personalized by the user through:

• Adding any application screen or report to the favorites folder

• Saving widgets of an application screen to the personal dashboard

• Preserving the sequence, width, and set of visible columns for grids in any application screen

• Preserving personal filtering settings for any grid and lookup window in any application screen

• Configuring personal export and regional settings

Localization

Applications created with Acumatica Framework can be localized on the presentation, business logic,
and database level owing to:

• Standard Microsoft.NET localization mechanism is implemented for localizing the presentation
layer.

• All messages returned from the business logic layer can be localized through the dictionary
mechanism.

• The runtime environment of Acumatica Framework supports the Unicode standard to store and
operate with data in a non-ANSI format.

• Information like addresses or product descriptions can be stored in special, language-specific,
database fields and presented in the user selected language.

Acumatica Framework also provides a built-in utility that enables localization of the product by the end
user. Once localization is entered and applied, the applicaiton does not require any recompilation or re-
installation. Also, localization can also be exported, imported, and merged.

Customization for End Customers

An important feature of Acumatica Framework is the built-in support for end-customer customization,
which allows modification of all application layers without recompilation and re-installation of the
application and includes:

• Customization of the Presentation Layer through:

• Removing or disabling controls from any application form

 | Acumatica Framework Overview | 20

• Changing the form layout by moving controls and changing the tab order of controls

• Adding new bounded and unbounded controls to any application form

• Modifying lookup logic by adding more fields to the lookup windows or even by completely
replacing the lookup logic

• Customization of the Data Access Layer through an extension of the database scheme with new
user defined fields

• Customization of the Business Logic Layer by submitting a custom application code to the
application server

Customization is stored separately from the core application code as meta data. Customization can
be modified, exported, or imported. Because customization is stored separately, it is preserved with
updates and upgrades of the core application.

Customization for Serial Solutions

Acumatica Extensibility Framework is a part of Acumatica Framework customization plaform that
enforces development of third party solutions for multiple customers. Acumatica Extensibility
Framework is the key instrument for independent software vendors (ISVs), owing to the following
features:

• Customization of the Data Access Layer through an extension of the database scheme with new
user-defined fields or new user-defined tables that are logical extensions of existing tables

• Customization of Business Logic Layer through extension classes built into a separate assembly

• Support for multiple interdependent extensions of both the Data Access Layer and Business Logic
Layer on a single instance of the end-customer application

Generic Web Service API

Applications created with Acumatica Framework expose a generic Web Service application programming
interface (API). The API is based on SOAP and WSDL standards and provides programmable access to
the same application logic. It is a fast, reliable, and convenient way to perform such operations as:

• Data migration and data import

• Data query and extraction of information for reporting

• Application integration with the external systems

• Execution of long running operations

• Administrative tasks

Each operation made in the API is executed through the same business logic as in the GUI. This ensures
functionality and database integrity of the application, regardless of the way it was accessed.

Access to the business logic layer through the API is controlled by the same security mechanism that
controls access to the business logic layer through the GUI. In order to perform the API operations, the
user must be authorized on the application server and must be granted the appropriate access rights.

The Web Service API is dynamically generated from the application data access and business logic
layers and customized metadata. Meaning that if any customization of the data access layer or the
business logic layer is made, it will be reflected with the Web Service API as well.

Development Tools
Providing the development tools and the methodology that make a modern web application a
commodity is one of the main objectives of Acumatica Framework. This section gives an overview

 | Acumatica Framework Overview | 21

of such development tools and methodologies provided by Acumatica Framework to the application
developer and explains on examples of how this increases product quality and the application
programmer's productivity.

Visual Web Designer Support

The Acumatica Framework Integrated Development Environment (IDE) is built on top of the Microsoft
Visual Studio product. However, it implements its own set of web controls to generate an advanced GUI
in a web browser.

The creation of a consistent, professional, and appealingly looking GUI is a complicated task, and
special attention was paid in Acumatica Framework to GUI development. All of Acumatica Framework's
Web Controls have the same rendering and similar appearance in design mode in the IDE and
runtime mode in a web browser. This allows the developer to utilize all the facilities of the Visual Web
Designer component of Visual Studio. The application developer can use the convenient drag-and-drop
mechanism to create an application form layout, to perform form visual editing, and to set control's
properties and behavior through an intuitive graphical interface. This approach does not require any
knowledge of HTML or Java Script, yet allows the developer to create a professional and appealing web
GUI.

The example below illustrates design versus runtime rendering.

Figure: Web Form in design mode (left) vs. Web Form in runtime mode (right)

Convenient Programming API

In Acumatica Framework, the application programmer is provided with a convenient, event-driven
programming API, traditional in rich GUI applications. This model covers database access, business
logic, GUI behavior, and error handling. All coding is done with a single language: C#.

This piece of code is written to update the receipt total once one of its related transactions is updated
and gives an example of the business logic implemented in the business logic controller:

public virtual void DocTransation_RowUpdated(PXCache cache,
 PXRowUpdatedEventArgs e)
{
 DocTransaction old = e.OldRow as DocTransaction;
 DocTransaction trn = e.Row as DocTransaction;
 if ((trn != null) && (trn.TranQty != old.TranQty ||
 trn.UnitPrice != old.UnitPrice))
 {
 Document doc = Receipts.Current;
 if (doc != null)
 {
 doc.TotalAmt -= old.TranQty * old.UnitPrice;
 doc.TotalAmt += trn.TranQty * trn.UnitPrice;
 Receipts.Update(doc);

 | Acumatica Framework Overview | 22

 }
 }
}

This code's execution will result in the following behavior:

1. The user selects document transaction in the grid and updates its fields.

2. To complete the row editing, the user presses Ctrl + Enter on the keyboard. This triggers an
event and execution of the code above resulting in update of the receipt total (see the figure
below).

Figure: Example of document transaction details update

BQL and Multiple Database Engine Support

With Acumatica Framework, the application programmer is restricted from direct database access and
from writing SQL queries. Database specifics are hidden for the application behind data access classes,
and the SQL queries are constructed declaratively through Business Query Language (BQL). Through
a set of generic classes, the BQL library provides rich syntax for building equivalents of SQL queries
of any complexity. Unlike SQL statements, BQL statements operate with data access classes, rather
than database tables, and provide compatibility between different database engines. The BQL library
supports MS SQL and MySQL database engines as well as access to the database through the ODBC
provider.

You can see an example of building BQL queries in the application code below, where BQL queries are
declared using generic PXSelect and PXSelectOrderBy classes and execution of the queries is triggered
by invoking static Select() methods of these classes:

private IEnumerable accInqRecords()
{
 int? ledgerid = ((AccountHistoryFilter)AccInqFilter.Current).Ledger;
 string periodnbr = ((AccountHistoryFilter)AccInqFilter.Current).PeriodNbr;
 if (ledgerid == null && periodnbr == null)
 yield break;

 List<string> fperiods = new List<string>();
 if (periodnbr != null)
 {
 foreach (FiscalPeriod fp in
 PXSelect<FiscalPeriod,
 Where<FiscalPeriod.periodNbr,
 Equal<Current<FiscalPeriod.periodNbr>>>>.
 Select(this))
 {
 fperiods.Add(fp.FiscalPeriodID);
 }
 }

 foreach (PXResult<AccountHistory, Account> res in
 PXSelectOrderBy<

 | Acumatica Framework Overview | 23

 AccountHistory,
 LeftJoin<Account,
 On<AccountHistory.accountID,
 Equal<Account.accountID>>>,
 OrderBy<Asc<Account.accountCD>>>.Select(this))
 {
 AccountHistory ah = res;
 if ((ah.LedgerID == ledgerid || ledgerid == null) &&
 (fperiods.Contains(ah.FiscalPeriod) || periodnbr == null))
 {
 yield return res;
 }
 }
}

Besides creating abstraction from the database specifics, the BQL library also provides the following
benefits to the application programmer:

• Compile time statements verification

• Dynamic query building

• Prevention of SQL infusion

• Intellisense support

• Implemented methods for select, insert, update, and delete

• Intelligent requests execution.

A repeated request does not result in additional query to the database and returns the data cached in
the business logic controller, unless the requested collection was changed in the database. The Business
Logic Layer can be configured to identify such situations and automatically load and return the latest
version of data from the database.

Code Reuse through Attributes

Take a look at the first example of code above. It implements logic of updating receipt total based
on updating a document transaction. Such logic is often common for entire applications, not a single
screen. This logic can be generalized by having it moved into an Attribute class. The attribute is used
to annotate a data field in the data access class. Then it can be reused anywhere in the code, as in the
example below:

public class DocTransaction : PX.Data.IBqlTable
{
 ...
 #region TotalAmt
 public abstract class totalAmt : PX.Data.IBqlField
 {
 }
 [PXDBDecimal(2)]
 [PXDefault(TypeCode.Decimal, "0.00")]
 [PXUIField(DisplayName = "Line Total", Enabled = false)]
 [DeltaMultiply(typeof(DocTransaction.tranQty), typeof(DocTransaction.unitPrice),
 typeof(Document.totalAmt)]
 public virtual decimal? ExtPrice { get; set; }
 #endregion
 ...
}

In this example, the logic of updating receipt total on updating of the transaction is generalized and
implemented inside the DeltaMultiply attribute. It will be triggered after each update, delete, or insert
operation on the DocTransaction data access class instance and will update totals on the receipt level,
in the the appropriate Document data access class instance.

 | Acumatica Framework Overview | 24

Acumatica Framework provides a wide range of preprogrammed attributes that can be used for defining
data types, database mapping, referential integrity, data format validation, and specifying default
values for the field, among other things. For example, the logic shown in the above example can be
implemented using the preprogrammed PXFormula attribute, which is meant exactly for implementing
calculations of data fields:

public class DocTransaction : PX.Data.IBqlTable
{
 ...
 #region TotalAmt
 public abstract class totalAmt : PX.Data.IBqlField
 {
 }
 [PXDBDecimal(2)]
 [PXDefault(TypeCode.Decimal, "0.00")]
 [PXUIField(DisplayName = "Line Total", Enabled = false)]
 [PXFormula(typeof(Mult<DocTransaction.tranQty, DocTransaction.unitPrice>),
 typeof(SumCalc<Document.totalAmt>))]
 public virtual decimal? ExtPrice { get; set; }
 #endregion
 ...
}

As the data access classes are shared within an application, formatting, custom logic, and any
constraints implemented in attributes will be reused in each business logic controller that utilizes
this data access class . This technique allows the user to move shared application functionality into
attributes and avoid code duplication, while still enforcing application integrity.

Error and Message Handling

Acumatica Framework provides the application programmer with a standard mechanism to handle
multiple errors and messages in the application code, which transparently passes these errors and
messages to the client. The code below gives an example of handling an error triggered by the business
logic on an attempt to add a data record:

protected virtual void SupplierProduct_RowInserting(PXCache cache,
 PXRowInsertingEventArgs e)
{
 SupplierProduct product = (SupplierProduct)e.Row;
 if ((product != null) && (product.ProductID != null))
 {
 SupplierProduct record =
 PXSelect<SupplierProduct,
 Where<SupplierProduct.accountID,
 Equal<Current<Supplier.accountID>>,
 And<SupplierProduct.productID,
 Equal<Required<SupplierProduct.productID>>>>>.
 Select(this, product.ProductID);
 if (record != null)
 throw new PXException("Such supplier's product already exists");
 }
}

This code will result in the error indication in the GUI if the user attempts to a add a product that
already exists for the given supplier account, as illustrated below.

 | Acumatica Framework Overview | 25

Figure: Error handling example

Managing Advanced GUI Behavior

By using the API provided by Acumatica Framework, the developer has access to special properties of
the Business logic controller. Elements such as: visible, disabled, tab stop, color etc. These properties
are mapped to the appropriate properties of Web Controls during data binding. Any change to these
properties gets propagated back to the browser during the request execution and is reflected in the
user GUI. This piece of code illustrates disabling of controls in case the document is not subjected to
modifications because of its state:

protected void Document_RowSelected(PXCache sender, PXRowSelectedEventArgs e)
{
 Document doc = e.Row as Document;
 if (doc == null || doc.Released == true)
 {
 PXUIFieldAttribute.SetEnabled(sender, doc, false);
 Receipts.Cache.AllowDelete = false;
 Receipts.Cache.AllowUpdate = false;
 ReceiptTransactions.Cache.AllowDelete = false;
 ReceiptTransactions.Cache.AllowUpdate = false;
 ReceiptTransactions.Cache.AllowInsert = false;
 }
 else
 {
 PXUIFieldAttribute.SetEnabled(sender, doc, true);
 PXUIFieldAttribute.SetEnabled<Document.totalAmt>(sender, doc, false);
 PXUIFieldAttribute.SetEnabled<Document.totalQty>(sender, doc, false);
 Receipts.Cache.AllowDelete = true;
 Receipts.Cache.AllowUpdate = true;
 ReceiptTransactions.Cache.AllowDelete = true;
 ReceiptTransactions.Cache.AllowUpdate = true;
 ReceiptTransactions.Cache.AllowInsert = true;
 }
 PXUIFieldAttribute.SetEnabled<Document.docNbr>(sender, doc, true);
 PXUIFieldAttribute.SetEnabled<Document.docType>(sender, doc, true);
}

This code's execution will result in the following behavior on the screen:

1. The user selects a document that is not released and can see that the controls on the form and
the grid are available for modification.

2. The user navigates to a released document and can see that the data entry controls become
disabled. Also, the user cannot insert or update any data in either the document header or the
details (see the figure below).

 | Acumatica Framework Overview | 26

Figure: Example of disabling controls

It is important to mention that changes in the representation logic coded inside the business logic
controller are not pushed into the Presentation Layer, but requested by the Presentation Layer if it
supports and recognizes this additional information. This technique enables support of an alternative
Presentation Layer like Web Services that might not be aware or require such advanced behavior.
At the same time, it allows programming of advanced GUI behavior in the same location where the
application business logic is coded. This feature is convenient for the programmer, because it reduces
the application code base and the possibility of programming mistakes.

Master Pages, Templates, and CSS Support

The Visual Studio project and item templates provide reusable and customizable project and item stubs
that accelerate the development process, removing the need to create new projects and items from
scratch. Project templates provide the basic files needed for a particular project type, include standard
assembly references, and set default project properties and compiler options.

Acumatica Framework distribution includes:

• The project template for the creation of a new application

• A set of page templates that automate the creation of typical page layouts

The master pages mechanism in ASP.NET allows for the creation of an application that looks and feels
consistent. Master pages define the standard appearance and behavior that is common in all application
pages. The application developer creates individual content pages that refer to the master page. When
a content page is requested, it merges with the master page to produce output that combines the
layout and base functionality of the master page with the content of the requested page.

Acumatica Framework fully supports the master pages mechanism and provides the application
developer with a set of predefined master pages. The application developer can design his own master
pages or modify existing ones.

A web application written with Acumatica Framework supports style modification through Cascading
Style Sheets (CSS).

The combination of these technologies creates consistent application GUI and behavior.

Application Creation Wizards

Acumatica Framework provides a set of wizards for automating creation of data access classes and Web
Forms. Use of these wizards eliminates the manual job associated with data access class creation and
data biding configuration.

 | Acumatica Framework Overview | 27

Figure: Data Access Class Generator

The Data Access Class Generator wizard provides the application developer with an easy and convenient
way to create and modify data access classes. It implements the following functionality:

• Reading data structure from a table, SQL query, or Web Service (referred to as an external data
source).

• Creating a data access class based on data structure received from external data source.

• Reading data access class structure from its definition and merging it with data structure received
from the external data source.

• Automatical mapping of application-specific attributes based on external data source properties'
names.

The Data Access Class Generator wizard is a powerful reverse engineering tool, which allows the user to
connect to an existing database and extract the information required for building the application Data
Access Layer.

Figure: Web Page Layout Editor

 | Acumatica Framework Overview | 28

The Layout Editor wizard automates creation of new web forms. It uses meta data stored in the
business logic controller and data access class to help the application developer create new web forms
or to modify existing ones in a fast and efficient manner. The Layout Editor wizard implements the
following features:

• Reading meta data from the business logic controller and the data access class and creating a list
of controls that could be added to the Web Form.

• Adding controls selected by the programmer to the Web Form.

• Updating Web Form controls with changed business logic controller and the data access class
meta data.

Acumatica Report Designer

Acumatica Framework provides application developers with an integrated report designer.

Figure: Acumatica Report Designer

Acumatica Report Designer is implemented as a standalone desktop application. It can be used by both
application developers, for developing new reports, and end users, for customizing existing reports.

Acumatica Report Designer is tightly integrated with Acumatica Framework runtime components and
provides the following features and services:

• Remote connection to the application server and the ability to browse the application database
schema through web services.

• Report's query designer that supports simple selects, sub selects, views, and server-side pre-
processing.

• Grouping, sorting, and filtering support.

• Creation of report elements tree with support of drag and drop placement of report elements on
the design form.

• Automatic formatting of report elements based on meta data extracted from application database
schema.

• Support of basic aggregate expressions and runtime-calculated formulas.

• Support of mass control movement, alignment, editing, and formatting operations with undo
functionality.

 | Acumatica Framework Overview | 29

• Integrated report starting form with report parameters that are dynamically loaded from the
report's definition.

• Runtime synchronization of report elements' formatting such as setting masks and decimal values'
precision.

• Export to HTML, Excel, and PDF formats.

• Drill down to application forms.

Integrated with Reporting Services,Acumatica Report Designer provides a complete reporting solution
for the application developer and a complete set of customization tools for the end user.

Conclusion
Acumatica Framework provides the complete suite of components and technologies for developing
complex web applications with rich graphical user interface.

Acumatica Framework is generally suitable for creating any kind of application, but the biggest
competitive advantage could be achieved on large projects that require the creation of multiple screens,
with similar interface and rich business logic functionality, such as:

• Business Support Systems (ERP, CRM, or MRP)

• Large custom solutions implemented by consulting companies

• Custom solutions in large companies implemented by internal development teams

The main advantages Acumatica Framework provides are:

• High speed of application development through the high level of development automation

• Low number of errors in the application code by enforcing code reuse and application integirty

• Simplicity of the platform through a single coding place

• Language and transparency of the platform services to the application developers

• Scalability and high-availability of the created application combined with simple application
deployment

• Remote availability of the created application through the common Internet connection

• Rich and consistent GUI

All of this results in:

• Faster time to market

• Lower application development costs

• Lower TCO for customers

• Better user experience and satisfaction

 | Components and Tools | 30

Components and Tools

Acumatica Framework provides a set of development tools and Visual Studio templates for building
applications:

• Acumatica Framework Configuration Wizard

• Report Designer

• Acumatica Framework Templates

• Data Access Class Generator

• Layout Editor

Acumatica Framework Configuration Wizard

The wizard helps you to create, deploy and maintain applications built on Acumatica Framework.

Figure: Acumatica Framework Configuration Wizard

Report Designer

Report Designer is the visual tool for creating report forms and printable pages.

 | Components and Tools | 31

Figure: Report Designer

Acumatica Framework Templates

The Acumatica Framework Templates is a package of default Visual Studio templates that include:

1. PXGraph class template

2. FormDetail page template

3. FormTab page template

4. FormView page template

5. ListView page template

6. TabDetail page template

7. TabView page template

 | Components and Tools | 32

Figure: Acumatica Framework Templates

Data Access Class Generator

The Data Access Class Generator tool is intended for initial automated generation of data access class
declaration. The Data Access Class Generator is opened from the data source's smart tag menu from a
page opened in the design mode in Visual Studio.

Figure: Data Access Class Generator

Layout Editor

The Layout Editor tool allows you to configure the page layout and adjust positioning of controls on a
form.

 | Components and Tools | 33

Figure: Layout Editor

 | Design Guidelines | 34

Design Guidelines

This section contains the design requirements for the database schema and the application built on
Acumatica Framework.

• Database Design Guidelines

• Application Design Guidelines

Database Design Guidelines
The article covers the following aspects of database design:

• System and Application Tables

• Table and Column Naming Conventions

• Typical Columns and Data Types

• Primary Key

• Foreign Keys and Nullable Columns

• Audit Fields

• Concurrent Update Control

• Support for Attaching Additional Objects to Data Records

• Preserving Deleted Records

• Multi-Tenancy Support

System and Application Tables

The database of your Acumatica Framework-based application consists of the following tables:

• System tables: Those that are created by default for the application template and not used to
store your application data

• Application tables: Acumatica ERP tables (which exist if you have created an add-on project or
implemented customization)

• Application tables: Your own tables

Do not add columns to system tables or modify them in any other way. Such modifications could
corrupt the application and would be lost during the next database upgrade. See the System table list
file for the list of system tables.

Regarding your own application tables, you have to design and create the needed tables that store your
application data. You then map these application tables to data access classes (DACs) that define the
object model of the application. In one table, you can keep data records of multiple entities, each of
which is defined as a separate data access class in the application object model.

Table and Column Naming Conventions

When you are creating a table, you should consider the following suggestions regarding naming
conventions:

• Make sure that table and column names are valid C# identifiers, because these names match the
names of classes and properties you declare in the application. Do not start a table or column
name with a digit.

 | Design Guidelines | 35

• Do not use the underscore symbol (_) in table or column names, because it is a reserved
symbol in Acumatica Framework. For example, CompanyType is a valid column name, while
Company_Type is invalid.

• Use singular nouns for table names. Typically, a table is mapped to a data access class that
represents the entity. For instance, the SOShipment table contains data records that represent
instances of the SOShipment entity.

Acumatica Framework generates SQL statements with table and column names in the same letter
case as the corresponding data access classes and fields are declared in the application. Also, the
DAC Generator tool produces data access class declarations in the same letter case as the tables and
columns are defined in the database schema.

• Use two prefixes in table names: a two-letter company name and two-letter application module
prefix. For example, the MCSVAppointment table can be used in the Services (SV) module
for the MyCompany company. These prefixes help to distinguish your application tables from
Acumatica ERP tables and tables of other vendors if you create an add-on project or extension
library.

• If you add a column to an Acumatica ERP table, start the column name with the Usr prefix
followed by the two-letter company name. For instance, you could use UsrMCColumn for the
column of the MyCompany company. In this case, the column will be preserved during upgrades.
In your own application tables, there are no strict requirements to start column names with any
prefixes.

• Be sure that custom indexes on Acumatica ERP tables start with the Usr prefix followed by the
two-letter company name, so that the indexes will be preserved during upgrades.

Column Name Suffixes

We recommend that you use the following suffixes in column names:

• ID for surrogate keys, including database identity columns—for example, CustomerID

• CD for natural keys—for example, CustomerCD

• Nbr for numbering identifiers—for instance, OrderNbr

• Price for prices, such as UnitPrice

• Cost for costs—for example, UnitCost

• Amt for amounts, such as FreightAmt

• Total for totals, such as OrderTotal

• Qty, QtyMin, and QtyMax for quantities—for instance, OrderQty

• Date for dates, such as OrderDate

• Time for time points and time spans—for example, BillableTime

• Pct for percents, such as DiscountPct

Typical Columns and Data Types

You should use the following data types for columns. In the Type Attribute column in the table below,
you can find the most typical type attributes that are added to the corresponding data fields in the data
access class declaration.

Typical Data Types

Value Data Type (SQL Server) Type Attribute on the Data Field

Database identity int [PXDBIdentity]

 | Design Guidelines | 36

Value Data Type (SQL Server) Type Attribute on the Data Field

Natural key (for example,
document number)

nvarchar (15) [PXDBString(15, IsKey = true,
IsUnicode = true)]

Line number int [PXDBInt]

Short string (for example, a
name or unit of measure)

nvarchar (20), nvarchar
(50)

[PXDBString(20, IsUnicode =
true)]

Long string (such as a
description)

nvarchar (255) [PXDBString(255, IsUnicode =
true)]

Type or status identifier (for
instance, a document type)

int or char (1) [PXDBInt] or [PXDBString(1,
IsFixed = true)] respectively

Boolean flag (for example,
active/inactive)

bit [PXDBBool]

Price or cost, monetary units decimal (19, 6) [PXDBDecimal(6)]

Amount or total, monetary units decimal (19, 4) [PXDBDecimal(4)]

Quantity, pieces decimal (25, 6) [PXDBDecimal(6)]

Maximum, minimum, or
threshold quantity, pieces

decimal (9, 6) [PXDBDecimal(2)]

Percent, rate (for example,
discount percent)

decimal (9, 6) [PXDBDecimal(2)]

Weight or volume decimal (25, 6) [PXDBDecimal(6)]

Date smalldatetime [PXDBDate]

Time span int [PXDBTimeSpan(DisplayMask =
"t", InputMask = "t")]

Coefficient (such as a conversion
factor)

decimal (9, 6) [PXDBDecimal(1)]

Primary Key

You have to define the primary key in each application table that you create. The primary key may
consist of one column or multiple columns. The primary key must include the CompanyID column if one
is defined in the table.

For each table, you can use one of the following typical primary key variants:

• One key column included in the primary key in the table and set as the key in the data access
class

• A pair of columns, with one column included in the primary key in the table and the other one set
as the key in the data access class

• Multiple columns that are included in the primary key and set as the compound key in the data
access class

In a setup table, the only CompanyID column must be included in the primary key.

One Key Column

You may use one key column for rather short dictionaries. For instance, you can use the two-letter
country code from ISO 3166 as the key in the Country table.

A Pair of Columns With Key Substitution in the UI

 | Design Guidelines | 37

If you want to represent a user-friendly key in the user interface (UI) that corresponds to a surrogate
key in the database, you may use a pair of columns and the key substitution mechanism provided by
Acumatica Framework. You can define two columns in a table, one for the surrogate key (typically the
database identity column) and one for the natural key, and set only the surrogate key as primary in the
table. In the application object model, you set the key to the only natural key data field. In this case,
Acumatica Framework provides the ability to transparently work with different keys at the database and
application level. In the UI, users work only with the natural key while the database operates with the
surrogate key (see the key substitution scheme below).

Figure: Key substitution in Acumatica Framework

For instance, you can define two columns in the Product table, ProductID and ProductCD.
ProductID is the identity column that is the only column included in the primary key of the table.
ProductCD is the string key of a product instance, which is entered by the user through the UI. The
ProductCD column isn't included in the primary key and is handled as the unique key column by
Acumatica Framework.

Multiple Column Key

The compound key consisting of multiple columns may be used for complex entities. For instance, you
can include two columns, DocType and DocNbr, in the primary key for the Document table. In the
DocDetail table, you may use DocNbr and DocDetailNbr as the compound primary key. The
corresponding data fields should be also set as the key fields in the data access class.

Foreign Keys and Nullable Columns

In the database, you have to define the primary key in each application table that you create. The
primary key defines the unique data record identifier, which provides table-level integrity of data.

There are no strict requirements to define column-level constraints and foreign keys in application
tables. Whether or not you define the constraints at the database level depends on the design approach
you use. At the higher level of the application object model represented by data access classes, you
can flexibly define any level of constraints, including default values, nullable fields, and parent-child
relationships between data access classes. If you aren't sure whether a column should allow a null
value, you can allow null values for it in the database. Later, in the data access class, you can make the
data field either required or nullable; you can even make the field required on one page and optional on
another.

For boolean and decimal columns, we recommend that you define default values either in the database, or
in data access classes. This simplifies the application code by helping to avoid multiple checking of values
for nulls.

Audit Fields

Audit fields keep meta information on the creation and last change of a database record. Audit fields are
updated automatically by the framework.

 | Design Guidelines | 38

To enable tracking of audit data for a particular table, you should add the columns listed below to
the table and declare the corresponding audit data fields in the data access class. You have to add
the corresponding type attribute to each audit field. If the audit columns are properly created in the
database table and the corresponding data fields are declared in the data access class, Acumatica
Framework automatically updates audit data in these fields every time a data record is modified from
the application. The audit column parameters and DAC attributes are given below.

Audit Columns

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

CreatedByID uniqueidentifier, not null [PXDBCreatedByID]

CreatedByScreenID char (8), not null [PXDBCreatedByScreenID]

CreatedDateTime smalldatetime, not null [PXDBCreatedDateTime]

LastModifiedByID uniqueidentifier, not null [PXDBLastModifiedByID]

LastModifiedByScreenID char (8), not null [PXDBLastModifiedByScreenID]

LastModifiedDateTime smalldatetime, not null [PXDBLastModifiedDateTime]

Concurrent Update Control

You can add the SQL Server timestamp column to a table to make Acumatica Framework able to
handle concurrent updates. The corresponding timestamp data field should be declared in the data
access class. If the timestamp data field is declared, Acumatica Framework handles the timestamp
column automatically. Acumatica Framework checks the row version every time the row is modified. We
recommend that you add the timestamp column to all tables of your application (see the table below).

The Timestamp Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

TStamp timestamp, not null [PXDBTimestamp]

Support for Attaching Additional Objects to Data Records

You can attach additional objects to a data record—for instance, add a textual note or upload a file or
multiple files to a data record. You enable support for data record attachments for each particular table
individually. To enable support for data record attachments, add the column that stores the global data
record identifier (typically, NoteID) to the table and declare the corresponding field in the data access
class. For more information on file upload through an application page, see Working With Images.
See below for the global identifier column parameters and the attribute that should be added to the
corresponding DAC field.

The Global Data Record Identifier Column (NoteID)

Database Column Data Type (SQL Server) Type Attribute on the Data Field

Global data record identifier
(typically named NoteID)

bigint, null [PXNote]

Preserving Deleted Records

Acumatica Framework provides a low-level mechanism for preserving deleted data records in the
database. With this mechanism, when an application initiates deletion of a data record, the data access
layer generates the SQL query that marks the data record as deleted but does not permanently remove
the data record from the table. On select, the data access layer generates the SQL query that returns

 | Design Guidelines | 39

only data records that are not marked as deleted. The data records that are preserved in this way can
be restored. You can enable the preservation of deleted data records for each table individually. To
preserve data records in a particular table, add the DeletedDatabaseRecord column to the table
and do not declare the data field in the data access class. On deletion of a data record in the table, the
framework automatically preserves the deleted data record transparently to the application developer.

The DeletedDatabaseRecord Column

Database Column Data Type (SQL Server) Type Attribute on the Data Field

DeletedDatabaseRecord bit, not null Not declared in DAC

Multi-Tenancy Support

Multiple companies or tenants can work on the same instance of an Acumatica Framework-based
application with completely isolated data. The application looks identical to all tenants, but each
company has exclusive access to its data only. Data is isolated at the lowest level of the application, in
the data access layer that executes SQL queries for the company of the current logged-in user.

Multi-tenancy support is enabled for each particular table individually. To enable multi-tenancy support
for a table, add the CompanyID column to it and include the column in the primary key (see the
column parameters in the table below). The CompanyID column is handled automatically by the
framework and should not be declared in data access classes. If a table doesn't have the CompanyID
column, all data from the table is fully accessible to all companies that exist in the database. For more
information, see Support of Multiple Companies.

The following scheme illustrates how different logical companies work with the Acumatica Framework-
based application in a multi-tenant configuration. They work with the same application but have isolated
data access, as if they work with different database instances.

Figure: Multi-tenant Acumatica Framework-based application

The CompanyID Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

CompanyID int, not null, included in
primary key

Not declared in DAC

Support for Shared Data Access Between Companies

Acumatica Framework provides shared data access in a multi-tenant configuration. Acumatica
Framework supports a hierarchy of logical companies that may work with a combination of shared and
individual data. In shared access mode, every company may work with its individual copy of a data
record. Copies differ by CompanyID. All copies represent the same logical object in the application but
different data records in the database. For instance, each company may use individual settings of the
application.

Support for shared data access is enabled for each particular table individually. To enable support for
shared data access for a table, add the CompanyMask column to the table (see the column parameters
in the table below). The CompanyMask column is handled automatically by the framework and should

 | Design Guidelines | 40

not be declared in data access classes. If a table doesn't have the CompanyMask column, shared data
access is not available for this table.

The scheme below shows a possible multi-tenant configuration with shared data access between
Company 1, Company 2, and Company 3. Users of Company 2 have access to the data of all three
companies. Users from the other two companies have access to their individual data only. Physically,
the data of all three companies is stored in a single database instance.

Figure: Shared data access in a multi-tenant Acumatica Framework-based application

The CompanyMask Column

Database Column Name Data Type (SQL Server) Type Attribute on the Data Field

CompanyMask varbinary (32), not null,
default 0xAA

Not declared in DAC

Application Design Guidelines
This document summarizes the application design and style conventions used in Acumatica ERP.

Development Environment Options
Acumatica Framework supports Microsoft Visual Studio 2008, 2010, and 2012. See below for additional
details about these versions.

For Microsoft Visual Studio 2008, you must have Service Pack 1 installed. Also, you must install the
following hotfix from Microsoft: KB967253.

The following settings are recommended for the MS Visual Studio environment to enforce a uniform
webpage appearance:

1. Set the following options under the Tools > Options > HTML Designer > CSS section:

• Font and text: CSS (classes)

• Padding and borders: CSS (classes)

• Floating, positioning, and sizing: CSS (inline styles)

• Bullets and numbering: CSS (classes)

• Background: CSS (classes)

• Margins: CSS (classes)

2. Select the following buttons and check boxes under the Tools > Options > HTML Designer >
CSS Styling section:

• Auto Style Application

• Only reuse classes with the prefix "style"

• Use width and height attributes for image instead of CSS

• Use shorthand properties when generating styles

http://connect.microsoft.com/VisualStudio/Downloads/DownloadDetails.aspx?DownloadID=17185

 | Design Guidelines | 41

• Change positioning to absolute for controls added using Toolbox, paste, or drag
and drop

We also recommended that you modify the following options:

• View > Visual Aids > CSS Display:none Elements: False (cleared)

• View > Visual Aids > CSS Visibility:hidden Elements: False (cleared)

Captions
Add a caption to the following:

• Each form header

• Each form details grid header

Screen Numbering
When numbering screens in Acumatica ERP, use the following convention:

 XX.99.99.99
 | | | |_ Sub-Screen Sequential Number
 | | |____ Screen Sequential Number
 | |_______ Screen Type:
 | 10 - Setup
 | 20 - Maintenance
 | 30 - Data Entry
 | 40 - Inquiry
 | 50 - Processing
 | 60 - Reports
 |__________ Two-Letter Module Code

Report Numbering
When numbering reports in Acumatica ERP, use the following conventions in addition to those outlined
above:

 XX.6X.99.99
 |
 |____ Report Type:
 61: Review Reports - Reports for document review prior to release
 62: Register Reports - Reports used to print audit information
 on processed documents or entities
 63: Balance Reports - Reports reflecting current or historical
 balance information
 64: Forms - Printed webpages
 65: Inquiry Reports - Reports that provides status information
 required for operational management
 66: Statistical Reports - Reports that provide statistical or
 historical information

 | Application Programming Overview | 42

Application Programming Overview

Acumatica Framework provides the platform and tools for developing cloud business applications.
This document explains Acumatica Framework runtime structure, introduces main components, and
illustrates their relationships on simple examples.

The chapter is a starting point for application developers who are going to develop and customize
applications with the help of Acumatica Framework.

Runtime Structure and Components

An application written with Acumatica Framework has n-tier architecture with a clear separation of the
presentation, business, and data access layers. The picture below illustrates the application component
model from the point of view of the application programmer.

Figure: Application architecture.

Data Access Layer

Acumatica Framework relies on object relationship mapping (ORM) technology to access the database
from the business logic. Acumatica Framework implements own, proprietary ORM technology. This
technology provides an application developer with a set of standard CRUD operations to execute on
database tables and methods to execute complex SQL queries.

An important feature of the Acumatica Framework ORM technology is a high-performance serialization
mechanism that stores modified but not persisted database records in the session state. Modified data
are merged with the result of the query execution to emulate statefull data access behavior for the
application developer and minimize the amount of data stored in the session.

 | Application Programming Overview | 43

Business Logic Layer

Business Logic Layer is implemented as a set of business logic controllers (graphs).

Each business logic controller consists of two parts:

• Entity Model that declares data access classes the entities are stored in, their relationships, and
actions that can be executed over the entities

• Entity Business Logic that implements the business logic of the actions and events associated with
modifying entity data

Business logic controllers implement the interfaces for Presentation Layer to retrieve the entity data and
execute the actions over the entity. Business Logic Layer relies on Data Access Layer to retrieve data
from the database and execute CRUD operation.

Presentation Layer

Presentation Layer is responsible for providing:

• The user interface based on the ASPX technology and implemented as a set of declarative Web
Forms

• The alternative interface for accessing the business logic in the form of auto-generated Web
Service API

Presentation Layer is completely declarative and contains no business logic.

Querying the Data
This system implements a custom language for writing database queries called BQL (business query
language). It is not LINQ and doesn't use it. BQL is written in C# and based on generic classes syntax,
but still is very similar to SQL syntax. It has almost the same keywords placed in the order they are
used in SQL. For example:

PXSelect<Product,
 Where<Product.availQty, IsNotNull,
 And<Product.availQty, Greater<Product.bookedQty>>>>

If the database provider is MS SQL Server, the framework will translate this expression into the
following SQL query:

SELECT * FROM Product
WHERE Product.AvailQty IS NOT NULL
 AND Product.AvailQty > Product.BookedQty

BQL gives several benefits to the application developer. It does not depend on database-provider
specifics, is object-oriented and extendable. An important benefit is compile-time syntax validation,
which helps to prevent SQL syntax errors.

Since BQL is implemented on top of generic classes, you need types that would represent database
tables. In the context of Acumatica Framework, they are called data access classes (DACs).

For example, to execute the SQL query from the example above, you should define the Product data
access class as:

using System;
using PX.Data;

// Types used in BQL statements should derive from special interfaces:
// table - IBqlTable, column - IBqlField.
[System.SerializableAttribute()]
public class Product : PX.Data.IBqlTable

 | Application Programming Overview | 44

{
 // The type used in BQL statements to reference the ProductID column
 public abstract class productID : PX.Data.IBqlField
 {
 }
 // The property holding ProductID value in a record
 [PXDBIdentity(IsKey = true)]
 public virtual int? ProductID { get; set; }

 // The type used in BQL statements to reference the AvailQty column
 public abstract class availQty : PX.Data.IBqlField
 {
 }
 // The property holding AvailQty value in a record
 [PXDBDecimal(2)]
 public virtual decimal? AvailQty { get; set; }

 // The type used in BQL statements to reference the BookedQty column
 public abstract class bookedQty : PX.Data.IBqlField
 {
 }
 // The property holding BookedQty value in a record
 [PXDBDecimal(2)]
 public virtual decimal? BookedQty { get; set; }
}

Each table field is declared in a data access class twice:

• As a type to reference a field in the BQL command

• As a value to hold the table field data

If the DAC is bound to the database, it must have the same class name as the database table.
Fields are bound to the database by means of data mapping attributes (such as PXDBIdentity and
PXDBDecimal), using the same naming convention.

A complete code sample that queries the database is given below:

using System;
using System.Collections;
using PX.Data;

public static void Main()
{
 // Select Product records
 PXResultSet<Product> res =
 PXSelect<Product,
 Where<Product.availQty, IsNotNull,
 And<Product.availQty, Greater<Product.bookedQty>>>>
 .Select(new PXGraph());

 // You can iterate through the result set
 foreach(PXResult<Product> rec in res)
 {
 // A record from the result set can be cast to the DAC
 Product p = (Product)rec;
 Console.WriteLine("ID: {0}, available: {0}, booked: {0}",
 p.ProductID, p.AvailQty, p.BookedQty);
 }
}

BQL library also supports such advanced features as:

• DACs that are not bound to the database

• Virtual fields that are not bound to the database

• Scalar sub-selects

 | Application Programming Overview | 45

• Projections

• Stored procedures execution

• Server-side calculated fields

• Non-blocking updates of statistical data records

Entity Model Declaration
Business Entity or simply Entity in Acumatica Framework represents an individual instance of the
objects (such as Product, Order) to which the information pertains. Entity can be simple, where the
data are represented with a single database record in a single table, or complex. With the complex
entity, data are typically held in multiple tables and associated through a complex hierarchy and
relationship rules.

Working with the business entities in Acumatica Framework is implemented through the business logic
controller object also referred as graph (graph is a mathematical term for a set of objects where some
pairs of objects are connected by links).

A graph provides the interface for the presentation logic to operate with the business entity and relies
on Data Access Layer components to store and retrieve the business entity from the database.

Let’s first take a look at the declaration of a simple business entity:

//Declaration of the graph
public class ProductMaint : PXGraph<ProductMaint>
{
 //Declaraion of the data view
 public PXSelect<Product> Products;

 //Declaration of the actions
 public PXCancel<Product> Cancel;
 public PXSave<Product> Save;
}

In this example the graph implements the following interfaces:

• Products – the data view that can be used for querying and modifying entity data

• Cancel – the action that discard all the changes made to the entity and reloads it from the
database

• Save – the action that commits the changes made to the entity to the database and then reloads
the committed data

Handling Entity Data

Data View and Entity Cache

Data views implement the interfaces for querying entity data from the business logic controller and
submitting modified data back to the entity.

Data views are declared as public fields of PXSelect command type:

public PXSelect<Product> Products;

Based on this declaration, the system automatically instantiates the DAC entity cache.

An entity cache object in the Acumatica Framework is the primary interface for working with individual
entity records from the graph business logic. It has two components and two primary responsibilities:

• The Cached collection – in-memory cache that contains modified entity records. The Cached
collecton is instantiated based on the corresponding DAC declaration and managed by the cache.

 | Application Programming Overview | 46

• The controller – the cache component that implements basic CRUD operations on the Cached
collection and triggers a sequence of data manipulation events when modifying or accessing the
data in the Cached collection. These events can be later subscribed from the graph to implement
the business logic associated with entity data modification.

The diagram below helps to understand the internal graph structure and responsibilities of the data
view and the entity cache.

Figure: The graph structure – a data view and an entity cache.

Data Modification Scenarios

Now lets consider basic entitiy data manipulation scenarious that can be executed from the graph
business logic or from the user interface. Entity data manupulation through the user interface indirectly
invokes the same methods as the direct call from the business logic.

Querying Entity Data for the First Time

Entity data can be requested through the Products.Select() method. During this operation, the systems
will execute BQL command from the data view declaration. Data returned by the BQL command will be
returned to the requestor. See the diagram below.

Figure: Querying entity data for the first time.

 | Application Programming Overview | 47

Updating an Existing Entity Record

An existing business entity record can be updated through the Products.Update(record) method. This
method places the modified record into the cache.

If the data record is not found in the Cached collection, the cache controller will load the data record
from the database, add it to the Cached collection, mark it as updated, and update it with the new
values. The search of the data record in the Cached collection and loading of the data record from the
database is based on the DAC key fields. The diagram below illustrates this scenario.

Figure: Updating the entity record for the first time.

If the updated record exists in the Cached collection the cache controller will locate it and update it with
the new values. The diagram below illustrates this scenario.

 | Application Programming Overview | 48

Figure: Updating the cached (previously modified) entity record.

Inserting a New Entity Record

A new record can be inserted into the business entity through the Products.Insert(record) method. The
new inserted record will be added to the Cached collection and marked as inserted. The diagram below
illustrates this scenario.

 | Application Programming Overview | 49

Figure: Inserting the new entity record.

Deleting an Existing Entity Record

An existing record can be deleted from the business entity using the Products.Delete(record) method.

If the data record is not found in the Cached collection, the cache controller will load the data record
from the database, add it to the Cached collection, and mark it as deleted. The search of the data
record in the Cached collection and loading of the data record from the database is based on the DAC
key fields. The diagram below illustrates this scenario.

 | Application Programming Overview | 50

Figure: Deleting the non-cached (unmodified) entity record.

If the deleted record is found in the Cached collection, the cache controller will locate it and mark as
deleted. The diagram below illustrates this scenario.

Figure: Deleting of the cached (previously modified) entity record.

 | Application Programming Overview | 51

Querying an Updated Entity Data

Entity data can be modified and then queried again. In this scenario, the data records stored in the
caches memory will be merged with the result of the BQL command execution. Data records merge is
based on DAC key fields. The final result of the Select() execution will incorporate all the earlier entity
records modifications that has not been preserved to the database yet. The diagram below illustrates
this scenario.

Figure: Querying the modified entity data – reading and merging with the cached data.

Persisting Entity Changes to the Database

When entity data are modified, the system has two different entity versions, the new one stored in the
caches memory and the original one persisted in the database. At this point a programmer has two
options:

• Save the new entity version to the database using the Persist() method of the graph

• Discard all in-memory changes and load the original entity version using the Clear() method of
the graph

From the Presentation Layer these methods are called by invocation of the Save and Cancel actions.
These actions are predefined and mapped to the Persist() and Clear() methods.

The diagram below illustrated saving of entity changes to to the database.

 | Application Programming Overview | 52

Figure: Saving the entity changes to the database.

The diagram below illustrated discarding of all in-memory entity changes.

Figure: Discarding the changes and loading the original entity data.

 | Application Programming Overview | 53

Preserving the Entity Version Between the Round Trips and Handling the Subsequent Selects
from the Views

It is important to understand that a graph is a stateless object. It is discarded after each data request.
In order to preserve the modified entity version between the requests, the cache controller serializes
the Cached collection into the session state and restors it later when the graph is instantiated on the
subsequent request. In this scenario, it is very important that the cache contains only the modified
entity records, not the complete entity record set.

Implementing Business Logic
Business logic is implemented by overloading certain methods invoked by the system in the process
of manipulating data. For such procedures as inserting a data record or updating a data record, the
PXCache controllers generate series of events causing invocation of the methods called event handlers.
The application is able to interfere in the series of events on different stages. For this purpose, the
application impements methods that are executed as event handlers.

There are 18 events raised on all stages of data processing.

Business logic can be divided into common logic relevant to different parts of the application and the
logic specific to an application screen (web page). The common logic is implemented through event
handler methods defined in attributes, while the screen-specific logic is implemented as methods in the
associated graph.

Common Business Logic

The common business logic is implemented by defining event handlers in attributes. If such attribute is
added to the declaration of a data access class, attribute logic is applied to the data records of this type
for any graph used to access this table.

There are a number of predefined attributes implemented in the framework. For example, in the
following declaration of a data field for a column

[PXDBDecimal(2)]
public virtual string AvailQty { get; set; }

PXDBDecimal is an attribute binding this field to a database column of the decimal type. The attributes
of this form exist for most database data types.

Another typical example of an attribute is PXUIField. It is used to configure the input control for the
column in the user interface. This allows having the same visual representation of the column on all
application screens (unless a screen redefines it). For example:

[PXDBDecimal(2)]
[PXUIField(DisplayName = "Available Qty", Enabled = false)]
public virtual string AvailQty { get; set; }

Application can also define its own attributes, in the following way:

// Application-defined attribute implementing common business logic
public class MyAttribute : PXEventSubscriberAttribute,
 IPXEventNameSubscriber
{
 // An event handler
 protected virtual void EventName(PXCache sender,
 PXRowEventNameEventArgs e)
 {
 ...
 }
 ...
}

 | Application Programming Overview | 54

Such attributes are also added to the DAC declaration:

[PXDBDecimal(2)]
[PXUIField(DisplayName = "Available Qty", Enabled = false)]
[MyAttribute]
public virtual string AvailQty { get; set; }

Screen-Specific Business Logic

For a specific screen, the application can redefine the common logic or extend it. For this purpose, you
should define event handlers in the graph associated with the screen. Each event hanlder method is tied
to a particular table or a table field via the naming convention.

For example, you can verify a value of a column:

public class ProductRecalc : PXGraph<ProductRecalc>
{
 ...
 // Event handler verifying that the value of the AvailQty column
 // in Product records is greater than 0.
 // It is triggered when, for instance, a Product record is updated.
 protected virtual void Product_AvailQty_FieldVerifying(
 PXCache sender,
 PXFieldVerifyingEventArgs e)
 {
 Product p = (Product)e.Row;
 if (p != null && p.AvailQty != null)
 {
 if (p.AvailQty < 0)
 throw new PXSetPropertyException<Product.availQty>(
 "Value must be greater than 0.");
 }
 }
}

 | Programming Tasks | 55

Programming Tasks

The articles from this section explain how to complete various programming tasks that you may face
with while developing a business application on Acumatica Framework.

• Localizing Applications

• Generating a Data Access Class

• Working With Images

• Adding Widgets to Dashboard

• Data Representation

• Calculations

• Data Input

• Interaction With the Server

• Creating an Acumatica ERP Add-on Project

• Implementing a Credit Card Processing Plug-in

• Using Substitute Keys

• Calling a New PXSmartPanel

Localizing Applications
Acumatica Framework provides built-in localization tools that you can use to translate the user interface
and application messages to different languages. This topic provides guidelines on how to prepare the
Acumatica Framework application for further localization efforts. (See the related link under this topic.)

To get the application ready for localization, you must prepare data access classes (DACs) and the
application code.

What Can Be Localized

The system can retrieve the string constants specified in the following items of the application:

• PXUIField attributes in DAC fields

• PXUIField attributes in business logic container (BLC) DAC override fields and actions

• PXStringList and PXIntList attributes

• Tooltips for the PXButton attribute

• Captions of form, grid, and panel controls and input control labels specified in the ASPX page

• Site Map tree (titles of all sitemap nodes)

• Reports (textbox labels, diagram agenda, etc.)

• Classes marked with the PXLocalizable attribute

By using the System > Management > Manage > Translation Dictionaries system webpage, you
can add translations for the collected string constants and save them to the database. When a user
signs in with a specific language, the systems loads the translations and displays translated strings to
the user.

 | Programming Tasks | 56

If the same string is found in multiple places in the application, the system saves information about all
the occurences. You can specify a default translation that applies to all occurences of the same string
and separate translations for some or all the occurences.

Preparing DACs

The system can automatically update the translation dictionary of Acumatica ERP with the string
constants specified in the DisplayName parameter of the PXUIField attribute. The translation dictionary
is also updated with list attributes of the PXStringList attribute or PXIntList attribute. Therefore, the
declaration of a field in a DAC should meet the following requirements:

• Each visible field in a DAC must include the PXUIField attribute.

• The DisplayName parameter must be specified for the PXUIField attribute, not only to make the
name of the user interface element of the webpage clearer than the corresponding field name of
the database table, but also to provide the localization capability.

Note the following example of a field declaration with the PXUIField attribute applied.

#region DocType
public new abstract class docType : PX.Data.IBqlField
{
}
[PXDBString(3, IsKey = true, IsFixed = true)]
[PXDefault()]
//The PXUIField with the DisplayName parameter
[PXUIField(DisplayName = "Document Type")]
public override string DocType { get; set; }
#endregion

If you apply the PXStringList attribute to the string field, its list attributes will also be collected and
placed in the dictionary for localization.

Here is an example of a field declaration with the PXStringList attribute and PXUIField attribute
applied.

#region LineSource
public abstract class lineSource : PX.Data.IBqlField
[PXString(1, IsFixed = true)]

//The PXStringListAttribute with its list attributes
[PXStringListAttribute(
 new string[] { "D", "R" },
 new string[] { "Draft", "Request" })]

//The PXUIField with the DisplayName parameter
[PXUIField(DisplayName = "Line Source")]
public virtual string LineSource { get; set; }
#endregion

Localizing Application Code

To enable localization of messages in the source code, move all translatable strings from the application
to the public static class marked with the PXLocalizable attribute. (The exceptions to this
requirement are field descriptions and list attributes in the data access classes, which are handled
separately.) An example of such a class follows.

using System;
using PX.Data;

namespace PX.Objects.EM

 | Programming Tasks | 57

{
 [PXLocalizable()]
 public static class Messages
 {
 public const string FieldNotFound = "The field specified is not found.";
 public const string InvalidAddress = "The address is not valid.";
 public const string AdditionalData = "Author's title: {0}, author's name: {1}"
 }
}

A string may contain placeholders (as with the last code line in the code above, which contains {0} and
{1} placeholders).

The string from a class marked with the PXLocalizable attribute can be collected by the application
and added to the translation dictionaries. If you need to receive the translated string within the
application code, use the PXMessages.Localize(...) method or PXLocalizer.Localize(...), as
shown below.

string msg = PXMessages.Localize(Messages.FieldNotFound);

When you throw an exception of PXException type or of a type derived from PXException, you should
provide a not-localized message. The system will localize the message automatically if the translation
dictionaries include a translation for this message. See the example below.

if (field == null)
{
 throw new PXException(Messages.FieldNotFound);
}

Notice that no hyphenation is provided by the system. During the acquisition process of localizable data, all
the new-line symbols (\n\r) are to be removed. You can use the reserved symbol (~) to cause insertion of a
new line.

Localizing Strings in the Code

To get a localized string at run time, you should use the Localize(string) method of the PXMessages
class or the Localize(string, string) method of the PXLocalizer class.

The PXMessages.Localize(string) method searches for the translation of the provided string in the
database and returns the first translation found.

string text = PXMessages.Localize(PX.Data.Update.Messages.SiteUnderMaintenance);

You should use the PXMessages.LocalizeFormat(...) method if the string includes placeholders (such
as {0} or {1}).

The PXLocalizer.Localize(string, string) method returns the translation with the given key,
which you specify in the second parameter. A string may have multiple translations; one translation for
each occurence of the string in the application. For each of the occurences, a key value is created. For
example, if the string is declared in a class marked with the PXLocalizable attribute, the full qualified
name of the class is the key, as the following code shows.

string localizedMsg = PXLocalizer.Localize(
 ActionsMessages.ChangesWillBeSaved,
 typeof(ActionsMessages).ToString());

When you throw an exception of the PXException or derived type, you should provide a non-localized
string as the exception message. The system will automatically search for translation and display a
localized version of the message.

 | Programming Tasks | 58

If you change the DisplayName value of the PXUIField attribute on the fly, create your own
PXUIFieldState, you should localize the string independently.

Generating a Data Access Class
Once you have linked the created page to the business logic container (BLC) class, you can generate a
data access class (DAC) that implements a communication layer between the BLC and the database. To
use the Data Access Class Generator to generate the Country.cs DAC file code in the simplest way, do
the following steps:

In this topic, we assume that your database includes the simple Country table. Although for
simplicity this table doesn't include the system attribute NoteID and the audit fields CreatedByID,
CreatedByScreenID, CreatedDateTime, LastModifiedByID, LastModifiedByScreenID, and
LastModifiedDateTime, we recommend that you use all these fields in each database table.

1. Open the page in design mode, point to the ds control, click the smart tag associated with this
control, and select Generate Class, as shown in the screenshot below.

Figure: Starting to generate the DAC

2. In the Data Access Class Generator window that appears (see the screenshot below), type
Country into the Name field under the Table Properties section as the name of the table that will
store countries' data, or select Country from the drop-down list of database tables. The list of
fields from the Country table appears.

3. Click Append UI Attributes to add the PXUIField attribute to the fields.

If you decide not to display some DAC fields on the webpage, after generating the DAC, you should
manually delete redundant PXUIField attributes.

4. Click Generate to generate the data access class.

 | Programming Tasks | 59

Figure: Generating the DAC by using the Data Access Class Generator window

As a result, Acumatica Framework creates the new file, Country.cs, with the generated DAC code and
then opens this file

When the list of fields is loaded, the Data Access Class Generator automatically assigns attributes to the
audit fields. The settings are stored in the CustomFields.config file, which you can update by clicking Add
to Custom Fields List. If the DAC already exists, the wizard that is built into the DAC Generator loads
data from the DAC and replenishes the list of fields with the database fields that are not listed in the DAC.
By default, new fields, which are displayed at the end of the list, are not selected.

When you click Generate, already existing fields are overridden if you have selected them for generation.

The CustomFields.config file has an XML structure and consists of two main sections, called Config and
CustomFields.

In the config section, the design class type is annotated, and some necessary default property values
are defined.

The CustomFields section contains the definitions, type definitions, and constructors of the system
attribute NoteID and the audit attributes CreatedByID, CreatedByScreenID, CreatedDateTime,
LastModifiedByID, LastModifiedByScreenID, and LastModifiedDateTime are defined.

Only Acumatica ERP developers can change the content of this file. You can use this file as a reference
manual, for instance, on the stage of constructing the structure of database tables or the generation of
multiple DACs.

Working With Images
This topic covers how to upload images to attach them to webpages and how to manage uploaded
images. You can attach image and video files to any area of a webpage: upper (form), lower (tab), or
lower (tab table). In this topic, attachment of an image file to the form area of a webpage is illustrated.

Preparing a Placeholder to Upload an Image File

To make it possible to upload an image file and attach the uploaded image to the required area of the
webpage, you must perform the following actions:

1. Add two mandatory fields—Image, having the nvarchar(256) data type, and NoteID, with the
bigint data type—to the database table whose fields are to be used for generating the respective
data access class (DAC) fields, so that the Image and NoteID fields in the DAC code are defined
as classes.

2. Open an Acumatica Framework solution and generate a new DAC.

 | Programming Tasks | 60

3. Create the page.

4. Set the DataMember property value as the related business logic container (BLC, also called
graph) name based on this DAC.

5. Open the source mode and modify the .aspx page code of the created page: Replace the starting
and ending PXTextEdit tags of the Image field with the PXImageUploader tags, as shown in the
screenshot below.

Figure: Modifying the tag name of the .aspx page

6. By using the Layout Editor window, add the Image field (after setting optimal default Height
and Width property values), along with all the other required fields, onto the appropriate area of
the page. (You shouldn't add the NoteID field onto the page.)

Image file extensions of files to be uploaded must be registered on the File Upload Preferences
(SM.20.25.50) form. Navigate to the Configuration > Document Management > Configure >
File Upload Preferences form. If the required file types are not defined already, define them and
save your changes. On this form, you can also define the maximum size of an uploaded file (in
kilobytes), as shown in the following screenshot.

 | Programming Tasks | 61

Figure: Making sure image file extensions are registered

Uploading Image Files and Managing Images

This section provides a simple example, by using the Products sample webpage, of uploading and
managing image files. To upload three images, proceed as follows:

1. Start the application, navigate to the Products webpage, and click Click here to upload image
in the upper webpage area, where you had placed the Image field. Click Browse and find the
required image file.

2. Select the desired file and click Upload. Notice the image under Click here to upload image,
as the screenshot below illustrates.

 | Programming Tasks | 62

Figure: The first uploaded image

3. To upload a second and third image, repeat the two previous instructions twice.

4. After you have uploaded the third image, ensure that the Next, Prev, and Select navigation
buttons in the upper right corner have become available.

By clicking Next or Prev, you can scroll through all images—those you uploaded and those that
already existed.

5. Select the image to be displayed by default.

6. To adjust the selected image to be displayed by default, click Select; then click Save on the
form toolbar. Open another webpage or select another product, and then open the Products
webpage and select the product record to which you assigned the default image. Notice that the
default image is located where it was earlier.

7. Click the image to see the file image in its original scale.

 | Programming Tasks | 63

Figure: Opening the image file editor window

8. To replace any attached image file, click File and then click the Edit link (at the right of the name
of the image file, as shown in the screenshot above) to open the File Maintenance (SM.20.25.10)
form in a window. On the form toolbar of this form, click Upload New Version (see the
screenshot below), and then attach the file as described above in Instruction 2. After you have
replaced the file, you can see the new line in the table on the Versions tab; the appearance
of the new line means that the full uploading and replacement history data is available for any
uploaded image.

To delete the attachment of the image (or any version of the image file), just click Delete (to
delete the image file attachment) in the upper area or Delete Row (to delete a version of the
image file attachment) in the lower part of the File Maintenance form.

 | Programming Tasks | 64

Figure: Replacing the attached image file

Adding Widgets to Dashboard
Possible widget types (parameters of the DashboardType attribute):

• 0 - Table (default)

• 1 - Wiki article

• 2 - Task

• 6 - Table with owner and workgroup

• 7 - Calendar

• 8 - Generic Inquiry

• 20 - Chart

Data Representation
In this chapter, you will get acquainted with the various aspects of a webpage representation, such as
how to configure and design a webpage layout, adjust lookup fields, filter webpage data, and use status
field.

Content
This chapter covers the following topics:

• Filtering Data on a Webpage

Filtering Data on a Webpage
This topic describes two filtering methods: setting selection criteria in the top (master) area of a
webpage to filter the details, and defining a reusable filter. The topic describes how you would create
a special inquiry webpage that enables the filtering of records; such a webpage uses the first filtering
method. The second method, defining a reusable filter, can be used with most processing webpages and
reports.

 | Programming Tasks | 65

We illustrate the implementation of both methods and the appropriate testing steps by using an
example with a simple application, Rapid Byte. You should not perform any of the actions described
in this topic. These actions are provided to show a part of the development process while helping you
become acquainted with the filtering methods that can be used in applications developed with Acumatica
Framework.

A third filtering method, used for processing pages, is described in the last section of this topic.

Creating a DAC and a BLC for the Inquiry Webpage

In this section, the groundwork is laid for the first filtering method, for which you would create a
special inquiry webpage. This section describes the process of creating a data access class (DAC) and
a business logic container (BLC, also called a graph) for filtering webpage data. You can see the code
lines that implement the filtering logic for the first filtering method.

Suppose that you need to create a complex webpage based on the FormDetail template to filter and
sort products that the company sells or plans to sell. In the upper (master) area of this webpage, the
Category Name (of the product) and Supplier ID fields will be used as the filter conditions, while in
the lower (details) area, the table with the filtered products will be displayed.

For this method, first you would create a simple DAC for filtering conditions, and then you would create
a BLC to implement the filtering logic. To perform these steps, you would do the following: (Again, you
shouldn't perform these actions at this time; just analyze them.)

1. Manually create a new DAC, ProductFilter, that includes two DAC fields, CategoryName and
SupplierID, as shown below.

// public class ProductFilter : PX.Data.IBqlTable
namespace RB.RapidByte
{
 using System;
 using PX.Data;

 [System.SerializableAttribute()]
 public class ProductFilter : PX.Data.IBqlTable
 {
 #region CategoryName
 public abstract class categoryName : PX.Data.IBqlField
 {
 }
 [PXString(15, IsUnicode = true)]
 [PXUIField(DisplayName = "Category Name")]
 [PXSelector(typeof(Category.categoryName),
 DescriptionField = typeof(Category.description))]
 public virtual string CategoryName { get; set; }
 #endregion
 #region SupplierID
 public abstract class supplierID : PX.Data.IBqlField
 {
 }
 [PXString(15, IsUnicode = true)]
 [PXUIField(DisplayName = "Supplier ID")]
 [PXSelector(typeof(Search<Account.accountID, Where<Account.companyType,
 Equal<CompanyType.supplier>>>),
 new Type[] {typeof(Account.accountID),
 typeof(Account.companyName),
 typeof(Account.country),
 typeof(Account.contactName),
 typeof(Account.contactTitle)
 })]
 public virtual string SupplierID { get; set; }
 #endregion
 }
}

 | Programming Tasks | 66

Because PXFilter contains a single DAC object that is always created during webpage
initialization and never saved to the database, there is no need to specify any key field within a DAC
exclusively used in the PXSelector<Table> data members.

2. Add the ProductInquiry.cs BLC file code, based on the PXGraph template, and modify it as
follows. (The + sign at the left of the code line means that this code line must be added, while
the - sign means that you should delete the code line because it is redundant.)

using System;
using System.Collections;
-using System.Collections.Generic;
using PX.Data;
using PX.SM;

namespace RB.RapidByte
{
 public class ProductInquiry : PXGraph<ProductInquiry>
 {
+ public PXCancel<ProductFilter> Cancel;
+ public PXFilter<ProductFilter> Filter;
+ [PXFilterable]
+ public PXSelectJoin<Product, LeftJoin<SupplierProduct, On
+ <Product.productID, Equal<SupplierProduct.productID>>>> ProductRecords;

+ public ProductInquiry()
+ {
+ Cancel.SetCaption("Clear Filter");
+ this.ProductRecords.Cache.AllowInsert = false;
+ this.ProductRecords.Cache.AllowDelete = false;
+ this.ProductRecords.Cache.AllowUpdate = false;
+ }

+ protected virtual IEnumerable productRecords()
+ {
+ ProductFilter filter = Filter.Current as ProductFilter;
+ PXSelectBase<Product> cmd = new PXSelectJoinOrderBy<Product, LeftJoin
+ <SupplierProduct, On<Product.productID, Equal
+ <SupplierProduct.productID>>>, OrderBy<
+ Asc<Product.productName>>>(this);

+ if (filter.SupplierID != null)
+ {
+ cmd.WhereAnd<Where<SupplierProduct.supplierID,
 Equal<Current<ProductFilter.supplierID>>>>();
+ }
+ if (filter.CategoryName != null)
+ {
+ cmd.WhereAnd<Where<Product.categoryName,
 Equal<Current<ProductFilter.categoryName>>>>();
+ }
+ return cmd.Select();
+ }
 }
}

3. Build the project.

PXFilter always contains a single data record, which is created and inserted into an appropriate
PXCache object when the BLC is retrieving data. The PXFilterable attribute is used to allow the end
user to filter a PXGrid control's data (the records of a tab table or the details table of a webpage).

In the DAC code, the PXFilter BQL statement blocks all logic associated with database operations,
neither attempting to read from the database nor persisting changed records. You use PXFilter for
storing and displaying records that are used in business logic and available on the user interface (UI)
but that you do not need to preserve. PXFilter creates a unique record in a cache, and the values of

 | Programming Tasks | 67

the record attribute depend on the current filtering conditions.The PXFilterable attribute activates the
preservable (reusable) filter on the details table so the user can save the current filtering settings as a
template filter.

The PXFilterable attribute enables the user to work with the second filtering method (described in
the next section), while all the other lines of the BLC file code are needed to implement the first filtering
method.

The ProductInquiry BLC is not parameterized with the primary view type—that is, the BLC
class does not have the second parameter, as the following expression shows: public class
ProductInquiry : PXGraph<ProductInquiry>. The following table describes the programming
goals and the way the BLC code accomplishes them.

Programming
Goal

Description

Add a button and
define its name

Because the standard navigation buttons should not be displayed on the form
toolbar for this webpage, you should add your own buttons. To add the Cancel
button, which clears the filter, insert the following code line.

 public PXCancel<ProductFilter> Cancel;

Disable the
details table

The following code lines disable the update, insert, and delete functionality for
the details table. Because the application is stateless, these access rights must
be set each time data is needed for the user.

 this.ProductRecords.Cache.AllowInsert = false;
 this.ProductRecords.Cache.AllowDelete = false;
 this.ProductRecords.Cache.AllowUpdate = false;

Compose the
BQL statement

The BQL library supports dynamic statement composition. The following code
lines set up a new BQL command.

 PXSelectBase<Product> cmd = new PXSelectJoinOrderBy<Product,
 LeftJoin
 <SupplierProduct, On<Product.productID, Equal
 <SupplierProduct.productID>>>, OrderBy<
 Asc<Product.productName>>>(this);

When the user inserts the SupplierID or CategoryName value as a filter
parameter, the base statement is dynamically modified, based on one or both
values of the filter parameters. The following code lines enable the user to
receive the filtered records.

 if (filter.SupplierID != null)
 {
 cmd.WhereAnd<Where<SupplierProduct.supplierID,
 Equal<Current<ProductFilter.supplierID>>>>();
 }
 if (filter.CategoryName != null)
 {
 cmd.WhereAnd<Where<Product.categoryName,
 Equal<Current<ProductFilter.categoryName>>>>();
 }
 return cmd.Select();

 | Programming Tasks | 68

Creating an Inquiry Webpage

This section describes the creation of an inquiry webpage based on the DAC and BLC created in the
previous section. By using this webpage, an end user could use the first filtering method. Here are
the instructions you would perform (again, you shouldn't perform any of these actions at this time) to
create and refine an inquiry webpage to filter products:

1. In the Solution Explorer window, right-click Pages, select the folder of your solution, and
select Add New Item. Select the Visual C# node of the template tree, select the FormDetail
template, and enter the page name. Click Add to create the page.

2. Open the created page in design mode, refresh it, and specify the following control properties for
the ds control to link it to the created BLC:

• TypeName: RB.RapidByte.ProductInquiry

• PrimaryView: Filter

3. Specify the following properties for the PXFormView control (form):

• Datasource: ds (has been automatically set by the system)

• DataMember: Filter

4. For the PXGrid control (grid), specify the following properties:

• Datasource: ds (has been automatically set by the system)

• DataMember: ProductRecords

• SkinID: DetailsWithFilter

5. By using the Layout Editor, generateand adjust two filtering fields and add the fields onto the
master area of the page, and then generate, adjust, and add all the necessary columns onto the
details table.

6. Build the solution.

7. Start the application and open the Product Inquiry webpage.

8. By using the Category Name lookup field, select a category name and watch the filtering of
the information in the details table (see the screenshot below). You can also select the supplier
by using the Supplier ID lookup field; again note the filtering of the information in the details
table.

Figure: Analyzing the filtering effect

Filtering Data on the Webpage by Using Two Methods

This section demonstrates how users can filter data on the created webpage by using two methods:
specifying selection criteria in the top (master) area of the created page, and defining a reusable filter.
(Again, you shouldn't perform these actions.) To analyze both methods, you would proceed as follows:

 | Programming Tasks | 69

1. Open the Product Inquiry webpage, which shows a variety of information for each product record
that already exists in the database, such as the stock and supplier unit of measure (Stock
Unit and Supplier Unit), sales and supplier price (Unit Price and Supplier Price), conversion
factor, and minimum order quantity.

2. To use the first filtering method, in the Category Name field, select a category. This filters data
by the selected category.

3. In the Supplier ID field, select a supplier to see data filtered by the specified category and
supplier.

4. Click the Cancel (Esc) button in the form toolbar to again display all product records.

Because these filtering conditions (selection criteria) cannot be saved for later use, the first
filtering method can be considered an ad hoc method.

5. To begin using the second filtering method (establishing a reusable filter), click the Filter icon
to bring up the Filter settings dialog. In the condition table, enter two conditions joined by the
AND logical operator, as shown in the screenshot below. To save this condition as a named filter
to make the filter conditions reusable, click Save, and enter the name of the filter (for instance,
1). Select the Default check box if you want these filter conditions to be applied automatically
when you open this page. (Each time you save a filter as the default for a page, this check box is
cleared automatically for any filter that was previously set as the default for the page.)

Figure: Adding the filter conditions for the default filter

6. Click OK to exit the Filter Settings dialog. Notice that records are filtered based on the filter
you defined, as the screenshot below illustrates. The system displays only active products (that
is, products having the Active status) with unit price values that are greater than or equal to
$45.

Now you can use the filter any time you open this page. If you defined the filter as the default
filter for the page, the Filter action will be available (with the name of the default filter within
the unlabeled field, as the screenshot below shows). If you haven't defined a default filter, the
unlabeled field will be blank, and you can click the black arrow to open the list of filters available for
this form and select one to apply. To add another filter, click the Filter icon; in the Filter settings
dialog, click Clear, and add new condition lines. See also Using Reusable Filters.

Figure: Viewing the filtered products

7. Select and manually remove the filter name so that the unlabeled field becomes blank. All the
product records will again be displayed.

 | Programming Tasks | 70

8. Repeatedly click the Prev Category button and then the Next Category button. Watch how the
composition of product records changes in the details table based on the category.

You can use both filtering methods simultaneously. In this case, the filtering conditions are joined
with the AND logical operator. That is, you will see the product records that meet both sets of
filtering criteria.

Creating a BLC for Implementing Filtering of Processing Webpages

The third filtering method, which provides filtering of processing pages, works within a long-running
operation.

Analyze the RenewContracts BLC code fragment given below, which illustrates the third filtering
method. For the appropriate processing webpage, this code filters the contracts that are to be closed
because of expired contract dates. Further, these contracts will be processed to prepare bills for
customers and change the status of the contracts. The PXFilter<ExpiringContractFilter>
expression implements the filter based on expiring contracts that the user has selected for processing.

...................................
 public class RenewContracts : PXGraph < RenewContracts >
 {
 public PXCancel<ExpiringContractFilter> Cancel;
 public PXFilter<ExpiringContractFilter> Filter;
 public PXFilteredProcessing<ContractsList,
 ExpiringContractFilter> Items;
 public RenewContracts()
 {
 Items.SetSelected<ContractsList.selected>();
 }
 protected virtual IEnumerable items()
 {
 ExpiringContractFilter filter = Filter.Current;
 if (filter == null)
 {
 yield break;
 }
 bool found = false;
 foreach (ContractsList item in Items.Cache.Inserted)
 {
 found = true;
 yield return item;
 }
 if (found)
 yield break;
 PXSelectBase<Contract>
 select = new PXSelectJoin<Contract, InnerJoin<ContractBillingSchedule,
 On<Contract.contractID, Equal< ContractBillingSchedule.contractID>>,
 InnerJoin<Customer, On<Customer.bAccountID,
 Equal< Contract.customerID>>>>,
 Where<Contract.isTemplate, Equal<boolFalse>,
 And<Contract.baseType, Equal<Contract.ContractBaseType>,
 And<Contract.expireDate, LessEqual<Current<ExpiringContractFilter.
 endDate>>,And<Contract.type, NotEqual<ContractType.ContractUnlimited>,
 And<Contract.status, NotEqual<ContractStatus.
 ContractStatusCanceled>>>>>>>(this);
 if (! string.IsNullOrEmpty(filter.CustomerClassID))
 select.WhereAnd<Where<Customer.customerClassID, Equal<Current
 <ExpiringContractFilter.customerClassID>>>>();
 if (filter.TemplateID != null)
 {
 select.WhereAnd<Where<Contract.templateID, Equal<Current
 <ExpiringContractFilter.templateID>>>>();
 }
 /* Expiring Contracts has a hierarchical structure and we
 need to show only the latest expiring node hiding all
 of its original contracts */
 foreach (PXResult<Contract, ContractBillingSchedule, Customer>

 | Programming Tasks | 71

 resultSet in select.Select())
 {
 Contract contract = (Contract)resultSet;
 ContractBillingSchedule schedule =
 (ContractBillingSchedule)resultSet;
 Customer customer = (Customer)resultSet;
 bool skipItem = false;
 if (contract.Type == ContractType.Expiring)
 {
 Contract child =
 PXSelect<Contract, Where<Contract.originalContractID,
 Equal<Required< Contract.originalContractID>>>>.Select
 (this.contract.ContractID);
 skipItem = child != null;
 }
 if (!skipItem)
 {
 ContractsList result new ContractsList();
 result.ContractID = contract.ContractID;
 result.Description = contract.Description;
 result.Type = contract.Type;
 result.ExpireDate = contract.ExpireDate;
 result.CustomerID = contract.CustomerID;
 result.CustomerName = customer.AcctName;
 result.LastDate = shedule.LastDate;
 result.NextDate = schedule.NextDate;
 result.ExpireDate = contract.ExpireDate;
 result.TemplateID = contract.TemplateID;
 result.Status = contract.Status;
 yield return Items.Insert(result);
 }
 }
 Items.Cache.IsDirty = false;
 }
...................................

Creating Lookup Fields
A lookup field represents one of the user interface (UI) elements, but unlike a text field and check
box, and along with a combo box that has a drop-down list, a lookup field has a pop-up window.
This window, called lookup window, is used for quick search of the required item, and may consist
of arbitrary number of named columns. Any lookup window is populated with data records retrieved
from the database or by using a special method declared in the code (the PXCustomSelector derived
attribute class).

Before adding the lookup field onto a page, you have to define the structure and content of the lookup
window.

You can also modify the type of an existing text or numbering field to make it a lookup field. In this case,
you will have to delete and add again this field onto the page after making the appropriate modification in
the field's definition code.

You can create the lookup window content through the data access class (DAC) or business logic
controller (BLC) code by using the PXSelector or your own PXCustomSelector derived attribute.
Columns and their order in the lookup window is defined as typeof parameters in an addition to the
special Search BQL expression, by using which you can restrict displaying data.

The primary DAC in a Search BQL expression is also used in definition of columns' structure and their
order. See below the The Rules for Defining Lookup Columns' Structure and Their Order section.

.

If the created lookup field is not a key field, after adding it onto the form area of the page, you can set
theCommitChanges property for this field to True, if it's necessary to immediately apply selected value
and force appropriate business logic execution.

 | Programming Tasks | 72

Creating Lookup Columns by Using the PXSelector Attribute

By using this attribute, you can create a lookup field columns that are bound with a database,

So after choosing a field to change it to a selector field, you need to add the PXSelector attribute with
appropriate parameters for a DAC field. The first typical selector expression for the column list creation
is the following.

 [PXSelector(typeof(Search<Accounts.accountCD>),
 typeof(Accounts.accountCD),
 typeof(Accounts.companyName),
 typeof(Accounts.country),
 typeof(Accounts.contactName),
 typeof(Accounts.contactTitle)
)]

When you use the direct reference to the DAC class field, the first parameter of the PXSelector
attribute indicates the referred DAC, and the second one, after the period, indicates the DAC field. You
can refer to a DAC class type either directly or through a BQL statement. Only the first member of the
Search expression is employed as a DAC field. The first DAC in such an expression is named primary
DAC.

The simple Search BQL expression defines that all the records of the Accounts database table will be
displayed on the lookup window. By using the additional typeof() expressions, we define columns and
their order in the lookup window.

• If you are going to use a Search statement without any search restriction section, and
without any Join or OrderBy operation, you can replace that Search expression with the
typeof(MyDAC.MyField) expression. In this case, the common expression may be the following.
(Notice that the typeof(Accounts.accountCD) field is added twice: first, to define the
primary DAC name (that is name of the first DAC in the substituted Search expression as the
first parameter) and its field as the second parameter, and second, to allocate this column as the
leftmost. You could place the second typeof(Accounts.accountCD) field to the any needed
place to change the order of this field's column. Moreover, if you don't add the primary DAC's field in
the additional typeof() expression, this field anyway will be displayed, but its position will be the
rightmost. It doesn't matter, which notation you use—see the code fragment above or below.)

 [PXSelector(typeof(Accounts.accountCD),
 typeof(Accounts.accountCD),
 typeof(Accounts.companyName),
 typeof(Accounts.country),
 typeof(Accounts.contactName),
 typeof(Accounts.contactTitle))]

• If you use only the Search selection (or only the first typeof() parameter), all the fields that have
thePXUIVisibility.SelectorVisible value of the Visibility parameter for the PXUIField primary
DAC attribute are automatically included to the list of columns for the lookup window. You can
include as lookup columns only fields that are specified with thePXUIVisibility.SelectorVisible value of
the Visibility parameter in the primary DAC. To do so, use only the Search parameter or only
the first typeof() parameter. More details concerning the Visibility parameter you can see in
Using the Visibility Parameter. See also the The Rules for Defining Lookup Columns' Structure and
Their Order section.

Use a more complicated Search expression, when it's necessary to restrict values of a primary DAC
field, join values of a few DACs, or change sort order of this field (from ascended to descended). As the
result, you get the restricted and sorted list of items in the pop-up window which can include columns
from several DACs. The user can select for the webpage only the attribute value of the field in the
Search expression, as the webpage's field is based the primary DAC's field.

 | Programming Tasks | 73

This way implies mandatory adding the PXSelector attribute with the Search method as a parameter.
The Search method gives you possibility to display data records of a lookup window which are restricted
by conditions specified in a BQL expression.

For instance, you can see the code fragment of the Account DAC below. The condition of displaying
companies in the lookup window is that each company must have the Supplier company type. (We
assume that all companies—suppliers, customers, and other companies—are located in one database
table . They are compatible as they have the similar set of fields.)

................................
 #region SupplierCD
 public abstract class supplierCD : PX.Data.IBqlField
 {
 }
 [PXDBString(15, IsUnicode = true)]
 [PXUIField(DisplayName = "Supplier CD")]
 [PXSelector(typeof(Search<Account.accountCD, Where<Account.companyType,
 Equal<CompanyType.supplier>>>),
 {typeof(Account.accountCD),
 typeof(Account.companyName),
 typeof(Account.country),
 typeof(Account.contactName),
 typeof(Account.contactTitle)})]
 public virtual string SupplierCD { get; set; }
 #endregion
................................

When it's needed to join several DAC data records, the common selector expression, in which the nore
compicated BQL statement is used, may be written as follows. (The typeof() additional expression isn't
used in this example. but the optional DescriptionField parameter is used.)

 [PXSelector(typeof(Search2<VendorClass.vendorClassID,
 LeftJoin<EPEmployeeClass, On<EPEmployeeClass.vendorClassID,
 Equal<VendorClass.vendorClassID>>>>),
 DescriptionField = typeof(VendorClass.descr))]

As a result, the lookup field with two columns is created, VendorClassID and Description. If
the VendorClass primary DAC comprises fields with the PXUIVisibility.SelectorVisible Visibility
parameter value, all these fields will be displayed as columns of the created lookup field along with
the aforementioned two columns. Anyway, in this case the VendorClassID will be displayed as
the leftmost column, while the Description field—as the rightmost one. All the selector fields with
the PXUIVisibility.SelectorVisible Visibility value will be displayed as columns located between the
VendorClassID and the Description columns in order of their declaration.

You can create a selector whose columns comprise fied values of several DACs, and also define any
other column order. (See the following code fragment.)

 [PXSelector(typeof(Search2<VendorClass.vendorClassID,
 LeftJoin<EPEmployeeClass, On<EPEmployeeClass.vendorClassID,
 Equal<VendorClass.vendorClassID>>>>),
 typeof(EPEmployeeClass.paymentMethodID),
 typeof(VendorClass.vendorClassID),
 typeof(VendorClass.cashAcctID),
 typeof(EPEmployeeClass.salesAcctID),
 DescriptionField = typeof(VendorClass.descr))]

In this code, fields of two DACs, VendorClass and EPEmployeeClass, have been included as columns in
the selector. The key field VendorClass.vendorClassID will be displayed not as the leftmost, but as
the second column from the right of the selector pop-up window,

The DescriptionField parameter, which is not a mandatory parameter, indicates the hint field
associated with the lookup field; this hint provides a description of the selected item, if applicable,

 | Programming Tasks | 74

in the lookup window and within the field box. (The description field text is displayed both within the
webpage field and in a separate column of the lookup window.)

You can use the SubstituteKey parameter to replace the surrogate key with natural one to display
more informative key value, particularly, in the lookup window: instead of the surrogate key column,
the natural key column can be used. See Using Substitute Keys for details.

In the code fragment below, the example of usage the SubstituteKey parameter (along with the
DescriptionField parameter) is shown.

 [PXSelector(typeof(Search2<FABook.bookID, InnerJoin<FABookBalance,
 On<FABookBalance.bookID, Equal< FABook.bookID>>>,
 Where<FABookBalance.depreciate, Equal<boolTrue>>>),
 SubstituteKey = typeof(FABook.bookCode),
 DescriptionField = typeof(FABook.description))]

As a result, the lookup field with minimum two columns is created: BookID and Description.
If the FABook primary DAC comprises fields with the PXUIVisibility.SelectorVisible Visibility
parameter value, all these fields will be displayed as columns of the created lookup field along with the
aforementioned two columns.

Instead of the surrogate BookID key field, the BookCode key field will be displayed on the lookup
field.

Data in this lookup field is restricted with conditions that only FABook.bookID books are displayed,
which have the IDs in the FABookBalance book database table, and are to be depreciated, while
number of items equal the minimum number of the records containing such BookID values in the
FABookBalance or in the FABook database table, as we used the InnerJoin operator.

See the Adding Lookup Fields Onto a Form and Onto a Grid, where the consequent actions of adding
lookup fields onto the page are described.

The Rules for Defining Lookup Columns' Structure and Their Order

To properly construct required columns of a lookup field so that all the columns were placed in the
needed order and contain only the data necessary for users, you should stick to the following rules:

1. Any PXSelector attribute's expression consist of a Search statement (the mandatory part)
and additional typeof() part (the optional part). The mandatory part may be represented
by a Search BQL statement or by a typeof(MyDAC.MyField) expression, where
MyDAC.MyField—the primary DAC's name (before the dot) and the name of this DAC's field
(after the dot).

2. If you are going to use a Search statement without any search restriction section, and
without any Join and Order operation, you can replace that Search BQL statement with a
typeof(MyDAC.MyField) expression.

3. Don't use the additional typeof() part of the selector expression to automatically display
the SelectorVisible fields of the primary DAC as the lookup field's columns; otherwise, these
fields are not displayed. The order of the columns straightly depends on the order of the fields
declaration in the primary DAC. The primary DAC's field of the Search expression (or in the first
typeof), or its suvstitute key field, will be displayed in any case.

4. If you use the additional typeof() part of the selector expression, notice that all the columns
to be displayed must be listed in this part, including primary DAC's field (or the field in the first
typeof) . Exception: the primary DAC field (or its substitute field), if this field is not listed in
the additional typeof() part of the selector expression, will ever be displayed as a lookup field's
column.

5. Define the order of columns (from the left to the right) by the corresponding order of the
additional typeof() part of the selector expression.

 | Programming Tasks | 75

6. The primary DAC's field (or the field in the first typeof) will be displayed as the rightmost lookup
field's column, if it hasn't been listed in the additional typeof() of the selector expression.
Otherwise, this field will be displayed in order, in which it has been listed.

7. If the DescriptionField is defined, and this field is not listed among the SelectorVisible fields or
in the additional typeof() part of the selector expression, the appropriate column will be added
to the right side of the lookup window, but as the second column at the right, if the primary
DAC's column is to be added as a rightmost column.

8. If the SubstituteKey parameter is used. the natural key field replaces the surrogate key value
in every case.

Creating Lookup Columns by Using the PXCustomSelector Attribute

By using this attribute, you can also create a lookup field columns. Instead of a Search expression, the
GetRecords() method is used,

After generating the required DAC, you can add the PXCustomSelector attribute with appropriate
parameters to the DAC field code.

The first example illustrates development and use of the PXCustomSelector attribute of the lookup field
with an unbound lookup column. (See the code fragments below.)

...................
 [AttributeUsage(AttributeTargets.Property, AllowMultiple = false)]
 public sealed class DaylightSelectorAttribute : PXCustomSelectorAttribute
 {
 public DaylightSelectorAttribute()
 : base(typeof(Year.nbr), typeof(Year.nbr))
 {
 }
 public IEnumerable GetRecords()
 {
 var currentYear = DateTime.Today.Year;
 const int range = 30;
 var start = currentYear - range;
 var end = currentYear + range;
 for (int i = start; i < end; i++)
 yield return new Year { Nbr = i };
 }
 }
...................

The DaylightSelector attribute defined as a class that inherits from the PXCustomSelector attribute,
has been created to provide a lookup field's column with the range of years. This range is defined by
using the for cycle, range constant, and value of the Year variable. The DaylightSelector class
derived from the PXCustomSelectorAttribute was created to provide a lookup field populated with a
list of years that are less or more by 30 than the current one.

The next code fragment illustrates attaching the DaylightSelector attribute to the Year field of the
DaylightShiftFilter DAC.

...................
 [Serializable]
 [PXCacheName(Messages.CalendarYear)]
 public partial class DaylightShiftFilter : IBqlTable
 {
 #region Year
 public abstract class year : IBqlField
 {
 }
 [PXInt]
 [PXUIField(DisplayName = "Year")]
 [CurrentYearByDefault]
 [DaylightSelector]
 public virtual int? Year { get; set; }

 | Programming Tasks | 76

 #endregion}
...................

The user will be able to select a year, that is less or more by 30 than the current one. In accordance
with this code example, the displaying year range will depend on the current client operational system
year.

The second example illustrates development and use of the PXCustomSelector attribute of the lookup
field with bound lookup columns. (See the code fragments below.)

...................
 public class CustomerPriceClassAttribute : PXCustomSelectorAttribute
 {
 public CustomerPriceClassAttribute()
 : base(typeof(AR.ARPriceClass.priceClassID))
 {
 this.DescriptionField = typeof(AR.ARPriceClass.description);
 }
 protected virtual IEnumerable GetRecords()
 {
 AR.ARPriceClass epc = new PX.Objects.AR.ARPriceClass();
 epc.PriceClassID = AR.ARPriceClass.EmptyPriceClass;
 epc.Description = Messages.BasePriceClassDescription;
 yield return epc;
 foreach (AR.ARPriceClass pc in PXSelect<AR.ARPriceClass>.
 Select(this._Graph))
 {
 yield return pc;
 }
 }
 }
...................

The CustomerPriceClass attribute, which is also defined as a class that inherits from the
PXCustomSelector attribute, has been created to provide a lookup field's columns with the price class
and their descriptions, obtained from the ARPriceClass DAC by using the foreach cycle.

The next code fragment illustrates implementing the CustomerPriceClass attribute by adding it to the
SalesPriceFilter DAC code for the CustPriceClassID selector field.

...................
 [Serializable]
 public partial class SalesPriceFilter : IBqlTable{

 #region CustPriceClassID
 public abstract class custPriceClassID : PX.Data.IBqlField
 {
 }
 [PXDBString(10, InputMask = ">aaaaaaaaaa")]
 [PXDefault(AR.ARPriceClass.EmptyPriceClass)]
 [PXUIField(DisplayName = "Customer Price Class",
 Visibility = PXUIVisibility.SelectorVisible)]
 [CustomerPriceClass]
 public virtual string CustPriceClassID { get; set; }
 #endregion
...................

While in the first example the explicitly defined columns are employed, in the second example the
SelectorVisible columns will be displayed in the pop-up window.

The user will be able to select the required customer price class from the lookup field after you add
this selector field onto the page and compile the project. In accordance with this code example, two
columns will be displayed in the selector field: PriceClassID and Description, as they have the
Visibility property set to SelectorVisible.

 | Programming Tasks | 77

Adding Lookup Fields Onto a Form and Onto a Grid
A lookup (or selector) field is a standard user interface (UI) element that is used for quick search of
the required item value through a webpage field or details table column element. Searched items are
displayed on the popup window that includes one or more columns with data.

Before adding lookup fields, you should create them by modifying the code of the appropriate data
access class (DAC) or business logic container (BLC). Creating process of a lookup field and typical
selector expression structures are described in details in Creating Lookup Fields.

Adding a Lookup Field Onto a Form

Suppose that you have created the lookup field's code for the Employees webpage, which already has
UI elements, including the EmployeeCD simple text field that is to be transformed to a selector field.

In this case, your typical actions may be the following:

1. Open the Employees page, right-click any area of the page, and select Refresh.

If this page was already opened, the refresh procedure lets you retrieve the changes you have
made during the first adding UI elements onto the page.

2. Point to the form control, open the smart tag associated with it, and select Edit Content
Layout.

3. On the left area of the Layout Editor that appears, delete the EmployeeCD field by clicking
Remove active item.

First you should do before adding a lookup (selector) field—remove the same field that existed
before as a text or numeric field.

4. On the right area of the Layout Editor, select the Fields tab, and you can see the EmployeeCD
field, defined as a Selector control (that is, as a lookup field).

5. Select the check box for the EmployeeCD field and click Generate.

6. On the left area of the Layout Editor, move up by one position the restored EmployeeCD field to
place it in its original position.

7. On the Properties tab, open the drop-down list for the DisplayMode property to see the
options, but keep the Hint default value, as shown in the screenshot below.

The DisplayMode property defines the display format of the lookup field value on the webpage
and within the lookup window during run time. The property has the following settings: Value: If
you use this mode, you can see in the webpage field only the employee CD (the first 15 letters of
the employee's last name in this case), and in the lookup window you see two columns—one with
the employee CD, and for the other the DescriptionField property is used. Text: If you use this
mode, in the webpage field, you see only the description field's name, and in the lookup window,
you see two columns: one with the employee CD, and the other with the employee's description.
This mode is used when the field value is calculated, such as a numbered key value (defined as an
Identity field) or, for instance, the full name of an employee (as the description field). To allow the
user to add a calculated value for a non-nullable field, you must also set the TextMode property to
Editable. Hint: If you use this mode, on the webpage field box and in the lookup window, you can
see two values: the employee CD and the employee's full name.

 | Programming Tasks | 78

Figure: Adjusting properties of the lookup field

8. For each lookup field, set the value of CommitChanges property to True.

9. Optional: Enter the optimal Width property value.

10. Click OK to close the Layout Editor window.

11. Select the source mode to see the .aspx code; notice that the EmployeeCD lookup field's tag
has been created—PXSelector— which contains entered property values. (See the screenshot
below.)

 | Programming Tasks | 79

Figure: Analyzing the PXSelector tag's content

12. Start the application with the Employees webpage, open (or refresh the page if it's already
open), click Insert, and add another employee record. Click Save to save the entered record.
Click navigation buttons to select existing records and watch their attribute values. Notice that in
the Hint display mode (as in the Text mode), in the EmployeeCD field box, the employee CD is
displayed, followed by a hyphen and the employee's full name (the description field), as shown
in the screenshot below.

In the describing example, the system automatically capitalizes all letters entered in the
EmployeeCD field and trims all letters past the 15th letter on the right. Because blanks on the left
are never trimmed, we recommend that you not add blanks left of the EmployeeCD value.

13. Click the Magnifier icon of the EmployeeCD field. You see the drop-down list with the CDs and
full names of employees, as the screenshot below illustrates.

Figure: Viewing the structure of the EmployeeCD lookup field

 | Programming Tasks | 80

Adding a Lookup Field Onto a Grid

Calculations
In this chapter, you will get acquainted with the various types of calculations, including calculations by
using formulas, autonumbering, and calculation by using accumulator attributes. Topics of this chapter
also contain descriptions of how to handle concurrent and frequent field updates.

Content
This chapter covers the following topics:

• Calculating Values of UI Elements

Calculating Values of UI Elements
To implement the calculation of values, you use the following attributes:

• PXDBCalced, which creates an equation in a final T-SQL statement, is used for unbound data
access class (DAC) fields.

• PXDBScalar, which declares a sub-query in a final T-SQL statement, also is used for unbound DAC
fields.

• PXFormula performs various types of calculations, including totals, and is used for both database-
bound and unbound DAC fields.

• PXUnboundFormula is used for unbound DAC fields. It performs aggregate calculations depending
on one or more conditions and assigns results to one or more summary fields.

In many cases, the FieldSelecting event handler is raised when a DAC field value is being prepared to be
displayed on the UI. This event should be used to calculate database-unbound DAC field values whose
calculation methods can not be specified declaratively. For detailed information, see FieldSelecting Event.

Calculating With PXDBCalced

By using the PXDBCalced attribute, you can perform calculations with four standard arithmetical
operators: addition (Add), subtraction (Sub), multiplication (Mult), and division (Div). The attribute also
provides the Minus operator, which you can use to change a negative decimal result to a positive one
and a positive result to a negative one. You can see the list of all operands in PXDBCalced Attribute.

For example, see the following DAC code fragment, where the Discrepancy field is used to define
the quantity of products to be reordered. The second parameter is used to define the data type of the
result.

 [PXDBCalced(typeof(Minus<Sub<Sub<ProductReorder.unitsInStock,
 ProductReorder.unitsOnOrder>, ProductReorder.reorderLevel>>),
 typeof(Decimal))]

Calculating With PXDBScalar

The PXDBScalar attribute declares a sub-query, which you can use to obtain the result of a BQL
statement.

By using the following DAC code fragment, you can obtain the quantity of the specified product in stock.

[PXDBScalar(typeof(Search<StockBalance.unitsInStock,
 Where<StockBalance.productID, Equal<Products.productID>>>))]

 | Programming Tasks | 81

By using the DAC code fragment that follows, you can get an array of the current product's Supplier
Price values of different suppliers, sort the values from the lowest to the highest price, and return the
value with the lowest price.

...
 #region SupplierPrice
 public abstract class supplierPrice : PX.Data.IBqlField
 {
 }
 [PXDecimal(2)]
 [PXUIField(DisplayName = "Supplier Price")]
 [PXDBScalar(typeof(Search<SupplierProduct.supplierPrice,
 Where<SupplierProduct.productID, Equal<ProductReorder.productID>,
 And<SupplierProduct.supplierPrice, Greater<decimal_0>>>,
 OrderBy<Asc<SupplierProduct.supplierPrice>>>))]
 [PXDBDefault(typeof(Search<SupplierProduct.supplierPrice,
 Where<SupplierProduct.productID, Equal<Current
 <ProductReorder.productID>>, And<SupplierProduct.supplierCD,
 Equal<Current<ProductReorder.supplierCD>>>>>))]
 public virtual decimal? SupplierPrice { get; set; }
 #endregion
...

Calculating Column and Total Values With PXFormula

This section illustrates the PXFormula calculation attribute by using the Sales Orders webpage, which is
based on the FormDetails template.

PXFormula is used to declare various kinds of formulas for calculation of DAC field values, such as
discounts, extended prices, line totals, and other values you might need to calculate. The PXFormula
attribute provides calculations by using four standard arithmetical operators: addition (Add),
subtraction (Sub), multiplication (Mult), and division (Div). A few aggregate methods can be used by
the PXFormula attribute as a parameter: SumCalc, CountCalc, MinCalc, and MaxCalc.

Three typical code examples with different structures are given below. The second and third examples
do not permit the user to add any value to the formula, since all the values are to be calculated. The
first example permits the user to enter values to pass them for calculations of aggregates.

The PXParent attribute, illustrated below, provides a master-details relationship between the upper and
lower areas of the webpage. The total field values in the master area change as lines in the details table are
inserted or updated, based on values in the columns of the details table.

[PXParent (typeof(Select<Order,Where<Order.orderID,
 Equal<Current<OrderDetails.orderID>>>>))]

It doesn't matter on which field the PXParent attribute was declared. The first PXParent attribute found
will be used with the DAC defined for this aggregate. This attribute works only with the first and second
code examples showing the usage of the PXFormula attribute.

For the first example, shown below this paragraph, a simple expression with one parameter is
illustrated. It calculates only the aggregate value in the TotalQty field by using the PXFormula
attribute; the total quantity of the current receipt is defined each time the user saves inserted or
updated data.

[PXFormula(null, typeof(SumCalc<Documents.totalQty>))].

The second example (shown below this paragraph) shows a more complicated expression with two
parameters. This formula, declared for the Extended Price column of the details table, updates the
Lines Total value in the form area of the webpage with the sum of the Extended Price column rows,
whose DAC field (ExPrice) is used as a parameter of the PXParent attribute. (See the screenshot and
the note below.) The formula also updates for each row the Extended Price value, which is calculated
by multiplying the following numbers: the value of the Unit Price column, the value of the Quantity

 | Programming Tasks | 82

column, and the result when the Discount column value (the percent divided by 100) is subtracted
from 1.

[PXFormula(typeof(Mult<Mult<OrderDetail.unitPrice, OrderDetail.quantity>,
 Sub<DecimalOne, Div<OrderDetail.discount, DecimalHundred>>>),
 typeof(SumCalc<Order.linesTotal>))]

Thus, if the unit price was $55.00, the quantity was 42.00, and the specified discount percent was
10.00, the extended price would be calculated as follows: $55.00 * 42.00 * (1 – 10.00/100) =
$2079.00, as the screenshot below illustrates.

Figure: Calculation of sales order totals

In the code fragment shown in the second example, note the following:

• The DecimalOne and DecimalHundred classes represent the constants that equal 1 and 100,
respectively. These constants, declared earlier, are used in the PXFormula expression to calculate
the coefficient by which product costs are multiplied. Users enter discount values as percentages; the
entered discount percent is then divided by 100.

For the third example (shown below this paragraph), the simplest expression with one parameter is
illustrated, with the static formula, declared for the Order Total field. This formula updates the order
total amount with the sum of Lines Total and Freight. (See also the screenshot above.)

 [PXFormula(typeof(Add<Order.linesTotal, Order.freight>))]

Calculating Aggregate Values With PXUnboundFormula

The PXUnboundFormula attribute, which is mostly used with the Switch operator, lets you obtain
aggregate results and assign them to the respective summary webpage fields. As a first parameter
of this attribute, the BQL expression (usually with the Switch operator) is used, while in the
second parameter, the SumCalc aggregate method is used along with the summary field name. The
PXUnboundFormula attribute may be added to any DAC field code, since the destination field does not
depend on the field chosen for this attribute. The destination summary field is specified in the second
parameter of the attribute, which is added after the SumCalc aggregate method.

 | Programming Tasks | 83

You can see a DAC code fragment that uses the PXUnboundFormula attribute below. Note that several
PXUnboundFormula attributes have been added to the Taxable Amount field definition. Also,
notice that the Taxable Amount field value does not depend on the results of the calculations of the
PXUnboundFormula attributes. These results will be entered to the summary fields that are defined in
the second parameter of each attribute.

...
#region CuryTaxableAmt
public new abstract class curyTaxableAmt : PX.Data.IBqlField
{
}
[PXDBCurrency(typeof(APTaxTran.curyInfoID), typeof(APTaxTran.taxableAmt))]
[PXDefault(TypeCode.Decimal, "0.0")]
[PXUIField(DisplayName = "Taxable Amount", Visibility = PXUIVisibility.Visible)]
[PXUnboundFormula(typeof(Switch<Case<WhereExempt<APTaxTran.taxID>,
 APTaxTran.curyTaxableAmt>, decimal0>),
 typeof(SumCalc<APInvoice.curyVatExemptTotal>))]
[PXUnboundFormula(typeof(Switch<Case<WhereTaxable<APTaxTran.taxID>,
 APTaxTran.curyTaxableAmt>, decimal0>),
 typeof(SumCalc<APInvoice.curyVatTaxableTotal>))]
[PXUnboundFormula(typeof(Switch<Case<WhereExempt<APTaxTran.taxID>,
 APTaxTran.curyTaxableAmt>, decimal0>),
 typeof(SumCalc<AP.Standalone.APQuickCheck.curyVatExemptTotal>))]
[PXUnboundFormula(typeof(Switch<Case<WhereTaxable<APTaxTran.taxID>,
APTaxTran.curyTaxableAmt>, decimal0>), typeof(SumCalc<AP.Standalone.
 APQuickCheck.curyVatTaxableTotal>))]
public override decimal? CuryTaxableAmt { get; set }
}
#endregion
...

Data Input
In this chapter, you will get acquainted with the specific singularities of data input support and various
types of data manipulation by using Acumatica Framework tools and facilities. Topics of this chapter
also contain descriptions of how to import data from external files, validate field values, add input
masks.

Content
This chapter covers the following topics:

• Managing Visibility of DAC Fields and UI Elements

Managing Visibility of DAC Fields and UI Elements
You can manage visibility of a DAC field in the appropriate section of the Layout Editor window, and a
user interface (UI) element—such as a field, combo box, check box—on a webpage.

Using the Visibility Parameter

In this section is described the managing of a data access class (DAC) field visibility in the appropriate
segment of the Layout Editor window (on the Fields tab).

Layout Editor is used to adjust each UI element properties and append them onto a page while working
in design mode. Each visible DAC field must have its PXUIField—DAC field attribute. This attribute
may have parameters, one of which predefines visibility of a DAC field in one of segments of the Layout
Editor window: Visible, Invisible, or Selector. The capability of splitting UI elements into different
segments facilitates creation of a webpage and enables the developer to quickly analyze correctness of
the DAC code (for instance, not to forget to define a DAC field in the DAC code as a selector (lookup)
field).

 | Programming Tasks | 84

See below the Country DAC code fragment for an example of usage parameters of the PXUIField
attribute.

...........................
 public abstract class country : PX.Data.IBqlField
 {
 }
 [PXDBString(2, IsKey = true, IsUnicode = true, IsFixed = true)]
 [PXDefault()]
 [PXUIField(DisplayName = "Country", Visibility = PXUIVisibility.SelectorVisible)]
 public virtual string Country { get; set; }
................................

The PXUIField attribute denotes the appearance of the DAC field within appropriate segment of the
Layout Editor. The DisplayName parameter specifies the name of the UI element on the interface. The
Visibility parameter specifies the visibility scope of the UI element and has four possible values:

• PXUIVisibility.Visible: Indicates that the DAC field is to be included in the Visible segment of the
Layout Editor window. If the PXUIField attribute is added for a field without the Visibility
parameter, this DAC field becomes visible by default for Layout Editor.

• PXUIVisibility.Invisible: It means that the DAC field is to be included in the Invisible segment
of the Layout Editor window. If the PXUIField attribute is not added for a field, this field also is
included in the Invisible segment of Layout Editor.

• PXUIVisibility.SelectorVisible: Indicates that the DAC field is to be included in the Selector
segment of the Layout Editor window to use it for generation the selector (lookup) field or column.
You can use such fields as columns of a lookup field when this field has no explicit set of columns
specified.

• PXUIVisibility.Dynamic: It means that a DAC field bound to a grid control is not visible in any
section of the Layout Editor window. You can use such DAC fields to automatically display them in
a details table or tab table as columns of a webpage, if you add no columns onto the page and set
the AutoGenerateColumns property value to AppendDynamic.

Using the Visible Parameter
This is a static way of the UI element visibility management. The following code fragment of a business
logic container (BLC) code illustrates the use of this parameter.

...................................
 #region DAC Overrides
 [PXDBString(1, IsKey = true, IsUnicode = true, IsFixed = true)]
 [PXUIField(DisplayName = "Company Type", Visible = false)]
 [PXDefault(CompanyType.Supplier)]
 public virtual void Accounts_CompanyType_CacheAttached(PXCache Sender){}

...................................

You made the Company Type field invisible by adding Visible = false in the DAC Overrides
region of a BLC code.

The next code fragment of a DAC code illustrates making invisible of a special system grid column,
LastLineNumber, whose value is used by the appropriate BLC logic, but is not needed for the user's
work.

...................................
 #region LastLineNbr
 public abstract class lastLineNbr : PX.Data.IBqlField
 {
 }
 [PXDBInt()]
 [PXUIField(Visible = false)]
 public virtual int? LastLineNbr { get; set; }
 #endregion

 | Programming Tasks | 85

 #region NoteID
 public abstract class noteID : PX.Data.IBqlField

The Visible parameter has an alternative—Enabled parameter, which is used when instead of making
a UI element invisible, is necessary to make it visible, but non-editable.

Using the SetVisible Method
The PXUIField attribute class enables dynamic modification of PXUIField attribute parameters. Here,
the SetVisible method is used by the event handler to override the Visible parameter when data is
selected from the DAC.

...................................
 public class EmployeeList : EmployeeMaint
 {
 public virtual void Employees_RowSelected(PXCache cache,
 PXRowSelectedEventArgs e)
 {
 if (e.Row != null)
 PXUIFieldAttribute.SetVisible<Employees.employeeCD>(cache, e.Row, false);
 }
 }
...................................

The PXUIFieldAttribute.SetVisible method sets the Visible parameter of the appropriate
PXUIField attribute to false at run time. If you don't supply a field name, this method affects all fields
of the DAC.

The PXUIFieldAttribute.SetVisible method overrides the default value of the Visible parameter
specified in the DAC. Therefore, if you apply this method to the entire DAC and must make invisible some
fields under certain conditions, you should explicitly make invisible these fields.

The next code fragment of the APInvoiceEntry BLC code illustrates making invisible of a form UI
elements and grid columns, CuryOrigDocAmt and Box1099, appropriately in the invoice (if the
RequireControlTotal property in the AP setup is set to False or the document has not been released),
and in the Transactions grid (if the Vendor1099 value is False).

...................................
protected virtual void APInvoice_RowSelected
(PXCache cache, RowSelectedEventArgs e);
{
 APInvoice doc = e.row as APInvoice;
...................................
PXUIFieldAttribute.SetVisible<APInvoice.curyOrigDocAmt>(cache,
doc, (bool)APSetUp.Current.RequireControlTotal || docreleased);
PXUIFieldAttribute.SetVisible<APTran.box1099>
(Transactions.Cache, null, Vendor1099);
...................................

Only the RowSelected handler on a PrimaryView DAC's BLC code or a BLC constructor are places where is
possibly to modify visibility through the code.

Validating UI Element Values
In this topic, the process of implementing a simple validation logic for user interface (UI) elements
is described. Validation logic is necessary to prevent entering wrong or inadmissible values to
user interface (UI) elements, as well as values that do not match the conditions that are specified
beforehand. As a rule, validation logic is implemented by using various kinds of event handlers.

Implementing a Simple Validation Logic
Suppose that you must restrict UI element values of your Employees webpage, whose General Info
tab includes data sections of more than one data access class (DAC). The Hire Date UI element (the

 | Programming Tasks | 86

date type field) had been included in the EPEmployee DAC, while the Date Of Birth UI element (also
the date type field) had been included in the CRContact DAC (see the screenshot below). The Date
Of Birth field must have not null or empty (blank) values; values of the Hire Date must match the
condition: the age of the employee cannot be less than 16 years.

It doesn't matter, in a common or in different DACs are allocated UI elements that are to be bound by a
condition; the illustrated situation with different DACs is a bit more complicated, and nothing more.

Figure: The UI elements to be validated

(You shouldn't perform these instructions, just analyze the code lines.) To implement this validation
logic, proceed as follows.

1. Add to the EPEmployeeEvents region of the EP.EmployeeMaint business logic container (BLC)
code the following code lines.

 #region EPEmployee Events
...
 protected override void EPEmployee_RowPersisting(PXCache sender,
 PXRowPersistingEventArgs e)
 {
 PXDefaultAttribute.SetPersistingCheck<Contact.dateOfBirth>
 (sender, e.Row, PXPersistingCheck.NullOrBlank);
 DateTime birth = (DateTime)this.Contact.Current.DateOfBirth;
 EPEmployee row = (EPEmployee)e.Row;
 DateTime alloweddate = new DateTime(birth.Year + 16,
 birth.Month, birth.Day);
 DateTime hire = (DateTime)row.HireDate;
 if (hire != null &&((DateTime)hire) < alloweddate)

 | Programming Tasks | 87

 throw new PXSetPropertyException("The employee's hire date must be " +
 "at least 16 years after his or her
 birthdate.");
 }
 #endregion
...

Within the RowPersisting event code, two methods of a field validation are used: The
PXDefaultAttribute.SetPersistingCheck method, which is used to remind the user to enter the
appropriate date of birth. (You can tweak the validation process by using the PXPersistingCheck
parameter values (Null, NullOrBlank, or Nothing.) The following code lines, which (along with
the PXSetPropertyException method) checks the condition to warn the user if the new employee
is younger than 16. These validation methods prevent a record from being saved if at least
one of the aforementioned conditions is true. If the date of birth is null or empty, the common
error message is displayed (such as Nullable object must have a value), but you can use the
PXSetPropertyException method to declare your own detailed error message by using the second
validation version.

2. Set the AutoCallBack properties for the Hire Date field as follows:

• Enabled: True (keep default)

• Target : form

• Command: Save

3. Build the solution.

Testing the Results
Now you can test the results of the implemented validation logic to ensure that the logic works properly.

(You shouldn't perform these instructions, just imagine the testing steps.) Perform the following
actions:

1. Return to the Employees form and try to add a new employee record without entering the Date
Of Birth value. Enter values for all the other required fields (allocated by the asterisk at the left
of the name).

2. Click Save: The error message appears that the not nullable object must have a value, and the
record is not saved.

As was mentioned in the hint in the previous section, to define a more exact error message, you
can add on your own a few more customization code lines to the EP.EmployeeMaint BLC code lines
that contain the appropriate condition check and error message text.

3. Enter the date of birth so that the difference between it and the hire date is less than 16 years,
and the second error message appears, as shown in the screenshot below. This is the message
text added by you to the event code as a parameter of the PXSetPropertyException method.

 | Programming Tasks | 88

Figure: Entering a record with the not permitted Hire Date value

4. Make the hire date at least 16 years later than the date of birth, and click Save. The new record
has been saved.

Further in your practice, you will possibly have to implement more complicated validation logic: For
instance, logic which provides blocking of the user's data entering (in the multi-user mode) when one or
more dynamically changed values of a group of fields can disturb the defined threshold value (such as
the minimum number of units in stock). As a rule, you will use the one or more kinds of event handlers
to successfully resolve required problems.

Using Input Mask and Display Mask
This topic describes how to use the InputMask parameter of the PXDBString attribute to restrict
entering of text data for specified user interface (UI) elements of webpages. Value restrictions of UI
elements can be of two types: content and structure.

In the first section is given the definition of the InputMask parameter and described the list of the
possible values of this parameter and their usage, while in the second section is given the simple
example of adding and using the InputMask parameter in the data access class (DAC) code.

You can use also the DisplayMask parameter: While the InputMask parameter enables the programmer
to get or set the value specifying how users will enter data, the DisplayMask parameter enables the
programmer to specifying how the UI element data will be displayed. The display mask has the same
settings.

 | Programming Tasks | 89

The InputMask Parameter and Its Possible Values

The InputMask parameter is a pattern that indicates the allowed characters in a string value. As a
result, the application does not allow the user to enter other characters or more or less number of
characters than had been defined for the UI element.

The default value of the InputMask parameter for key fields: >AAAAAA.

The mask format follows C# conventions, including the following:

• C, &: Any symbol

• A, a: Any letter or digit

• L, ?: Letter only

• #, 0, 9: Digit only

• >: All of the following characters will be in uppercase

• <: All of the following characters will be in lowercase

Example of use:

InputMask = ">LLLLL"
InputMask = ">aaaaaaaaaa"
InputMask = ">CC.00.00.00"

Static methods to set the parameter at run time:

public static void SetInputMask(PXCache cache, Object data, String name, String
 mask)
public static void SetInputMask<Field>(PXCache cache, Object data, String mask)
public static void SetInputMask(PXCache cache, String name, String mask)
public static void SetInputMask<Field>(PXCache cache, String mask)

Adding and Using an InputMask Parameter
Instructions below represent a simple example of creating and using the InputMask parameter. You
shouldn't perform any actions, just analyze them.

To add a mask for validating the home phone number, do the following:

1. Modify the HomePhone member of the Employee data access class (DAC), as shown below.
(Plus at the left of a code line means that this code line must be added while minus denotes
deleting a code line that is to be replaced with the next line marked by the sign of plus.)

 ...
 public class Employee : PX.Data.IBqlTable
 {
 ...
 #region HomePhone
 public abstract class homePhone : PX.Data.IBqlField
 {
 }
- [PXDBString(24, IsUnicode = true)]
+ [PXDBString(24, IsUnicode = true, InputMask = "(###) ###-####")]
 [PXUIField(DisplayName = "Home Phone")]
 public virtual string HomePhone { get; set; }
 #endregion
 ...
 }
 ...

 | Programming Tasks | 90

2. Build the project.

3. Open the Employees page, right-click any area of the page, and select Refresh.

If this page was already opened, you must refresh it to retrieve the changes you have made.

4. Point to the form control, open the smart tag associated with it, and select Edit Content
Layout.

5. In the left area of the Layout Editor window that appears, expand the second column node and
delete the HomePhone field by clicking the Remove active item.

6. In the right window of the Layout Editor, click the Fields tab, and notice the HomePhone field,
which is defined now as a MaskEdit control.

7. Select the check box that precedes the HomePhone field, and click Generate.

8. In the left window of the Layout Editor, move up by one position the restored HomePhone field
to place it in its original position.

Formatting characters are not stored in the database or applied on the DAC level. For example, if
a phone number is displayed in the UI as (999) 999-9999, the number is stored in the database as
9999999999. As a result, some existing data may be displayed incorrectly if, for instance, imported
data contained invalid characters or a different number of digits. In such cases, you need to restore
the appropriate value of this phone number manually or change the incorrect input mask.

9. Click OK to close the Layout Editor window, and save the page.

10. Start the application with the Employees webpage, open the webpage (or perform refresh
procedure, if it had been opened before), and explore the functionality of the masked field:
Insert a new employee record and add a phone number to ensure that you cannot add
more than ten digits to this field, and that the parentheses and hyphen are displayed in the
appropriate positions, in compliance with the mask definitions. (See the screenshot below.)

Figure: Exploring the HomePhone field with the InputMask value restrictions

You can specify input masks only for masked text edit fields. However, a simple text edit field has
the ValidateExp property, for which you can specify a regular expression that will be executed by
JavaScript when fields in a browser are validated.

Interaction With the Server
In this chapter, you will get acquainted with the singularity of interaction a webpage with the Server.

Content
This chapter covers the following topics:

• Confifuring Webpage UI Elements and Behavior of BLCs

 | Programming Tasks | 91

Confifuring Webpage UI Elements and Behavior of BLCs
User interface (UI) elements have the CommitChanges property for specifying dynamic webpage
behavior. This property indicates for the webpage when the client data needs to be sent to the server
for processing. The first section of this topic is devoted to the description of the CommitChanges
property while in the second section is illustrated the use of the AutoCallback group of properties,
which provides navigation buttons that can be employed for moving from one webpage to another one.

The CommitChanges Property

Navigation between records on the webpage is based on the key fields concept. When the user selects
key field on the webpage (for instance, to navigate to another product ID), the browser sends the keys
to the server to retrieve a new record based on the selected key values.

The some UI element values may need to be sent to the server for processing (for instance, to respecify
possible values of the webpage's UI elements that depend on the added or updated field value). To
activate the system capability to provide interactive webpage behavior during data entry or update,
the developer should set the CommitChanges property to True for appropriate UI elements. These UI
elements can be placed on the form control or in the grid control as table columns.

Depending on the implemented logic, changed values of UI elements (with the CommitChanges property
that is set to True) can be send to the server at the moment of modifying their values or at the moment
of losing focus. UI element values are sent and refreshed only for UI elements with the CommitChanges
property set to True,

During execution of the CommitChanges property, data the user inserted on the web page is posted to
the server and submitted to the BLC to trigger the execution of the associated business logic.

Using AutoCallBack Properties to Add a Navigation Button on a Grid Toolbar

For an example, adding a navigation button on the grid toolbar of the List of Employees inquiry
webpage is illustrated. Users may click this button to open the Employees maintenance webpage, if
they want detailed information about the current employee.

Because this example illustrates only the design part of implementation of a navigation button, without
logic changes in the business logic controller (BLC) code, to describe the use of the AutoCallBack
properties, you shouldn't perform the instructions below.

To add the Employee Details navigation button, the developer must fulfill the following actions:

1. Open the Employees page in design mode and select the ds control. Select the
CallbackCommands property and click the button at the right. On the Callback Commands
window that appears, select the openEmployee command (that was defined in the appropriate
BLC code) and change the DependOnGrid property value to grid. Click OK.

 | Programming Tasks | 92

Figure: Setting the DependOnGrid property

The DependOnGrid property specifies the grid control the action depends on. When the action
button is clicked, the data source posts the keys from the active grid control row to synchronize the
grid control column values with the current DAC reference before the action is executed.

2. Add the custom button on the grid toolbar, as the screenshot below illustrates. Select the
grid control and select the ActionBar > CustomItems property. On the PXToolBarItem
Collection Editor window that appears, add a new member by clicking Add in the lower left
area of the window. Modify the properties of the new button as follows:

• Text: Details

• AutoCallBackCommand: openEmployee

 | Programming Tasks | 93

Figure: Adding a custom button

3. After saving the page and building the solution; you can start application, open the List of
Employees webpage, select any row with an employee, and click the Employee Details button.
The Employees webpage opens, with more detailed information about the selected employee
(see the screenshot below).

 | Programming Tasks | 94

Figure: Using the Employee Details button

Creating an Acumatica ERP Add-on Project
This article explains how to create a new project in Microsoft Visual Studio. You create the project
before you start to develop an add-on application integrated with Acumatica ERP.

Upload an Acumatica ERP Website

Before you begin, make sure that Acumatica Framework has been installed on your computer. Then
upload an Acumatica ERP website into Microsoft Visual Studio Solution by performing the following
actions:

1. Start Microsoft Visual Studio. On the Files menu, select Open and then Web Site, as shown in
the screenshot below.

 | Programming Tasks | 95

Figure: Starting to import a website

2. On the Open Web Site dialog box that appears, select the folder where the original Acumatica
ERP application instance had been installed, and click Open. The Acumatica ERP site structure is
imported into Microsoft Visual Studio as a new solution, as shown in the screenshot below.

Figure: The imported website

 | Programming Tasks | 96

Create an Add-on Project

Now you create a new project within the solution by doing the following:

1. In the Solution Explorer tree, right-click the solution name, and select Add and then New
Project, as shown in the screenshot below.

Figure: Adding a new project

2. In the Add New Project window that appears, select Visual C# as the project type and Class
Library as the project template. Type the name of the new project and select the folder where
the new project must be located, as shown in the second screenshot below. Click OK.

 | Programming Tasks | 97

Figure: Defining the project properties

The project name must be unique within the Acumatica ERP installations that exist on the server or
on your PC (if you are installing the project locally).

We recommend that you place the files of the new project within the Acumatica ERP application
solution folder so that you can easily locate them. (See the example on the screenshot above.)

3. Right-click the created project's name, and select Add and then New Folder, to create the DAC
folder within the project. Repeat these steps to create the Descriptor folder within the project.

4. Right-click References under the project's name and then select Add Reference, as the
screenshot below illustrates.

 | Programming Tasks | 98

Figure: Starting to get references

5. In the Add Reference window that appears, select the Browse tab. Via the Look in search
box, find the folder where the original application is located, select its Bin subfolder, and select
the PX.Common.dll, PX.Data.dll, and PX.Objects.dll files. Then click OK to get references from
the original application. (See the screenshot below.)

Figure: Getting references

6. Right-click the Bin folder and select Add Reference, as shown in the screenshot below.

 | Programming Tasks | 99

Figure: Preparing to add the reference

7. In the Add Reference window that appears again, open the Projects tab. Select the
automatically created record with the new project's name from the list (which contains one
record in the illustrated case), and click OK, as shown in the screenshot below. The reference to
the created project is added to the Acumatica ERP website.

Figure: Adding the reference from the original application

8. In the Solution Explorer, right-click the Class1.cs file in the root of the project, and select Delete
to remove this redundant file, as shown in the screenshot below.

 | Programming Tasks | 100

Figure: Deleting the originally created file

9. On the File menu, select Save all. Select the full path to the new project, and type the name
(or keep the default name) of the solution file, as shown in the screenshot below, to save the
created project within its solution.

Figure: Saving the add-on project

10. On the Build menu, select Build Solution. At this point, the new solution (with the new add-on
project) should be built without errors. The screenshot below illustrates the build process.

 | Programming Tasks | 101

Figure: Building the entire solution

Summary

By executing the instructions in this article, you have learned to do the following:

• Upload the original Acumatica ERP site into Microsoft Visual Studio and create the new solution for
developing a new integrated product.

• Create the new project and file structure within this solution for development of an add-on
application. The new project area can be used for implementing business logic within that add-on
application.

• Create references between the Acumatica ERP website and the new project. This enables the use
of Acumatica ERP objects in your project and adds the reference to the new project within the
original Acumatica ERP website.

• Add the configuration file to provide automatic mapping of the Acumatica ERP application
attributes to the corresponding database fields.

Implementing a Credit Card Processing Plug-in
With Acumatica ERP, you can process credit card payments through third-party authorization centers.
In the system core, only the processing through Authorize.Net is supported, but it can be implemented
for other authorization service providers. This may be done in the future versions of Acumatica ERP
or even by the Acumatica ERP client development team. Usually, access to the authorization service
service requires certain prerequisites from the client:

• Must have an Internet Merchant Account (IMA)

• Must provide an SSL connection to the authorization center, so must have valid SSL certificate.

• Must have a contract with the corresponding authorization center.

 | Programming Tasks | 102

Implementation of Credit Card Processing

Generally, a credit card authorization center has its own communication protocol: specific rules to send
required data (card number, amount, CCV code, and so on) and to receive and interpret its response.
Normally, the protocol includes the following functions:

• Authorize CC Payment: Checks if the requested sum may be taken from credit card and locks
it on the credit card account. Usually, if authorization is not captured or voided, it expires after 30
days.

• Capture CC Payment: Actually takes the previously authorized amount from the card.

• Authorize And Capture (optional): Performs the previous two actions in one transaction.

• Void: Reverses the authorized or captured transaction. This may be done during a certain period
of time after the transaction (such as 24 hours).

• Credit: Returns money back to the card.

• Void Or Credit (optional): Tries a void first and then performs a credit if voiding failed.

So we need only to implement this protocol and the communication with the core of Acumatica ERP.

The object must implement the following interface:

// This class implements the interaction with the authorization center
public abstract class ICCPaymentProcessing
{
 abstract public void Initialize(
 IProcessingCenterSettingsStorage aSettingsReader,
 ICreditCardDataReader aCardDataReader,
 ICustomerDataReader aCustomerDataReader,
 IDocDetailsDataReader aDocDetailsReader);
 abstract public void Initialize(
 IProcessingCenterSettingsStorage aSettingsReader,
 ICreditCardDataReader aCardDataReader,
 ICustomerDataReader aCustomerDataReader);
 abstract public bool DoTransaction(CCTranType aType,
 ProcessingInput aInputData,
 ProcessingResult aResult);
 abstract public bool IsSupported(CCTranType aType);
 abstract public void ExportSettings(IList<ISettingsDetail> aSettings);
 abstract public void ExportSettings(
 IList<ISettingsDetail> aSettings,
 CCProcessingSettingsType settingsType);
 abstract public CCErrors ValidateSettings(ISettingsDetail setting);
 abstract public void TestCredentials(APIResponse apiResponse);
}

// Types of transactions
public enum CCTranType
{
 AuthorizeAndCapture, //Authorize And Capture as one transaction
 AuthorizeOnly, //Authorize only
 PriorAuthorizedCapture, //Capture previously authorized transaction
 CaptureOnly, //Capture manually authorized transaction
 Credit, //Return of the previously authorized transaction
 Void, //Void the previously authorized transaction
 VoidOrCredit, //Try to Void, if failed - Credit previously authorized
 transaction
}

// Supplementary interface to read processing center settings
// from the Acumatica ERP core
public interface IProcessingCenterSettingsStorage
{
 void ReadSettings(Dictionary<string, string> aSettings, string aCenterID);

}

 | Programming Tasks | 103

// Supplementary interface to read credit card data from the
// Acumatica ERP core
public interface ICreditCardDataReader
{
 void ReadData(Dictionary<string, string> aData);
 string Key_CardNumber { get; }
 string Key_CardExpiryDate { get; }
 string Key_CardCVV { get; }
 string Key_PMCCProcessingID { get; }
}

// Supplementary interface to read customer data from the Acumatica ERP core
public interface ICustomerDataReader
{
 void ReadData(Dictionary<string, string> aData);
 string Key_CustomerCD { get; }
 string Key_CustomerName { get; }
 string Key_Customer_FirstName { get; }
 string Key_Customer_LastName { get; }
 string Key_Customer_CCProcessingID { get; }
 string Key_BillAddr_Country { get; }
 string Key_BillAddr_State { get; }
 string Key_BillAddr_City { get; }
 string Key_BillAddr_Address { get; }
 string Key_BillAddr_PostalCode { get; }
 string Key_BillContact_Phone { get; }
 string Key_BillContact_Fax { get; }
 string Key_BillContact_Email { get; }
}

// Supplementary interface to read specific document (bill, payment)
// item's data from the Acumatica ERP core
public interface IDocDetailsDataReader
{
 void ReadDate(List<DocDetailInfo> aData);
}

// Supplementary class to store document line information
public class DocDetailInfo
{
 public string ItemID;
 public string ItemName;
 public string ItemDescription;
 public decimal Quantity;
 public decimal Price;
 public bool? IsTaxable;
}

// Supplementary class to receive data of the specific transaction
// from the Acumatica ERP core.
// Not all the fields may be used, depending on the type of the transaction.
public class ProcessingInput
{
 public int TranID;
 public int PMInstanceID;
 public string CustomerCD;
 public string DocType;
 public string DocRefNbr;
 public string OrigRefNbr;
 public string CuryID; //ISO Code
 public decimal Amount;
 public bool VerifyCVV;
}

// Supplementary class to return the result of authorization
// center transaction to Acumatica ERP
public class ProcessingResult
{
 public int TranID;

 | Programming Tasks | 104

 public CCTranStatus TranStatus;
 public bool isAuthorized;
 public string PCTranNumber;
 public string PCResponseCode;
 public string PCResponseReasonCode;
 public string PCResponse;
 public string PCCVVResponse;
 public string AuthorizationNbr;
 public string PCResponseReasonText;
 public string ErrorText;
 public int? ExpireAfterDays;
 public CcvVerificationStatus CcvVerificatonStatus;
 public CCErrors.CCErrorSource ErrorSource = CCErrors.CCErrorSource.None;
}

The central object for the implementation is the ICCPaymentProcessing class; the rest just describes
interfaces to communicate with the Acumatica ERP core.

abstract public bool DoTransaction(CCTranType aType, ProcessingInput aInputData,
 ProcessingResult aResult);

This is the main function of the object, which is called by Acumatica ERP to perform a request to the
authorization center. So it must implement all of the main functions described above.

abstract public bool IsSupported(CCTranType aType);

Called by the core to determine if the operation is supported by the authorization center (useful for the
optional types).

abstract public void Initialize(
 IProcessingCenterSettingsStorage aSettingsReader,
 ICreditCardDataReader aCardDataReader,
 ICustomerDataReader aCustomerDataReader,
 IDocDetailsDataReader aDocDetailsReader);
abstract public void Initialize(
 IProcessingCenterSettingsStorage aSettingsReader,
 ICreditCardDataReader aCardDataReader,
 ICustomerDataReader aCustomerDataReader);

These functions are called by the core when the object is created to provide a communication interface
for the required data pulling (used in the DoTransaction() function) .

abstract public void ExportSettings(IList<ISettingsDetail> aSettings);

Used to export required for the processing settings keys (such as account login, password, and
communication definitions). This function is used in the processing center configuration interface. These
settings may be entered manually, but it's more convenient to import the key for them from the object.

Transaction Input and Output

Input When the DoTransaction() method is called, the Acumatica ERP core provides the
following information:

• public int TranID internal unique transaction identifier (in the Acumatica
ERP database)

• public int PMInstanceID internal unique identifier of the credit
card in Acumatica ERP. Card information may be obtained using the
ICreditCardDataReader reference.

• public string CustomerCD; unique identifier of the customer in Acumatica
ERP.

 | Programming Tasks | 105

• public string DocType; public string DocRefNbr; - unique
internal payment document identifier. Document information may be obtained
using IDocDetailsDataReader interface.

• public string OrigRefNbr;

• public string CuryID; ISO Code for the currency of transaction

• public decimal Amount; Amount of the transaction

• public bool VerifyCVV; Defines if CCV (credit card verification code)
verification is required.

Output Result of the transaction is returned to the Acumatica ERP core by using the
ProcessingResult reference. The fields are as follows:

• public int TranID; Internal unique transaction identifier (in the Acumatica
ERP database), which must be the same as in input.

• public CCTranStatus TranStatus; The status of the transaction, which
must be one of the following

public enum CCTranStatus
{
 Approved, //The transaction is approved
 Declined, //The transaction is declined
 Error, //There is an error in the transaction processing
 (usually, in the processing center)
 HeldForReview, //The transaction is held for review
 Unknown //Unknown - for example, there is no answer or the
 answer can't be interpreted.
}

• public bool isAuthorized; The transaction was authorized, for
convenience

• public string PCTranNumber; The transaction number assigned by the
authorization center. It is needed to reference this transaction, for example, if you
want to capture the authorized transaction.

• public string PCResponseCode; The raw response code of the
authorization center.

• public string PCResponseReasonCode; The raw response reason code, a
more detailed code from the authorization center.

• public string PCResponse; The complete raw response from the
authorization center.

• public string PCCVVResponse; Additional code of the CCV verification from
the authorization center (part of the complete response).

• public string AuthorizationNbr;

• public string PCResponseReasonText; The text of the response reason
from the authorization center (part of the complete response). This text will be
displayed in the credit card payment processing interface.

• public string ErrorText; The description of the error if it happens in the
object itself. For example, some settings are missing or the request to processing
center can't be done.

• public int? ExpireAfterDays; The period in days after which the
transaction is automatically expired (for authorization transactions).

 | Programming Tasks | 106

• public CcvVerificationStatus CcvVerificatonStatus; The CCV
verification status, which must be one of the following:

public enum CcvVerificationStatus
{
 Match, //CCV code is correct
 NotMatch, //CCV code is wrong
 NotProcessed, //CCV code is not processed
 ShouldHaveBeenPresent, //CCV code was not provided, but is
 required for the authorization
 IssuerUnableToProcessRequest, //Card issuer is not able to verify
 the code
 RelyOnPreviousVerification, //CCV code has been verified before
 (by the Acumatica ERP core) -
 //this flag is never set by the Credit Card Processing module.
 Unknown //Other
}

• public CCErrors.CCErrorSource ErrorSource =
CCErrors.CCErrorSource.None; In the case of error, indicates its source,
which may be one of the following:

public enum CCErrorSource
{
 None,
 Internal, //Internal error of object
 ProcessingCenter, //Processing center reported an error
 Network, //Network error - for example, request time-
outed
}

It is the implementation's responsibility to perform a request to the authorization center
and interpret the result of the request. Although Acumatica ERP will receive the AC
response, it will rely on the TransStatus and IsAuthorized in the application payment
logic.

How It works

On the Acumatica ERP side, the description of the credit card processing object is configured using the
processing center configuration interface:

 | Programming Tasks | 107

Figure: Configuration Screen

In this interface, the user must provide:

• The ID of the processing center and its description. This ID will be passed to the object when the
Initialize() method is called.

• The full name of the credit card processing class.

• The set of default parameters for payment methods. This parameters are stored as key-value
pairs. Keys may be imported from the objects if the ExportSettings() method is implemented
properly in the class.

• The processed transaction open period; see the Warning for details.

On the second tab of configuration screen, the user can configure payment method types, which will be
processed using the selected processing center. The card must be marked as active and the default in
order to be processed through the processing center.

Specific card data is entered in the customer definition screen and stored encrypted in the database
(unless tokenized processing is used). Sensitive data, such as the CCV code for the card, is stored
encrypted until the first authorization is successfully made. After that, the data is deleted from the
database and the following transactions are done without verification of the CCV code in the processing
center. So, they will have CcvVerificationStatus = RelyOnPreviousVerification.

To perform actual credit card processing, the user should use the Finance > Accounts Receivable >
Work Area > Payments and Applications page.

 | Programming Tasks | 108

Figure: Credit Card Payment

The payment is entered as usual. If the customer has credit cards configured as the methods of
payment, one of them may be selected as the payment method (if one is configured as the default
for the customer, it will be selected automatically). In this case, the following options on the Card
Processing menu will be available:

• Capture: To authorize and capture amount of this payment document. If the authorization center
supports Authorize And Capture, this will be done in one transaction. Otherwise, two separate
transactions will be performed. If the document already has the authorization transaction, only
the Capture will be done.

• Authorize: To do the Authorize transaction only.

• Void: To Void/Credit Authorized or Captured Transaction. In some cases, voiding of the document
is required.

If the Integrated CC Processing check box on the Accounts Receivable Preferences form is selected,
successful capturing of the payment will automatically release the payment document. Otherwise, releasing
the document is the user's responsibility.

When a user presses the one of the CC Processing buttons, the system creates an instance of the
CCPaymentProcessing class, which is responsible for credit card transactions handling.

public class CCPaymentProcessing : PXGraph<CCPaymentProcessing>,
 IProcessingCenterSettingsStorage,
 ICustomerDataReader,
 ICreditCardDataReader,
 IDocDetailsDataReader
{
 public bool Authorize(int aPMInstanceID, bool aCapture, string aCuryID,
 decimal aAmount, string aDocType, string aRefNbr,
 ref int aTranNbr)
 public bool Capture(int aPMInstanceID, int aAuthTranNbr, string aCuryID,
 decimal aAmount, ref int aTranNbr)
 public bool Void(int aPMInstanceID, int aRefTranNbr, ref int aTranNbr)
 public bool VoidOrCredit(int aPMInstanceID,int aRefTranNbr,
 ref int aTranNbr)
 public bool Credit(int aPMInstanceID, int aRefTranNbr,string aCuryID,
 decimal? aAmount, ref int aTranNbr)
}

The requested function is then called:

• Does preliminary validation of the credit card, checking the expiration date.

• Finds the authorization center configured to process this card.

 | Programming Tasks | 109

• Creates an instance of the card processing object (which implements the ICCPaymentProcessing
interface).

try
{
 Type processorType = BuildManager.GetType(aProcCenter.ProcessingTypeName, true);
 processor = (ICCPaymentProcessing)Activator.CreateInstance(processorType);
}
catch (HttpException)
{
 throw new PXException(Messages.ERR_ProcessingCenterTypeIsInvalid,
 aProcCenter.ProcessingTypeName,
 aProcCenter.ProcessingCenterID);
}
catch (Exception)
{
 throw new PXException(Messages.ERR_ProcessingCenterTypeInstanceCreationFailed,
 aProcCenter.ProcessingTypeName,
 aProcCenter.ProcessingCenterID);
}

It then calls its Initialize function, which does the following:

• Detects if CCV code for the card was verified, and sets the VerifyCVV flag to true, if not.

• Creates and commits to the database а transaction record; its unique identifier will be passed to
the card processing object.

• Calls the DoTransaction() method of the object.

try
{
 hasError = !processor.DoTransaction(aTranType, inputData, result);
}
catch (WebException webExn)
{
 hasError = true;
 result.ErrorSource = CCErrors.CCErrorSource.Network;
 result.ErrorText = webExn.Message;
}
catch (Exception exn)
{
 hasError = true;
 result.ErrorSource = CCErrors.CCErrorSource.Internal;
 result.ErrorText = exn.Message;
 throw new
 PXException(String.Format(Messages.ERR_CCPaymentProcessingInternalError,aTranNbr,
 exn.Message));
}
finally
{
 this.EndTransaction(aTranNbr, result, (hasError ? CCProcStatus.Error :
 CCProcStatus.Finalized));
}

• After the transaction completion, it updates (closes) the transaction record based on the returned
result (or error handling procedure). Note that errors are stored in a separate field in the
database rather than in the PCResponseText field (if the error happens on our side). For an
authorization transaction, it also stores the expiration date if the processing object provides a
value for it in the result.

A protection mechanism prevents the user from starting two transaction for the same document in parallel
(for example, from another window or computer). Before starting, the system checks if there is an open
transaction for the document and rejects the action if so. In some conditions, such as server crash or
hardware malfunction, the result of the transaction processing may be lost by the system so it will open
forever. To avoid locking of the system, open transactions are made auto-expiring: when they start, an

 | Programming Tasks | 110

open period length is defined for them. If the processing result is lost, this transaction is considered as
expired after this period and the user can start another one. This period length is defined in the processing
center configuration interface as Open Transaction Timeout (sec). Unfortunately, there is no way to
synchronize an expired transaction with the authorization server automatically (it may be successful there);
it will require user interaction to prevent double-charges.

• If transaction is successful and credit card processing is synchronized with document state
handling, it may be released (or voided) after the processing.

Void Transactions Processing

In Acumatica ERP, a released AR document can't be deleted from the system. When you need to void
such a document, the system actually creates another one that is reversing the original transaction.
This document has the same number as original document, but another DocType, Void. If the original
transaction has been paid by credit card, this payment has to be voided or refunded. To do this
processing correctly, all of the credit card transactions made for the original document are also attached
to the voiding document (so credit card processing transactions are shared between the original and the
voiding document). The system tries to void the transaction first and if the transaction is declined by
the authorization center (a void is possible after a rather short period of time), it tries to refund it. The
transaction is processed the same way as described above.

Using Substitute Keys
This article explains the use of surrogate keys in Acumatica Framework.

In the table defined below:

CREATE TABLE [dbo].[Ledger](
 [CompanyID] [int] NOT NULL,
 [LedgerID] [int] IDENTITY(1,1) NOT NULL,
 [LedgerCD] [varchar](10) NOT NULL,
 [BalanceType] [char](1) NOT NULL,
 [BaseCuryID] [varchar](5) NOT NULL,
 [Descr] [nvarchar](60) NULL,
 [tstamp] [timestamp] NULL,
 [CreatedByID] [uniqueidentifier] NOT NULL,
 [CreatedByScreenID] [char](8) NOT NULL,
 [CreatedDateTime] [smalldatetime] NOT NULL,
 [LastModifiedByID] [uniqueidentifier] NOT NULL,
 [LastModifiedByScreenID] [char](8) NOT NULL,
 [LastModifiedDateTime] [smalldatetime] NOT NULL,
 CONSTRAINT [Ledger_PK] PRIMARY KEY CLUSTERED
(
 [CompanyID] ASC,
 [LedgerID] ASC
))

CREATE UNIQUE NONCLUSTERED INDEX [Ledger1] ON [dbo].[Ledger]
(
 [CompanyID] ASC,
 [LedgerCD] ASC
)

LedgerID is a surrogate key and LedgerCD is a native or natural key associated with this record.

Let's assume that we have Batch record that references Ledger record by surrogate key LedgerID.
In this case user expects to see LedgerCD value in applicaiton UI. But at the same time Batch record
stores LedgerID value for referencing Ledger record. For such situations, Acumatica Framework
provides Substitute Key feature that substitutes surrogate key with natural key on presenting data in
User Interface.

 | Programming Tasks | 111

Use of surrogate allows to significantly reduce the space that is used by database for referencing and at
the same time provide user with convenient data entry mechanism and generic functionality for renaming
natural keys that are presented to the user in interface at a single dictionary.

In order use substitute key functionality following declaration is required:

1: Modify class Ledger by removing IsKey named parameter from LedgerID member, and add IsKey
named parameter to LedgerCD member as below:

 [System.SerializableAttribute()]
 public class Ledger : PX.Data.IBqlTable
 {
 #region LedgerID
 public abstract class ledgerID : PX.Data.IBqlField
 {
 }
 protected Int32? _LedgerID;
- [PXDBIdentity(), IsKey=true]
+ [PXDBIdentity()]
 [PXUIField(DisplayName = "Ledger ID", Visibility = PXUIVisibility.Visible,
 Visible = false)]
 public virtual Int32? LedgerID
 {
 get
 {
 return this._LedgerID;
 }
 set
 {
 this._LedgerID = value;
 }
 }
 #endregion
 #region LedgerCD
 public abstract class ledgerCD : PX.Data.IBqlField
 {
 }
 protected string _LedgerCD;
- [PXDBString(10)]
+ [PXDBString(10, IsKey=true)]
 [PXUIField(DisplayName = "Ledger", Visibility =
 PXUIVisibility.SelectorVisible)]
 public virtual string LedgerCD
 {
 get
 {
 return this._LedgerCD;
 }
 set
 {
 this._LedgerCD = value;
 }
 }
 #endregion
 ...
 }

1: Use parameter SubstituteKey in PXSelector attribute definition for LedgerID member of Batch class
as specified below:

 public class Batch : PX.Data.IBqlTable
 {
 ...
 #region LedgerID
 public abstract class ledgerID : PX.Data.IBqlField
 {
 }
 protected Int32? _LedgerID;

 | Programming Tasks | 112

 [PXDBInt()]
 [PXDefault(typeof(GLSetup.ledgerID))]
 [PXUIField(DisplayName = "Ledger ID", Visibility =
 PXUIVisibility.SelectorVisible)]
 [PXSelector(typeof(Search<Ledger.ledgerID, Where<Ledger.balanceType,
 NotEqual<BudgetLedger>>>),
 SubstituteKey =
 typeof(Ledger.ledgerCD))]
 public virtual Int32? LedgerID
 {
 get
 {
 return this._LedgerID;
 }
 set
 {
 this._LedgerID = value;
 }
 }
 #endregion

 }

With such declaration Field Schema Editor Wizard will replace LedgerID with LedgerCD on adding
LedgerID member from Batch class on application form. During runtime system will automatically
substitute LedgerID with LedgerCD on providing data to UI and convert it back on passing data from UI
to DAC.

With marking LedgerCD with IsKey parameters in class Ledger you must add parameter SubstituteKey
to all Data Access Classes that references class Ledger by LedgerID.

Calling a New PXSmartPanel
How does the Copy Order (or any similar) action know to call the PXSmartPanel, that is, for the copy
order (or another webpage used as a printable document), that is, how the programmer or customizer
can get a new PXSmartPanel to display when he or she clicks the OK button? (See the screenshot
below.)

 | Programming Tasks | 113

Figure: Calling a Smart Panel

Here is the explanation. To define a smart panel in the .aspx page, you should specify the Key property
for it making this property equal to one of the view names in your business logic container (BLC, called
also as graph). Then you should append a button to the panel with expected dialog result.

<px:PXSmartPanel ID="panelCopyTo" runat="server"
Height="135px" Width="300px" Style="z-index: 108; left: 351px;
position: absolute; top: 99px;" Caption="Copy To" CaptionVisible="true"
DesignView="Content" LoadOnDemand="true"
Key="copyparamfilter"
AutoCallBack-Enabled="true"AutoCallBack-Target="formCopyTo"
AutoCallBack-Command="Refresh" CallBackMode-CommitChanges="True"
CallBackMode-PostData="Page">

<px:PXButton ID="PXButton9" runat="server" DialogResult="OK" Text="OK"
Width="63px" Height="20px" TabIndex="102" CommandName="CheckCopyParams"
CommandSourceID="ds"> </px:PXButton>

Then in the button delegate, which will process copy order request, perform a call to AskExt method of
the view specified as a Key:

public virtual IEnumerable CopyOrder(PXAdapter adapter)
 {
 if (copyparamfilter.AskExt() == WebDialogResult.OK &&
 string.IsNullOrEmpty(copyparamfilter.Current.OrderType) == false)
 {
..

When the user clicks the Copy Order (or another document) menu item, the execution will interrupt on
the AskExt call and a pop-up window will be displayed. After user clicks the OK button in the panel, the
system will call the CopyOrder method for the second time, and this time AskExt will return required
dialog result.

 | Debugging Applications | 114

Debugging Applications

This article explains how to link the Acumatica Framework application site to the database and start the
Acumatica Framework application in the debug mode.

Linking the Acumatica Framework Application Site to the Database

1. Locate the RB.sln file on C:\Program Files (x86)\Acumatica Framework\RB\RB.sln and double-
click it to open the solution.

2. Locate the web.config file inside the website project, and open it for editing.

3. Modify the connection string by specifying the credentials to your development database as
shown below.

Use the credentials database name and company IDs you created. If login fails because of
database connection errors, you can verify the connection settings in the Web.config file under
the connectionStrings section. You can use the following examples as a reference. For a locally
installed SQL Server that uses SQL Server authentication:

connectionString ="data source=(local);Initial Catalog=Northwind1; User
 Id=USERID; Password=PASSWORD"

For a locally installed SQL Server that uses Windows authentication:

 connectionString="data source=(local);Initial Catalog=Northwind1; Integrated
 Security=yes"/>

For a remote SQL Server that uses SQL Server authentication:

connectionString ="data source=MSSQLSERVER; Initial Catalog=Northwind1; User
 Id=USERID; Password=PASSWORD"

4. Set the Main.aspx page in the root of the website project as a project starting point.

5. Run the application from the Visual Studio. It will start the development server and run the
application in Debug mode.

If you created a new database, use the credentials below for the first login:

• Login: admin

• Password: setup

When you run your project in Debug mode, code execution may suspend at certain points with
warning or error messages such as SecurityException was unhandled by user code. These warnings,
artifacts of the debugging environment in which the project is executing, will not occur when
the project is deployed to a production IIS server. You can safely ignore them and continue code
execution by simply pressing F5 or clicking the Run/continue button on the debugging toolbar in
Visual Studio. Alternatively, you can avoid the error messages during debugging by commenting out
the security restriction section of the Web.config file, as shown below:

<!--
 <securityPolicy>
 <trustLevel name="ProjectX" policyFile="web_project_x.config"/>
 </securityPolicy>
 <trust level="ProjectX" originUrl=""/>
 -->

The web.config file is allowed for check-out but not allowed for check-in.

 | Debugging Applications | 115

Debugging the Acumatica Framework Application Under IIS Server

In many cases the developer, instead of running the Acumatica Framework application from the Visual
Studio development server, finds it more convenient to run it from IIS. Below are the steps that are
required to register Acumatica Framework with the IIS server and attach it to the application with the
debugger:

1. Register the Acumatica Framework application site under IIS as follows:

a. Open the Internet Information Server (IIS) Manager application.

To locate this application, in the search area of the windows start menu, type IIS.

b. In the IIS Manager, focus on Default Web Site and from the content menu, select Add
Application.... The Add Application menu will appear.

c. In the Add Application menu, specify the website alias, application pool and physical path
of the site. Use the example below as a reference:

• Alias: RB

• Application Pool: DefaultAppPool

• Local Path: C:\Program Files (x86)\Acumatica Framework\RB\Site\

d. Click Add to create the new website.

e. Go to the created site and set the Main.aspx page as a default document for this site.

f. Make sure that site works by accessing it as http://localhost/RB.

2. Open the C:\Program Files (x86)\Acumatica Framework\RB\RB.sln solution in
Visual Studio.

If you have user access control activated on your computer, make sure that you run Visual Studio
as an Administrator.

3. Edit the web.config file like: <compilation debug="true" ... >...</compilation>

4. Once the project is opened in the Visual Studio, go to the Debug->Attach to Process menu.

5. In the Attach to Process pop-up window, select the Show processes from all users and
Show processes from all sessions check boxes. Locate the process named w3wp.exe and
click Attach.

6. Accept the warning and the debug session will start. Now you can access the website from
http://localhost/RB and intercept the break points set in the code from Visual Studio.

Note that your local path might differ from the path specified if you mapped the solution to the different
location on the local file system or building different branch.

 | API Reference | 116

API Reference

This reference describes the application programming interface (API) of the Acumatica Framework.

The following sections correspond to the specific components of the framework API:

• BQL

• Event Model Overview

• Core Classes

• Attributes

Event Model
The Acumatica Framework provides its own event model. By implementing event handlers, application
developers can add business logic for the manipulation of data within business logic controllers (BLCs).

The following chapters describe different ways of adding event handlers, provide detailed diagrams
for common data manipulation scenarios, and include complete reference information on all events,
including code samples demonstrating common usage and classes and enumerations related to these
events:

• Event Model Overview

• Scenarios

• Events

Event Model Overview
The Acumatica Framework provides its own event model. An application developer can define event
handlers, methods invoked by the Acumatica Framework once the corresponding events are raised,
to add business logic related to the manipulation of business logic controller (BLC) data. This business
logic includes validation and calculation of field values, management of related data records (inserting,
updating, or deleting), checks for duplicate records, and implementation of user interface (UI)
presentation logic.

Data Manipulation Scenarios

Events related to the manipulation of data records and data fields are raised in a particular order within
certain scenarios. For descriptions of these data manipulation scenarios, see the Scenarios section.

All Events

For reference information about all events, see Events.

Event Handlers Types

Two types of event handlers are associated with each event:

• Graph event handlers are defined as methods in a BLC class for a particular data access class
(DAC) or a particular DAC field. See the reference topic of each event for an example of a graph
event handler declaration.

• Attribute event handlers are defined as methods in attribute classes. The corresponding
logic is attached to all DAC objects or data fields annotated with these attributes. The
attribute in which an attribute event handler is implemented must be derived from

 | API Reference | 117

the PXEventSubscriberAttribute class and must implement the interface of the
IPXEventNameSubscriber form, as shown in the following example.

// The attribute implements handlers for the FieldVerifying
// and RowPersisting events
public class MyAttribute : PXEventSubscriberAttribute,
 IPXFieldVerifyingSubscriber,
 IPXRowPersistingSubscriber
{
 public virtual void FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e)
 {
 ...
 }

 public virtual void RowPersisting(PXCache sender,
 PXRowPersistingEventArgs e)
 {
 ...
 }
}

Event Handlers Execution

All event handlers executed for a particular event share the same PXCache instance that has raised this
event. A PXCache instance is created to control the modified data records of a particular DAC type. The
PXCache instance is always available as the first argument in an event handler. The second argument
provides specific data corresponding to the event.

Once an event is raised, the order in which associated event handlers are executed may differ.

For some events, the chain of graph event handlers is executed before attribute event handlers, which
are executed only if the Cancel property of the event arguments doesn't equal true after execution of
the graph event handlers.

For other events, the attribute event handlers are executed first, and the graph event handlers are
executed afterwards. The reference topic for each event includes a diagram showing the order in which
the system invokes handlers for a particular event..

Adding Event Handlers Dynamically

A BLC includes collections of graph event handlers for all events except CacheAttached. Each such
collection holds event handlers for a particular event and has the same name as the event . By using
the methods of these collections, you can add and remove graph event handlers in code at run time.

A method added as an event handler must have the signature of a graph event handler, but doesn't
need to follow the naming convention for graph event handlers. If you want to add a method as an
event handler, invoke the AddHandler<>() method on the corresponding collection. For example, if
the event is related to a row, it is invoked as follows.

RowEventName.AddHandler<DACName>(MethodName);

The event is invoked as follows if it is related to a field.

FieldEventName.AddHandler<DACName.fieldName>(MethodName);

To remove a handler, you should invoke the RemoveHandler<>() method in exactly the same way.

On invocation of AddHandler<>(), event handlers are added to either the beginning or the end of the
collection:

• Event handlers are added to the beginning of the collection for any event whose name ends with
ing, except the RowSelecting event.

 | API Reference | 118

• Event handlers are added to the beginning of the collection for any event whose name ends with
ed and for the RowSelecting event.

Scenarios
Most events are raised within common scenarios related to the manipulation of data records. The
scenarios are invoked by Acumatica Framework on certain user actions in the user interface (UI), on
the corresponding requests to the Web Service API, and on the execution of special methods within the
business logic controller (BLC).

For details on how Acumatica Framework processes the basic data operations, see the following topics:

• Inserting a Data Record

• Updating a Data Record

• Deleting a Data Record

• Displaying a Data Record

• Saving Changes to the Database

Inserting a Data Record

The sequence of events raised during the insertion of a data record is illustrated in the figure below.

 | API Reference | 119

Figure: Inserting a data record

The system inserts a data record—as an instance of a data access class (DAC)—when a user creates
a new data record in the user interface (UI), a request is sent to the Web Service API, or, in code, the
Insert() method of a data view is called. The data record is actually inserted into the PXCache object

 | API Reference | 120

that corresponds to the DAC of the data record. An inserted data record has the Inserted status and is
available through the Inserted and Dirty collections of the PXCache object.

When a data record is inserted, data field events are raised for each data field in the following order:

• FieldDefaulting

• If the e.Cancel property equals true, FieldUpdating

• FieldVerifying

• FieldUpdated

Next, the following data record events are raised:

• RowInserting

• If the e.Cancel property dosn't equal true:

• RowInserted

• RowSelected

The instance of the inserted data record is available in the e.Row property of event arguments.

Updating a Data Record

The sequence of events raised during the update of a data record is illustrated in the figure below.

 | API Reference | 121

Figure: Updating a data record

A data record is updated when a user modifies the data record on the user interface (UI), the request is
sent through the Web Service API, or the Update() method is invoked on the data view. Updated data
records, which the system gives the Updated status, are later available through the Updated and Dirty
collections of the appropriate PXCache object.

 | API Reference | 122

The RowUpdating and RowUpdated events are fired before the update happens and after the update
happens, respectively. The developer can handle these events and has access to the updated data
record and the previous version of the data record that is kept in the PXCache object. The actual update
happens between these two events when the data record is copied to the PXCache object.

When a data record is updated, the following data field events are raised for each updated data field:

• FieldUpdating

• FieldVerifying

• FieldUpdated

Next, data record events are raised as follows:

• RowUpdating is raised. At this moment, in the e variable representing event data, e.Row holds
the data record version from the cache, while e.NewRow holds the updated data record. You can
still stop updating by throwing a PXException instance.

• If e.Cancel doesn't equal true:

• RowUpdated is raised. e.Row now holds the updated instance, while the e.OldRow holds
a copy of the old data record with old values.

• RowSelected is raised. Only the updated data record can be accessed through e.Row.

Deleting a Data Record

The sequence of events raised during the deletion of a data record is illustrated in the figure below.

 | API Reference | 123

Figure: Deleting a data record

A data record is deleted when a user deletes the record on the user interface (UI), the request is sent
through the Web Service API, or the Delete() method of a data view is invoked in code. As a result
of the deletion, the data record gets the Deleted status, if it already exists in the database, or the

 | API Reference | 124

InsertedDeleted status, if the record has just been inserted into the PXCache object and the deletion
from the database is not required. The data record is later available through the Deleted and Dirty
collections of the PXCache object.

If the deletion has been initiated by a user on the UI or through the Web Service API, first, the following
field events are raised for each key data field:

• FieldUpdating

• FieldUpdated

Next, data record events are raised as follows:

• RowDeleting is raised. At this point, the developer can still stop the deleting by throwing a
PXException instance. In the e variable representing event data, e.Row holds the data record
being deleted.

• If e.Cancel doesn't equal true:

• RowDeleted is raised, and e.Row still holds the data record.

• RowSelected is raised, and e.Row equals NULL.

Displaying a Data Record

Each time a data record is displayed in the user interface (UI) or retrieved through the Web Service
API, the RowSelected event is raised, as well as the FieldSelecting event, for each data field. For
both events, the e.Row property of event arguments holds the data record that is being displayed or
retrieved.

This process is illustrated in more detail in the diagram below.

Figure: Displaying a data record

Saving Changes to the Database

The sequence of events raised during the saving of a data record is illustrated in the figure below.

 | API Reference | 125

Figure: Committing a data record to the database

While a user is inserting, updating, or deleting a data record, no changes are committed to the
database. The system stores the modified data records in the session, and you can access them
through the appropriate PXCache object. The system commits the changes to the database when
the user presses Save in the user interface (UI), the request is sent through the Web Service API, or
Actions.PressSave() is invoked on the business logic controller (BLC) instance.

During the process of saving changes to the database, events are raised as follows:

• RowPersisting is raised. By this moment, a database transaction has already been opened.
If any of the handlers sets e.Cancel to true, the process will be canceled for the currently
processed data record, without an error being reported to the user. To cancel the whole process

 | API Reference | 126

of committing changes and indicate the error to the user, you should throw an instance of
PXException.

• If e.Cancel doesn't equal true:

• RowPersisted is raised. The committing operation for the current data record
(available through e.Row in the handler) is completed, but the transaction is still open:
e.TranStatus equals Open.

• RowPersisted is raised one more time, either with e.TranStatus equal to Completed
(if all changes have been saved successfully) or with e.TranStatus equal to Aborted if
an error occurred and all changes have been canceled.

Events
This section includes reference information on all events as well as on classes and enumerations related
to only one particular event (such as the event arguments class).

See below for the lists, by categories, of all events:

• Data field events:

• FieldDefaulting Event

• FieldVerifying Event

• FieldUpdating Event

• FieldUpdated Event

• FieldSelecting Event

• Data record events:

• RowSelected Event

• RowInserting Event

• RowInserted Event

• RowUpdating Event

• RowUpdated Event

• RowDeleting Event

• RowDeleted Event

• Database-related events:

• CommandPreparing Event

• RowSelecting Event

• RowPersisting Event

• RowPersisted Event

• Exception-handling event:

• ExceptionHandling Event

• Event for overriding DAC field attributes:

• CacheAttached Event

FieldDefaulting Event

The FieldDefaulting event is triggered:

 | API Reference | 127

• When a user's action on the user interface (UI) or a Web Service application programming
interface (API) call causes insertion of a new record into the PXCache object.

• When any of the following methods of the PXCache class initiates assigning a field its default
value:

• Insert()

• Insert(object)

• Insert(IDictionary)

• SetDefaultExt(object, string)

• SetDefaultExt<Field>(object)

The FieldDefaulting event handler is used to generate and assign the default value to a data access
class (DAC) field.

Figure: Execution order for FieldDefaulting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_FieldDefaulting(
 PXCache sender,
 PXFieldDefaultingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXFieldDefaultingEventArgs e

The instance of the PXFieldDefaultingEventArgs type that holds data for the FieldDefaulting
event

 | API Reference | 128

Examples of Use

The code below generates the default value for a DAC field.

public class POOrderEntry : PXGraph<POOrderEntry, POOrder>,
 PXImportAttribute.IPXPrepareItems
{
 ...

 protected virtual void POOrder_ExpectedDate_FieldDefaulting(
 PXCache sender,
 PXFieldDefaultingEventArgs e)
 {
 POOrder row = (POOrder)e.Row;
 Location vendorLocation = this.location.Current;
 if (row != null && row.OrderDate.HasValue)
 {
 int offset = (vendorLocation != null ?
 (int)(vendorLocation.VLeadTime ?? 0) : 0);
 e.NewValue = row.OrderDate.Value.AddDays(offset);
 }
 }

 ...
}

Related Types

• PXFieldDefaultingEventArgs Class

PXFieldDefaultingEventArgs Class

Provides data for the FieldDefaulting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldDefaultingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object NewValue

Gets or sets the default value for the DAC field.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
FieldDefaulting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldVerifying Event

The system triggers the FieldVerifying event for each data access class (DAC) field of a data record
that is inserted or updated in the PXCache object in the process of:

• Insertion or update initiated in the user interface (UI) or through the Web Service application
programming interface (API).

 | API Reference | 129

• Any of the following methods of the PXCache class initiates the assignment of the default value to
the DAC field:

• Insert()

• Insert(object)

• Insert(IDictionary)

• SetDefaultExt(object, string)

• SetDefaultExt<Field>(object)

• A DAC field update that is initiated by any of the following methods of the PXCache class:

• Update(object)

• Update(IDictionary, IDictionary)

• SetValueExt(object, string, object)

• SetValueExt<Field>(object, object)

• Validation of a DAC key field value when the validation is initiated by any of the following methods
of the PXCache class:

• Locate(IDictionary)

• Update(IDictionary, IDictionary)

The FieldVerifying event handler is used to:

• Implement the business logic associated with validation of the DAC field value before the value is
assigned to the DAC field.

• Cancel the assigning of a value by throwing an exception of PXSetPropertyException type—if the
value does not fit the requirements.

• Convert the external presentation of a DAC field value to the internal presentation and implement
the associated business logic. The internal presentation is the value stored in a DAC instance.

Figure: Execution order for FieldVerifying event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_FieldVerifying(

 | API Reference | 130

 PXCache sender,
 PXFieldVerifyingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXFieldVerifyingEventArgs e

The instance of the PXFieldVerifyingEventArgs type that holds data for the FieldUpdating event

Examples of Use

The code below validates the new value of a DAC field.

public class APPaymentEntry : APDataEntryGraph<APPaymentEntry, APPayment>
{
 ...

 protected virtual void APPayment_AdjDate_FieldVerifying(
 PXCache sender,
 PXFieldVerifyingEventArgs e)
 {
 if ((bool)((APPayment)e.Row).VoidAppl == false &&
 vendor.Current != null && (bool)vendor.Current.Vendor1099)
 {
 string Year1099 = ((DateTime)e.NewValue).Year.ToString();
 AP1099Year year = PXSelect<
 AP1099Year,
 Where<AP1099Year.finYear,
 Equal<Required<AP1099Year.finYear>>>>.
 Select(this, Year1099);
 if (year != null && year.Status != "N")
 throw new PXSetPropertyException(
 Messages.AP1099_PaymentDate_NotIn_OpenYear,
 PXUIFieldAttribute.
 GetDisplayName<APPayment.adjDate>(sender));
 }
 }

 ...
}

The code below validates the external presentation of a DAC field value and converts it to the internal
presentation if it is acceptable.

[TableAndChartDashboardType]
public class CAReconEnq : PXGraph<CAReconEnq>
{
 ...

 protected virtual void CashAccountFilter_CashAccountID_FieldVerifying(
 PXCache sender,
 PXFieldVerifyingEventArgs e)
 {
 CashAccountFilter createReconFilter = (CashAccountFilter)e.Row;
 if (!e.NewValue is string) return;
 CashAccount acct =
 PXSelect<CashAccount,
 Where<CashAccount.accountCD,
 Equal<Required<CashAccount.accountCD>>>>.

 | API Reference | 131

 Select(this, (string)e.NewValue);
 if (acct != null && acct.Reconcile != true)
 throw new PXSetPropertyException(Messages.CashAccounNotReconcile);
 e.NewValue = acct.AccountID;
 }

 ...
}

Related Types

• PXFieldVerifyingEventArgs Class

PXFieldVerifyingEventArgs Class

Provides data for the FieldVerifying event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldVerifyingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object NewValue

Gets or sets the new value of the current DAC field.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
FieldVerifying event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

• public bool ExternalCall

Gets the value specifying if the new value of the current DAC field has been received from the UI
or through the Web Service API.

FieldUpdating Event

In the following cases, the FieldUpdating event is triggered for a data access class (DAC) field before
the field is updated:

• For each DAC field value received from the user interface (UI) or through the Web Service
application programming interface (API) when a data record is being inserted or updated.

• For each DAC key field value in the process of deleting a data record when the deletion is initiated
from the UI or through the Web Service API.

• While any of the following methods of the PXCache class initiates assigning a field its default
value:

• Insert()

• Insert(object)

• Insert(IDictionary)

 | API Reference | 132

• SetDefaultExt(object, string)

• SetDefaultExt<Field>(object)

• While any of the following methods of the PXCache class initiates updating a field:

• Update(IDictionary, IDictionary)

• SetValueExt(object, string, object)

• SetValueExt<Field>(object, object)

• SetValuePending(object, string, object)

• SetValuePending<Field>(object, object)

• During conversion of the external DAC key field presentation to the internal field value, initiated
by the following PXCache class methods:

• Locate(IDictionary)

• Update(IDictionary, IDictionary)

• Delete(IDictionary, IDictionary) methods

The FieldUpdating event handler is used when either or both of the following occur:

• The external presentation of a DAC field (the value displayed in the UI) differs from the value
stored in the DAC.

• Value storage is spread among several DAC fields (database columns).

In both cases, the application should implement both the FieldUpdating and FieldSelecting events.

Figure: Execution order for FieldUpdating event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_FieldUpdating(
 PXCache sender,
 PXFieldUpdatingEventArgs e)
{
 ...
}

 | API Reference | 133

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXFieldUpdatingEventArgs e

The instance of the PXFieldUpdatingEventArgs type that holds data for the FieldUpdating event

Examples of Use

The code below spreads the external presentation of a field among multiple DAC fields.

protected void Batch_ManualStatus_FieldUpdating(PXCache sender,
 PXFieldUpdatingEventArgs e)
{
 Batch batch = (Batch)e.Row;
 if (batch != null && e.NewValue != null)
 {
 switch ((string)e.NewValue)
 {
 case "H":
 batch.Hold = true;
 batch.Released = false;
 batch.Posted = false;
 break;
 case "B":
 batch.Hold = false;
 batch.Released = false;
 batch.Posted = false;
 break;
 case "U":
 batch.Hold = false;
 batch.Released = true;
 batch.Posted = false;
 break;
 case "P":
 batch.Hold = false;
 batch.Released = true;
 batch.Posted = true;
 break;
 }
 }
}

protected void Batch_ManualStatus_FieldSelecting(PXCache sender,
 PXFieldSelectingEventArgs e)
{
 Batch batch = (Batch)e.Row;
 if (batch != null)
 {
 if (batch.Hold == true)
 {
 e.ReturnValue = "H";
 }
 else if (batch.Released != true)
 {
 e.ReturnValue = "B";
 }
 else if (batch.Posted != true)
 {
 e.ReturnValue = "U";
 }
 else
 {
 e.ReturnValue = "P";
 }
 }

 | API Reference | 134

}

Related Types

• PXFieldUpdatingEventArgs Class

• PXEntryStatus Enumeration

PXFieldUpdatingEventArgs Class

Provides data for the FieldUpdating event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldUpdatingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object NewValue

Gets or sets the internal DAC field value.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
FieldUpdating event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldUpdated Event

In the following cases, the FieldUpdated event is triggered after a data access class (DAC) field is
actually updated:

• For each DAC field value received from the user interface (UI) or through the Web Service
application programming interface (API) when a data record is inserted or updated in the PXCache
object

• For each DAC key field value in the process of deleting a data record from the PXCache object
when the deletion is initiated from the UI or through the Web Service API

• While any of the following methods of the PXCache class initiates assigning a field its default
value:

• Insert()

• Insert(object)

• Insert(IDictionary)

• SetDefaultExt(object, string)

• SetDefaultExt<Field>(object)

• While a field is updated in the PXCache object, initiated by any of the following methods of the
PXCache class:

• Update(object)

 | API Reference | 135

• SetValueExt(object, string, object)

• SetValueExt<Field>(object, object)

• During validation of the DAC key field value initiated by any of the following PXCache class
methods:

• Locate(IDictionary)

• Update(IDictionary, IDictionary)

• Delete(IDictionary, IDictionary)

The FieldUpdated event handler is used to implement the business logic associated with changes to
the value of the DAC field in the following cases:

• Assigning the related fields of the data record containing the modified field their default values or
updating them

• Updating any of the following:

• The detail data records in a one-to-many relationship

• The related data records in a one-to-one relationship

• The master data records in a many-to-one relationship

Figure: Execution order for FieldUpdated event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_FieldUpdated(
 PXCache sender,
 PXFieldUpdatedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXFieldUpdatedEventArgs e

The instance of the PXFieldUpdatedEventArgs type that holds data for the FieldUpdated event

 | API Reference | 136

Examples of Use

The code below updates the related field values of the current data record, assigns them the default
values, or performs both actions.

public class APInvoiceEntry : APDataEntryGraph<APInvoiceEntry,
 APInvoice>,
 PXImportAttribute.IPXPrepareItems
{
 ...

 protected virtual void APTran_UOM_FieldUpdated(
 PXCache sender,
 PXFieldUpdatedEventArgs e)
 {
 APTran tran = (APTran)e.Row;
 sender.SetDefaultExt<APTran.unitCost>(tran);
 sender.SetDefaultExt<APTran.curyUnitCost>(tran);
 sender.SetValue<APTran.unitCost>(tran, null);
 }

 ...
}

The code below updates the related data records.

public class ARCashSaleEntry : ARDataEntryGraph<ARCashSaleEntry,
 ARCashSale>
{
 ...

 protected virtual void ARCashSale_ProjectID_FieldUpdated(
 PXCache sender,
 PXFieldUpdatedEventArgs e)
 {
 ARCashSale row = e.Row as ARCashSale;

 foreach (ARTran tran in Transactions.Select())
 Transactions.Cache.SetDefaultExt<ARTran.projectID>(tran);
 }

 ...
}

Related Types

• PXFieldUpdatedEventArgs Class

• PXEntryStatus Enumeration

PXFieldUpdatedEventArgs Class

Provides data for the FieldUpdated event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldUpdatedEventArgs : CancelEventArgs

 | API Reference | 137

Properties

• public object Row

Gets the current DAC object

• public object OldValue

Gets the previous value of the current DAC field

• public bool ExternalCall

Gets the value specifying whether the new value of the current DAC field has been changed in the
UI or through the Web Service API

FieldSelecting Event

The FieldSelecting event is triggered:

• When the external representation—the way the value should be displayed in the user interface
(UI)—of a data access class (DAC) field value is requested from the UI or through the Web
Service application programming interface (API).

• When any the following methods of the PXCache class initiates assigning a field its default value:

• Insert()

• Insert(object)

• Insert(IDictionary)

• While a field is updated in the PXCache object, initiated by any the following methods of the
PXCache class:

• Update(object)

• Update(IDictionary, IDictionary)

• While a DAC field value is requested through any of the following methods of the PXCache class:

• GetValueInt(object, string)

• GetValueInt<Field>(object)

• GetValueExt(object, string)

• GetValueExt<Field>(object)

• GetValuePending(object, string)

• ToDictionary(object)

• GetStateExt(object, string)

• GetStateExt<Field>(object)

The FieldSelecting event handler is used to:

• Convert the internal presentation of a DAC field (the data field value of a DAC instance) to the
external presentation (the value displayed in the UI).

• Convert the values of multiple DAC fields to a single external presentation.

• Provide additional information to set up a DAC field input control or cell presentation.

 | API Reference | 138

Figure: Execution order for FieldSelecting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_FieldSelecting(
 PXCache sender,
 PXFieldSelectingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXFieldSelectingEventArgs e

The instance of the PXFieldSelectingEventArgs type that holds data for the FieldSelecting
event.

Examples of Use

The code below converts the DAC field value to its external presentation.

public class PXTimeSpanLongAttribute : PXIntAttribute
{
 ...

 public override void FieldSelecting(PXCache sender,
 PXFieldSelectingEventArgs e)
 {
 if (_AttributeLevel == PXAttributeLevel.Item || e.IsAltered)
 {
 string inputMask = this.inputMask ??
 _inputMasks[(int)this._Format];
 int lenght = this.inputMask != null ? _maskLenght :
 _lengths[(int)this._Format];
 inputMask = PXMessages.LocalizeNoPrefix(inputMask);
 e.ReturnState = PXStringState.CreateInstance(
 e.ReturnState,
 lenght,
 null,

 | API Reference | 139

 _FieldName,
 _IsKey,
 null,
 String.IsNullOrEmpty(inputMask) ? null : inputMask,
 null, null, null, null);
 }
 if (e.ReturnValue != null)
 {
 TimeSpan span = new TimeSpan(0, 0, (int)e.ReturnValue, 0);
 int hours =
 (this._Format == TimeSpanFormatType.LongHoursMinutes) ?
 span.Days * 24 + span.Hours : span.Hours;
 e.ReturnValue = string.Format(_outputFormats[(int)this._Format],
 span.Days, hours, span.Minutes);
 }
 }

 ...
}

The example related to FieldUpdating demonstrates the conversion of multiple DAC field values into
external presentation in a single field.

The code below calculates the external value of a DAC field.

[TableAndChartDashboardType]
public class RevalueAPAccounts : PXGraph<RevalueAPAccounts>
{
 ...

 protected virtual void RevalueFilter_TotalRevalued_FieldSelecting(
 PXCache sender,
 PXFieldSelectingEventArgs e)
 {
 if (e.Row == null) return;

 decimal val = 0m;
 foreach (RevaluedAPHistory res in APAccountList.Cache.Updated)
 if ((bool)res.Selected)
 val += (decimal)res.FinPtdRevalued;
 e.ReturnValue = val;
 e.Cancel = true;
 }

 ...
}

The code below defines the mask for the input control or cell presentation of a DAC field.

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Parameter |
 AttributeTargets.Class | AttributeTargets.Method)]
public class PXDBStringWithMaskAttribute : PXDBStringAttribute,
 IPXFieldSelectingSubscriber
{
 ...

 public override void FieldSelecting(PXCache sender,
 PXFieldSelectingEventArgs e)
 {
 if (e.Row == null) return;

 string mask = this.FindMask(sender, e.Row);
 if (!string.IsNullOrEmpty(mask))
 e.ReturnState = PXStringState.CreateInstance(e.ReturnState,
 _Length,
 null,
 _FieldName,

 | API Reference | 140

 _IsKey,
 null,
 mask,
 null, null, null,
 null);
 else
 base.FieldSelecting(sender, e);
 }

 ...
}

The code below defines precision for a DAC field input control or cell presentation.

public class LSSOShipLine :
 LSSelect<
 SOShipLine, SOShipLineSplit, SOShipLineSplit.uOM,
 Where<SOShipLineSplit.shipmentNbr,
 Equal<Current<SOShipLine.shipmentNbr>>,
 And<SOShipLineSplit.inventoryID,
 Equal<Current<INLotSerialStatus.inventoryID>>,
 And<SOShipLineSplit.siteID,
 Equal<Current<INLotSerialStatus.siteID>>,
 And<SOShipLineSplit.subItemID,
 Equal<Current<INLotSerialStatus.subItemID>>,
 And<SOShipLineSplit.locationID,
 Equal<Current<INLotSerialStatus.locationID>>,
 And<SOShipLineSplit.lotSerialNbr,
 Equal<Current<INLotSerialStatus.lotSerialNbr>>>>>>>>>
{
 ...

 protected virtual void OrigOrderQty_FieldSelecting(
 PXCache sender,
 PXFieldSelectingEventArgs e)
 {
 e.ReturnState =
 PXDecimalState.CreateInstance(
 e.ReturnState,
 ((INSetup)_Graph.Caches[typeof(INSetup)].Current).DecPlQty,
 _OrigOrderQtyField,
 false,
 0,
 decimal.MinValue,
 decimal.MaxValue);
 ((PXFieldState)e.ReturnState).DisplayName =
 PXMessages.LocalizeNoPrefix(Messages.OrigOrderQty);
 ((PXFieldState)e.ReturnState).Enabled = false;
 }

 ...
}

The code below defines lists of values and labels for the PXDropDown input control of the DAC field.

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Class |
 AttributeTargets.Parameter | AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXBaseListAttribute))]
public class PXStringListAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber
{
 ...

 public virtual void FieldSelecting(PXCache sender,
 PXFieldSelectingEventArgs e)
 {
 if (_AttributeLevel == PXAttributeLevel.Item || e.IsAltered)

 | API Reference | 141

 {
 string[] values = _AllowedValues;
 e.ReturnState = PXStringState.CreateInstance(
 e.ReturnState, null, null, _FieldName,
 null, -1, null, values, _AllowedLabels,
 _ExclusiveValues, null);
 }
 }

 ...
}

Related Types

• PXFieldSelectingEventArgs Class

• PXFieldState Class

• PXStringState Class

• PXSegmentedState Class

• PXSegment Class

• PXDoubleState Class

• PXFloatState Class

• PXDecimalState Class

• PXDateState Class

• PXIntState Class

• PXGuidState Class

• PXLongState Class

• PXUIVisibility Enumeration

• PXErrorLevel Enumeration

• PXErrorHandling Enumeration

PXFieldSelectingEventArgs Class

Provides data for the FieldSelecting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXFieldSelectingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object ReturnState

Gets or sets the data used to set up DAC field input control or cell presentation.

• public bool IsAltered

 | API Reference | 142

Gets or sets the value indicating whether the ReturnState property should be created for each
data record.

• public object ReturnValue

Gets or sets the external presentation of the value of the DAC field.

• public bool ExternalCall

Gets the value specifying if the current DAC field has been selected in the UI or through the Web
Service API.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
FieldSelecting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

PXFieldState Class

Provides data to set up a DAC field input control or cell presentation.

Inherits

IDataSourceFieldSchema, ICloneable

Syntax

public class PXFieldState : IDataSourceFieldSchema, ICloneable

Properties

• public virtual Type DataType

Gets the type of data stored in the field.

• public virtual bool Identity

Gets the value indicating whether the field is mapped to an identity column in a database table.

• public virtual bool IsReadOnly

Gets the value indicating whether the field is read-only.

• public virtual bool IsUnique

Gets the indication of a uniqueness constraint on the field.

• public virtual int Length

Gets or sets the storage size of the field.

• public virtual string Name

Gets the name of the field.

• public virtual bool Nullable

Gets the value indicating whether the field can store the null value.

• public virtual int Precision

Gets the maximum number of digits used to represent a numeric value stored in the field.

• public virtual int Scale

Gets the number of digits to the right of the decimal point used to represent a numeric value
stored in the field.

 | API Reference | 143

• public virtual bool? Required

Gets or sets the value indicating whether the value of the field is required.

• public virtual object Value

Gets or sets the value stored in the field.

• public virtual string Error

Gets or sets the error text assigned to the field.

• public virtual bool IsWarning

Gets or sets the value indicating whether the field is marked with the Warning sign.

• public virtual PXErrorLevel ErrorLevel

Gets or sets the error level assigned to the field.

• public virtual bool Enabled

Gets or sets the value indicating whether the current field input control or cell will respond to a
user's interaction.

• public virtual bool Visible

Gets or sets the value indicating whether the current field input control or column is displayed.

• public virtual string DisplayName

Gets or sets the display name for the field.

• public virtual string DescriptionName

Gets or sets the name of a DAC field displayed in the PXSelector control of the field if the
DisplayMode property is set to Text. If the DisplayMode property is set to Hint, the name is
displayed in the ValueField - DescriptionName format. By default, DisplayMode is set to Hint.

• public virtual PXUIVisibility Visibility

Gets or sets the PXUIVisibility object for the field.

• public virtual object DefaultValue

Gets or sets the default value that is displayed in the field's cell for a new record that is not yet
committed to the PXGraph instance.

• public virtual string ViewName

Gets or sets the name for the PXView object bound to the PXSelector field control.

• public virtual string[] FieldList

Gets or sets the array of DAC fields for the PXSelector field control.

• public virtual string[] HeaderList

Gets or sets the array of field display names for the PXSelector field control.

• public virtual string ValueField

Gets or sets the name of a DAC field, which is:

• Displayed in the PXSelector field control on focus.

• Used to locate the selected record in the PXSelector field control.

• Displayed in the PXSelector field control when the DisplayMode property is set to Value.

• public virtual bool PrimaryKey

Gets the value indicating whether the field is marked as a key field.

 | API Reference | 144

Methods

• public void SetFieldName(string)

Sets the name of the field.

• public static PXFieldState CreateInstance(object value, Type dataType,
bool? isKey, bool? nullable, int? required, int? precision, int? length,
object defaultValue, string fieldName, string descriptionName, string
displayName, string error, PXErrorLevel errorLevel, bool? enabled, bool?
visible, bool? readOnly, PXUIVisibility visibility, string viewName,
string[] fieldList, object value)

Creates an instance of the PXFieldState class.

• public PXFieldState CreateInstance(Type dataType, bool? isKey,
bool? nullable, int? required, int? precision, int? length, object
defaultValue, string fieldName, string descriptionName, string
displayName, string error, PXErrorLevel errorLevel, bool? enabled, bool?
visible, bool? readOnly, PXUIVisibility visibility, string viewName,
string[] fieldList, Type dataType)

Creates an instance of the PXFieldState class.

• public static string GetStringValue(PXFieldState state, string fFormat,
PXFieldState state)

Returns the string representation of the field's value.

Parameters:

• state

The PXFieldState object of the field.

• fFormat

The format for a numeric value.

• dFormat

The format for a DateTime value.

• public static PXFieldState[] GetFields(PXGraph, Type[], PXGraph)

Returns the PXFieldState objects for the specified PXGraph instance and the array of DAC
objects.

PXStringState Class

Provides data to set up the segstringmented DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXStringState : PXFieldState

Properties

• public virtual string InputMask

Gets or sets the value specifying how users enter data and how data is displayed

• public virtual string[] AllowedValues

 | API Reference | 145

Gets or sets the list of values for the PXDropDown field input control

• public virtual string[] AllowedLabels

Gets or sets the list of labels for the PXDropDown field input control

• public virtual string[] AllowedImages

Gets or sets the list of images for the PXDropDown field input control

• public virtual bool ExclusiveValues

Gets a value that enables or disables editing of the value in the PXDropDown field input control

• public virtual bool IsUnicode

Gets or sets a value indicating whether Unicode string content is supported

• public Dictionary

Gets the collection of values and labels for the field PXDropDown input control.

Methods

• public static PXFieldState CreateInstance(object value, int? length,
bool? isUnicode, string fieldName, bool? isKey, int? required, string
inputMask, string[] allowedValues, string[] allowedLabels, bool?
exclusiveValues, object value)

Creates an instance of the PXStringState class

PXSegmentedState Class

Provides data to set up the segmented DAC field input control or cell presentation.

Inherits

PXStringState

Syntax

public class PXSegmentedState : PXStringState

Properties

• public PXSegment[] Segments

Gets or sets the list of segments for the segmented field input control or cell presentation

• public bool ValidCombos

Gets or sets the value indicating whether the segmented field input control displays a single
lookup or a separate lookup for each segment

• public string Wildcard

Gets or sets the collection of characters allowed to be specified within each segment in addition to
the Mask property of PXSegment

Methods

• public static PXFieldState CreateInstance(object value, string
fieldName, PXSegment[] segments, string viewName, bool? validCombos,
object value)

Creates an instance of the PXSegment class

 | API Reference | 146

PXSegment Class

Provides data to set up a single segment of a segmented field input control or cell presentation.

Syntax

public class PXSegment

Methods

• public PXSegment(char editMask, char fillCharacter, short length,
bool validate, short caseConverter, short align, char separator, char
editMask)

Creates an instance of the PXSegment class

Fields

• public readonly char EditMask

Gets the input mask for the segment:

• C: MaskType.Ascii

• a: MaskType.AlphaNumeric

• 9: MaskType.Numeric

• ?: MaskType.Alpha

• public readonly short Length

Gets the number of characters in the segment

• public readonly bool Validate

Gets the value indicating whether the new specified segment value should be validated

• public readonly short CaseConvert

Gets the value that specifies whether the letters in the segment are converted to uppercase or
lowercase:

• 0: NotSet

• 1: Upper

• 2: Lower

• public readonly short Align

Gets the text alignment type in the segment:

• 1: Left

• 2: Right

• public readonly char Separator

Gets the character used to separate the segment from the previous one

• public readonly bool ReadOnly

Gets the value indicating whether the contents of the segment can be changed

PXDoubleState Class

Provides data to set up the decimal DAC field input control or cell presentation.

 | API Reference | 147

Inherits

PXFieldState

Syntax

public class PXDoubleState : PXFieldState

Properties

• public virtual double MinValue

Gets or sets the minimum value that can be set in the field input control

• public virtual double MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

• public static PXFieldState CreateInstance(object value, int? precision,
string fieldName, bool? isKey, int? required, double? minValue, object
value)

Creates an instance of the PXDoubleState class

PXFloatState Class

Provides data to set up the float DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXFloatState : PXFieldState

Properties

• public virtual double MinValue

Gets or sets the minimum value that could be set in the field input control.

• public virtual double MaxValue

Gets or sets the maximum value that could be set in the field input control.

Methods

• public static PXFieldState CreateInstance(object value, int? precision,
string fieldName, bool? isKey, int? required, float? minValue, object
value)

Creates an instance of the PXFloatState class

PXDecimalState Class

Provides data to set up the decimal DAC field input control or cell presentation.

Inherits

PXFieldState

 | API Reference | 148

Syntax

public class PXDecimalState : PXFieldState

Properties

• public virtual double MinValue

Gets or sets the minimum value that can be set in the field input control

• public virtual double MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

• public static PXFieldState CreateInstance(object value, int? precision,
string fieldName, bool? isKey, int? required, decimal? minValue, object
value)

Creates an instance of the PXDecimalState class

PXDateState Class

Provides data to set up the DateTime DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXDateState : PXFieldState

Properties

• public virtual string InputMask

Gets or sets the value specifying how users enter data

• public virtual string DisplayMask

Gets or sets the value specifying how data is displayed

• public virtual DateTime MinValue

Gets or sets the minimum value that can be set in the field input control

• public virtual DateTime MaxValue

Gets or sets the maximum value that can be set in the field input control

Methods

• public static PXFieldState CreateInstance(object value, string
fieldName, bool? isKey, int? required, string inputMask, string
displayMask, DateTime? minValue, object value)

Creates an instance of the PXDateState class

PXIntState Class

Provides data to set up the integer DAC field input control or cell presentation.

 | API Reference | 149

Inherits

PXFieldState

Syntax

public class PXIntState : PXFieldState

Properties

• public virtual int MinValue

Gets or sets the minimum value that could be set in the field input control

• public virtual int MaxValue

Gets or sets the maximum value that could be set in the field input control

• public virtual string[] AllowedValues

Gets or sets the list of values for the field input control of the PXDropDown type

• public virtual string[] AllowedLabels

Gets or sets the list of labels for the field input control of the PXDropDown type

• public virtual string[] AllowedImages

Gets or sets the list of images for the field input control of the PXDropDown type

Methods

• public static PXFieldState CreateInstance(object value, string
fieldName, bool? isKey, int? required, int? minValue, int? maxValue,
int[] allowedValues, string[] allowedLabels, Type dataType, object
value)

Creates an instance of the PXIntState class

PXGuidState Class

Provides data to set up the Guid DAC field input control or cell presentation.

Inherits

PXFieldState

Syntax

public class PXGuidState : PXFieldState

Methods

• public static PXFieldState CreateInstance(object value, string
fieldName, bool? isKey, object value)

Creates an instance of the PXGuidState class

PXLongState Class

Provides data to set up the long DAC field input control or cell presentation.

Inherits

PXFieldState

 | API Reference | 150

Syntax

public class PXLongState : PXFieldState

Properties

• public virtual double MinValue

Gets or sets the minimum value that could be set in the field input control

• public virtual double MaxValue

Gets or sets the maximum value that could be set in the field input control

Methods

• public static PXFieldState CreateInstance(object value, string
fieldName, bool? isKey, int? required, long? minValue, long? maxValue,
long[] allowedValues, string[] allowedLabels, object value)

Creates an instance of the PXLongState class

RowSelected Event

The RowSelected event is triggered in the process of:

• Displaying a data record in the user interface (UI).

• Execution of the following methods of the PXCache class:

• Locate(IDictionary)

• Insert()

• Insert(object)

• Insert(IDictionary)

• Update(object)

• Update(IDictionary, IDictionary)

• Delete(IDictionary, IDictionary)

Avoid executing BQL statements in a RowSelected event handler, because this execution may cause
performance degradation because of multiple invocations of the RowSelected event for a single data
record.

The RowSelected event handler is used to:

• Implement the UI presentation logic.

• Set up the processing operation on a processing screen (a type of UI screen that allows the
execution of a long-running operation on multiple data records at once).

 | API Reference | 151

Figure: Execution order for RowDeleted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowSelected(PXCache sender,
 PXRowSelectedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowSelectedEventArgs e

The instance of the PXRowSelectedEventArgs type that holds data for the RowSelected event

Examples of Use

The code below sets UI properties for input controls at run time.

public class VendorMaint :
 BusinessAccountGraphBase<VendorR, VendorR,
 Where<BAccount.type, Equal<BAccountType.vendorType>,
 Or<BAccount.type, Equal<BAccountType.combinedType>>>>
{
 ...

 protected virtual void Vendor_RowSelected(PXCache sender,
 PXRowSelectedEventArgs e)
 {
 Vendor row = (Vendor)e.Row;
 if (row == null) return;

 bool isNotInserted = !(sender.GetStatus(row) ==
 PXEntryStatus.Inserted);
 PXUIFieldAttribute.SetVisible<VendorBalanceSummary.depositsBalance>(
 VendorBalance.Cache, null, isNotInserted);
 PXUIFieldAttribute.SetVisible<VendorBalanceSummary.balance>(
 VendorBalance.Cache, null, isNotInserted);
 PXUIFieldAttribute.SetEnabled<Vendor.taxReportFinPeriod>(
 sender, null,
 row.TaxPeriodType != PX.Objects.TX.VendorTaxPeriodType.FiscalPeriod);
 PXUIFieldAttribute.SetEnabled<Vendor.taxReportPrecision>(
 sender, null, row.TaxUseVendorCurPrecision != true);
 }

 ...

 | API Reference | 152

}

The code below sets UI properties for actions.

public class APAccess : PX.SM.BaseAccess
{
 ...

 protected virtual void RelationGroup_RowSelected(PXCache sender,
 PXRowSelectedEventArgs e)
 {
 PX.SM.RelationGroup group = e.Row as PX.SM.RelationGroup;
 if (group != null)
 {
 if (String.IsNullOrEmpty(group.GroupName))
 {
 Save.SetEnabled(false);
 Vendor.Cache.AllowInsert = false;
 }
 else
 {
 Save.SetEnabled(true);
 Vendor.Cache.AllowInsert = true;
 }
 }
 }

 ...
}

The code below sets up the processing operation on a processing screen.

[TableAndChartDashboardType]
public class APIntegrityCheck : PXGraph<APIntegrityCheck>
{
 ...

 protected virtual void APIntegrityCheckFilter_RowSelected(
 PXCache sender,
 PXRowSelectedEventArgs e)
 {
 APIntegrityCheckFilter filter = Filter.Current;

 APVendorList.SetProcessDelegate<APReleaseProcess>(
 delegate(APReleaseProcess re, Vendor vend)
 {
 re.Clear(PXClearOption.PreserveTimeStamp);
 re.IntegrityCheckProc(vend, filter.FinPeriodID);
 }
);
 }

 ...
}

Related Types

• PXRowSelectedEventArgs Class

PXRowSelectedEventArgs Class

Provides data for the RowSelected event.

 | API Reference | 153

Inherits

EventArgs

Syntax

public sealed class PXRowSelectedEventArgs : EventArgs

Properties

• public object Row

Gets the DAC object that is being processed

RowInserting Event

The RowInserting event is trigged before the new data record is inserted into the PXCache object as a
result of:

• Inserting initiated in the user interface (UI) or through the Web Service application programming
interface (API).

• Invocation of the following methods of the PXCache class:

• Insert()

• Insert(object)

• Insert(IDictionary)

The RowInserting event handler is used to:

• Evaluate the data record that is being inserted.

• Cancel the insert operation by throwing an exception (see Examples of Use).

• Assign the default values to the fields of the data record that is being inserted.

Figure: Execution order for RowInserting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowInserting(PXCache sender,
 PXRowInsertingEventArgs e)
{

 | API Reference | 154

 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowInsertingEventArgs e

The instance of the PXRowInsertingEventArgs type that holds data for the RowInserting event

Examples of Use

The code below evaluates the data record that is being inserted and cancels the insert operation.

public class CashAccountMaint : PXGraph<CashAccountMaint>
{
 ...

 protected virtual void PaymentMethodAccount_RowInserting(
 PXCache sender,
 PXRowInsertingEventArgs e)
 {
 PaymentMethodAccount row = (PaymentMethodAccount)e.Row;
 if (row.PaymentMethodID != null)
 foreach (PaymentMethodAccount it in Details.Select())
 if (!object.ReferenceEquals(row, it) &&
 it.PaymentMethodID == row.PaymentMethodID)
 throw new PXException(
 Messages.DuplicatedPaymentMethodForCashAccount,
 row.PaymentMethodID);
 if (row.APIsDefault == true &&
 String.IsNullOrEmpty(row.PaymentMethodID))
 throw new PXException(ErrorMessages.FieldIsEmpty,
 typeof(PaymentMethodAccount.
 paymentMethodID).Name);
 }

 ...
}

The code below assigns the default field values to the data record that is being inserted.

public class MyCaseDetailsMaint : PXGraph<MyCaseDetailsMaint>
{
 ...

 protected virtual void EPActivity_RowInserting(PXCache sender,
 PXRowInsertingEventArgs e)
 {
 EPActivity row = e.Row as EPActivity;
 if (Case.Current != null)
 {
 row.StartDate = PXTimeZoneInfo.Now;
 row.RefNoteID = Case.Current.NoteID;
 row.ClassID = CRActivityClass.Activity;
 row.IsExternal = true;
 }
 }

 ...
}

 | API Reference | 155

Related Types

• PXRowInsertingEventArgs Class

• PXEntryStatus Enumeration

PXRowInsertingEventArgs Class

Provides data for the RowInserting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowInsertingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the DAC object that is being inserted.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
RowInserting event handlers specified within DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

• public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object is being inserted from the UI or
through the Web Service API.

RowInserted Event

The RowInserted event is triggered after a new data record has been successfully inserted into the
PXCache object as a result of:

• Insertion initiated in the user interface (UI) or through the Web Service application programming
interface (API).

• Invocation of any of the following PXCache class methods:

• Insert()

• Insert(object)

• Insert(IDictionary)

The RowInserted event handler is used to implement the business logic for:

• Inserting the detail data records in a one-to-many relationship.

• Updating the master data record in a many-to-one relationship.

• Inserting or updating the related data record in a one-to-one relationship.

 | API Reference | 156

Figure: Execution order for RowInserted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowInserted(PXCache sender,
 PXRowInsertedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowInsertedEventArgs e

The instance of the PXRowInsertedEventArgs type that holds data for the RowInserted event

Examples of Use

The code below inserts the detail data records in a one-to-many relationship.

public class VendorClassMaint : PXGraph<VendorClassMaint>
{
 ...

 public virtual void VendorClass_RowInserted(PXCache sender,
 PXRowInsertedEventArgs e)
 {
 VendorClass row = (VendorClass)e.Row;
 if (row == null || row.VendorClassID == null) return;

 foreach (APNotification n in PXSelect<
 APNotification,
 Where<APNotification.sourceCD,
 Equal<APNotificationSource.vendor>>>.
 Select(this))
 {
 NotificationSource source = new NotificationSource();
 source.SetupID = n.SetupID;
 NotificationSources.Insert(source);
 }
 }

 ...
}

 | API Reference | 157

The code below updates the master data record in a many-to-one relationship.

public class InventoryItemMaint : PXGraph<InventoryItemMaint>
{
 ...

 protected virtual void POVendorInventory_RowInserted(
 PXCache sender,
 PXRowInsertedEventArgs e)
 {
 POVendorInventory current = e.Row as POVendorInventory;
 if (current.IsDefault == true && current.VendorID != null &&
 current.VendorLocationID != null && current.SubItemID != null &&
 this.Item.Current.PreferredVendorLocationID !=
 current.VendorLocationID)
 {
 InventoryItem upd = Item.Current;
 upd.PreferredVendorID = current.IsDefault == true ?
 current.VendorID :
 null;
 upd = this.Item.Update(upd);
 upd.PreferredVendorLocationID = current.IsDefault ==
 true ? current.VendorLocationID : null;
 Item.Update(upd);
 }
 }

 ...
}

Related Types

• PXRowInsertedEventArgs Class

• PXEntryStatus Enumeration

PXRowInsertedEventArgs Class

Provides data for the RowInserted event.

Inherits

EventArgs

Syntax

public sealed class PXRowInsertedEventArgs : EventArgs

Properties

• public object Row

Gets the DAC object that has been inserted

• public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been inserted in the UI or
through the Web Service API

RowUpdating Event

The RowUpdating event is triggered before the data record is actually updated in the PXCache object
during an update initiated:

• In the user interface (UI) or through the Web Service application programming interface (API).

 | API Reference | 158

• By invocation of the following methods of the PXCache class:

• Update(object)

• Update(IDictionary, IDictionary)

Updating of a data record is executed only when there is a data record with the same values of the DAC
key fields in either the PXCache object or the database. Otherwise, the process of inserting the data record
is started.

The RowUpdating event handler is used to evaluate the data record that is being updated and cancel
the update operation if the data record does not fit the business logic requirements.

Figure: Execution order for RowUpdating event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowUpdating(PXCache sender,
 PXRowUpdatingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowUpdatingEventArgs e

The instance of the PXRowUpdatingEventArgs type that holds data for the RowUpdating event

Examples of Use

The code below evaluates the data record that is being updated, cancels the update operation, and
shows a message box.

public class APPaymentEntry : APDataEntryGraph<APPaymentEntry, APPayment>
{
 ...

 protected virtual void APAdjust_RowUpdating(PXCache sender,
 PXRowUpdatingEventArgs e)
 {

 | API Reference | 159

 APAdjust adj = (APAdjust)e.Row;
 if (_IsVoidCheckInProgress == false && adj.Voided == true)
 {
 throw new PXException(ErrorMessages.CantUpdateRecord);
 }
 }

 ...
}

The code below evaluates the data record that is being updated, cancels the update operation, and
shows the warning or error indication near the input control for one field or multiple fields.

protected virtual void INLotSerClass_RowUpdating(PXCache sender,
 PXRowUpdatingEventArgs e)
{
 INLotSerClass row = (INLotSerClass) e.NewRow;
 if (row.LotSerTrackExpiration != true &&
 row.LotSerIssueMethod == INLotSerIssueMethod.Expiration)
 {
 sender.RaiseExceptionHandling<INLotSerClass.lotSerIssueMethod>(
 row, null,
 new PXSetPropertyException(
 Messages.LotSerTrackExpirationInvalid,
 typeof(INLotSerClass.lotSerIssueMethod).Name));
 e.Cancel = true;
 }
}

Related Types

• PXRowUpdatingEventArgs Class

• PXEntryStatus Enumeration

PXRowUpdatingEventArgs Class

Provides data for the RowUpdating event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowUpdatingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the original DAC object that is being updated.

• public object NewRow

Gets the updated copy of the DAC object that is going to be merged with the original one.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
RowUpdating event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

 | API Reference | 160

Fields

• public bool ExternalCall

Gets the value indicating, if it equals true, that the update of the DAC object has been initiated
from the UI or through the Web Service API

RowUpdated Event

The RowUpdated event is triggered after the data record has been successfully updated in the PXCache
object as a resulf of:

• An update initiated in the user interface (UI) or through the Web Service application programming
interface (API).

• Invocation of the following methods of the PXCache class:

• Update(object)

• Update(IDictionary, IDictionary)

Updating of a data record is executed only when there is a data record with the same values of the data
access class (DAC) key fields, either in the PXCache object or in the database. Otherwise, the process of
inserting the data record is started.

The RowUpdated event handler is used to implement the business logic of:

• Updating the master data record in a many-to-one relationship.

• Inserting or updating the detail data records in a one-to-many relationship.

• Updating the related data record in a one-to-one relationship.

Figure: Execution order for RowUpdated event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowUpdated(PXCache sender,
 PXRowUpdatedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowUpdatedEventArgs e

The instance of the PXRowUpdatedEventArgs type that holds data for the RowUpdated event

 | API Reference | 161

Examples of Use

The code below updates the detail data records in a one-to-many relationship.

public class DraftScheduleMaint : PXGraph<DraftScheduleMaint, DRSchedule>
{
 ...

 protected virtual void DRSchedule_RowUpdated(PXCache sender,
 PXRowUpdatedEventArgs e)
 {
 DRSchedule row = e.Row as DRSchedule;
 if (!sender.ObjectsEqual<DRSchedule.documentType, DRSchedule.refNbr,
 DRSchedule.lineNbr, DRSchedule.bAccountID,
 DRSchedule.finPeriodID,
 DRSchedule.docDate>(e.Row, e.OldRow))
 {
 foreach (DRScheduleDetail detail in Components.Select())
 {
 detail.Module = row.Module;
 detail.DocumentType = row.DocumentType;
 detail.DocType = row.DocType;
 detail.RefNbr = row.RefNbr;
 detail.LineNbr = row.LineNbr;
 detail.BAccountID = row.BAccountID;
 detail.FinPeriodID = row.FinPeriodID;
 detail.DocDate = row.DocDate;
 Components.Update(detail);
 }
 }
 }

 ...
}

The code below updates the master data record in a many-to-one relationship.

public class ARInvoiceEntry : ARDataEntryGraph<ARInvoiceEntry, ARInvoice>,
 PXImportAttribute.IPXPrepareItems
{
 ...

 protected virtual void ARTran_RowUpdated(PXCache sender,
 PXRowUpdatedEventArgs e)
 {
 ARTran row = (ARTran)e.Row;
 ARTran oldRow = (ARTran)e.OldRow;
 if (Document.Current != null &&
 IsExternalTax == true &&
 !sender.ObjectsEqual<ARTran.accountID, ARTran.inventoryID,
 ARTran.tranDesc,
 ARTran.tranAmt, ARTran.tranDate,
 ARTran.taxCategoryID>(e.Row, e.OldRow))
 {
 ARInvoice copy = Document.Current;
 copy.IsTaxValid = false;
 Document.Update(copy);
 }
 }

 ...
}

Related Types

• PXRowUpdatedEventArgs Class

 | API Reference | 162

• PXEntryStatus Enumeration

PXRowUpdatedEventArgs Class

Provides data for the RowUpdated event.

Inherits

EventArgs

Syntax

public sealed class PXRowUpdatedEventArgs : EventArgs

Properties

• public object Row

Gets the DAC object that has been updated

• public object OldRow

Gets the copy of the original DAC object before the Update operation

Fields

• public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been updated from the UI or
through the Web Service API

RowDeleting Event

The RowDeleting event is triggered for a data record that is being deleted from the PXCache object
after its status has been set to Deleted or InsertedDeleted, but the data record can still be reverted
to the previous state by canceling the delete operation (see Examples of Use). The status of the data
record is set to Deleted or InsertedDeleted as a result of:

• Deletion initiated in the user interface (UI) or through the Web Service application programming
interface (API).

• Invocation of the following methods of the PXCache class:

• Delete(object)

• Delete(IDictionary, IDictionary)

When a data record is deleted that has already been stored in the database (and, hence, exists in both the
database and the PXCache object), the status of the data record is set to Deleted. For a data record that
has not yet been stored in the database but was only inserted in the PXCache object, the status of the data
record is set to InsertedDeleted.

The RowDeleting event handler is used to evaluate the data record that is marked as Deleted or
InsertedDeleted and cancel the delete operation if it is required by the business logic.

 | API Reference | 163

Figure: Execution order for RowDeleting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowDeleting(PXCache sender,
 PXRowDeletingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowDeletingEventArgs e

The instance of the PXRowDeletingEventArgs type that holds data for the RowDeleting event

Examples of Use

The code below evaluates the data record that is being deleted and cancels the delete operation by
throwing an exception.

public class VendorMaint : BusinessAccountGraphBase<
 VendorR, VendorR,
 Where<BAccount.type,
 Equal<BAccountType.vendorType>,
 Or<BAccount.type,
 Equal<BAccountType.combinedType>>>>
{
 ...

 protected virtual void Vendor_RowDeleting(PXCache sender,
 PXRowDeletingEventArgs e)
 {
 Vendor row = e.Row as Vendor;

 TX.Tax tax = PXSelect<
 TX.Tax,
 Where<TX.Tax.taxVendorID,
 Equal<Current<Vendor.bAccountID>>>>.

 | API Reference | 164

 Select(this);
 if (tax != null)
 throw new PXException(Messages.TaxVendorDeleteErr);
 }

 ...
}

Related Types

• PXRowDeletingEventArgs Class

• PXEntryStatus Enumeration

PXRowDeletingEventArgs Class

Provides data for the RowDeleting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowDeletingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the DAC object that has been marked as Deleted.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
RowDeleting event handlers specified within DAC field attributes should be invoked. The handlers
will not be invoked if the property is set to true.

• public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been marked as Deleted in
the UI or through the Web Service API.

RowDeleted Event

The RowDeleted event is triggered for a data record that is being deleted from the PXCache object—that
is, a data record whose status has been successfully set to Deleted or InsertedDeleted as result of:

• Deletion initiated in the user interface (UI) or through the Web Service application programming
interface (API).

• Invocation of the following methods of the PXCache class:

• Delete(object)

• Delete(IDictionary, IDictionary)

When a data record is deleted that has already been stored in the database (and, hence, exists in both the
database and the PXCache object), the status of the data record is set to Deleted. For a data record that
has not yet been stored in the database but was only inserted in the PXCache object, the status of the data
record is set to InsertedDeleted.

The RowDeleted event handler is used to implement the business logic of:

• Deleting the detail data records in a one-to-many relationship.

 | API Reference | 165

• Updating the master data record in a many-to-one relationship.

• Deleting or updating the related data record in a one-to-one relationship.

Figure: Execution order for RowDeleted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowDeleted(PXCache sender,
 PXRowDeletedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowDeletedEventArgs e

The instance of the PXRowDeletedEventArgs type that holds data for the RowDeleted event

Examples of Use

The code below deletes detail data records in a one-to-many relationship.

public class CashTransferEntry : PXGraph<CashTransferEntry, CATransfer>
{
 ...

 public virtual void CATransfer_RowDeleted(PXCache sender,
 PXRowDeletedEventArgs e)
 {
 foreach (CATran item in TransferTran.Select())
 TransferTran.Delete(item);
 }

 ...
}

The code below updates the master data record in a many-to-one relationship.

public class INSiteMaint : PXGraph<INSiteMaint, INSite>
{
 ...

 protected virtual void INLocation_RowDeleted(PXCache sender,

 | API Reference | 166

 PXRowDeletedEventArgs e)
 {
 INLocation l = (INLocation)e.Row;
 if (site.Current == null || l == null ||
 site.Cache.GetStatus(site.Current) == PXEntryStatus.Deleted)
 return;

 INSite s = site.Current;
 if (s.DropShipLocationID == l.LocationID)
 s.DropShipLocationID = null;
 if (s.ReceiptLocationID == l.LocationID)
 s.ReceiptLocationID = null;
 if (s.ShipLocationID == l.LocationID)
 s.ShipLocationID = null;
 if (s.ReturnLocationID == l.LocationID)
 s.ReturnLocationID = null;
 site.Update(s);
 }

 ...
}

Related Types

• PXRowDeletedEventArgs Class

• PXEntryStatus Enumeration

PXRowDeletedEventArgs Class

Provides data for the RowDeleted event.

Inherits

EventArgs

Syntax

public sealed class PXRowDeletedEventArgs : EventArgs

Properties

• public object Row

Gets the DAC object that has been marked as Deleted

• public bool ExternalCall

Gets the value indicating, if it equals true, that the DAC object has been marked as Deleted in
the UI or through the Web Services API

CommandPreparing Event

The CommandPreparing event is triggered each time the Acumatica Data Access Layer prepares
a database-specific SQL statement for SELECT, INSERT, UPDATE, or DELETE operation. This
event is raised for every data access class (DAC) field placed in the PXCache object. By using the
CommandPreparing event subscriber, the application developer can alter the property values of the
PXCommandPreparingEventArgs.FieldDescription object that is used in the generation of an SQL
statement.

The CommandPreparing event handler is used to:

• Exclude a DAC field from a SELECT, INSERT, or UPDATE operation

• Replace a DAC field from a SELECT operation with a custom SQL statement

 | API Reference | 167

• Transform a DAC field value submitted to the server for INSERT, UPDATE, or DELETE operation

Figure: Execution order for CommandPreparing event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_CommandPreparing(
 PXCache sender,
 PXCommandPreparingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXCommandPreparingEventArgs e

The instance of the PXCommandPreparingEventArgs type that hold data for the
CommandPreparing event

Examples of Use

The code below excludes a DAC field from the UPDATE operation.

public class APReleaseProcess : PXGraph<APReleaseProcess>
{
 ...

 protected virtual void APRegister_FinPeriodID_CommandPreparing(
 PXCache sender,
 PXCommandPreparingEventArgs e)
 {
 if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Update)
 {
 e.FieldName = string.Empty;
 e.Cancel = true;
 }
 }
}

 | API Reference | 168

The code below replaces a DAC field with a custom T-SQL statement.

[PXAttributeFamily(typeof(PXDBFieldAttribute))]
public class BillContactFullNameAttribute : PXDBFieldAttribute
{
 public override void CommandPreparing(PXCache sender,
 PXCommandPreparingEventArgs e)
 {
 if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Select)
 {
 BqlCommand search = new Search<SOContact.fullName,
 Where<SOContact.contactID,
 Equal<SOOrder.billContactID>>>();
 StringBuilder text = new StringBuilder();
 BqlCommand.Selection selection = new BqlCommand.Selection();
 search.Parse(sender.Graph, new List<IBqlParameter>(),
 new List<Type>(),
 null, null, text, selection);

 e.BqlTable = _BqlTable;
 Type field = ((IBqlSearch)search).GetField();
 Type table = BqlCommand.GetItemType(field);
 e.FieldName = BqlCommand.SubSelect +
 selection.Get(table.Name + "." +
 field.Name) + text.ToString() + ")";
 }
 }
}

public partial class SOOrder : PX.Data.IBqlTable, PX.Data.EP.IAssign,
 IFreightBase, ICCAuthorizePayment,
 ICCCapturePayment, IInvoice
{
 ...

 #region BillContactFullName
 public abstract class billContactFullName : PX.Data.IBqlField
 {
 }
 [PXString(255, IsUnicode = true)]
 [BillContactFullNameAttribute]
 [PXUIField(DisplayName = "Business Name", IsReadOnly = true)]
 public virtual String BillContactFullName { get; set; }
 #endregion
}

The code below transforms the DAC field value during INSERT and UPDATE operations.

public class PXDBCryptStringAttribute : PXDBStringAttribute,
 IPXFieldVerifyingSubscriber,
 IPXRowUpdatingSubscriber,
 IPXRowSelectingSubscriber
{
 ...

 public override void CommandPreparing(PXCache sender,
 PXCommandPreparingEventArgs e)
 {
 if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Insert ||
 (e.Operation & PXDBOperation.Command) == PXDBOperation.Update)
 {
 string value = (string)sender.GetValue(e.Row, _FieldOrdinal);

 e.Value = !string.IsNullOrEmpty(value) ?
 Convert.ToBase64String(
 Encrypt(Encoding.Unicode.GetBytes(value))) :
 null;

 | API Reference | 169

 }
 base.CommandPreparing(sender, e);
 }

 ...
}

Related Types

• PXCommandPreparingEventArgs Class

• PXDbType Enumeration

• PXDBOperation Enumeration

PXCommandPreparingEventArgs Class

Provides data for the CommandPreparing event.

Inherits

CancelEventArgs

Syntax

public sealed class PXCommandPreparingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object Value

Gets or sets the current DAC field value.

• public PXDBOperation Operation

Gets the PXDBOperation value of the current operation.

• public Type Table

Gets the type of DAC objects placed in the cache.

• public Type BqlTable

Gets or sets the type of the DAC being used during the current operation.

• public string FieldName

Gets or sets the name of the DAC field being used during the current operation.

• public PXDbType DataType

Gets or sets the PXDbType of the DAC field being used during the current operation.

• public int? DataLength

Gets or sets the number of characters in the DAC field being used during the current operation.

• public object DataValue

Gets or sets the DAC field value being used during the current operation.

• public bool IsRestriction

Gets or sets the value indicating that the DAC field being used during the UPDATE or DELETE
operation is placed in the WHERE clause.

 | API Reference | 170

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
CommandPreparing event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

FieldDescription Class

The nested class that provides information about the field required for the T-SQL statement generation.

Syntax:

public sealed class FieldDescription

Properties:

• public readonly Type BqlTable

Gets the type of DAC objects placed in the cache

• public readonly string FieldName

Gets the name of the DAC field

• public readonly PXDbType DataType

Gets the PXDbType of the DAC field

• public readonly int? DataLength

Gets the storage size of the DAC field

• public readonly object DataValue

Gets the value stored in the DAC field

• public readonly bool IsRestriction

Gets the value indicating that the DAC field being used during the UPDATE or DELETE operation is
placed in the WHERE clause

RowSelecting Event

The RowSelecting event is triggered for each retrieved data record when the result of a BQL statement
is processed. For a BQL statement that contains a JOIN clause, the RowSelecting event is raised for
every joined data access class (DAC).

The RowSelecting event handler is used to:

• Calculate DAC field values that are not bound to specific database columns.

• Convert the database table value of a DAC field to its presentation form.

The application developer can execute additional BQL statements within a RowSelecting event handler.
However, the connection scope used to retrieve data, which triggered the RowSelecting event, is still
busy at the moment, so no other operations on this connection scope are allowed. Therefore, to execute
additional BQL statements in a RowSelecting handler, it is necessary to use a separate connection scope
(see Examples of Use).

 | API Reference | 171

Figure: Execution order for RowSelecting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowSelecting(PXCache sender,
 PXRowSelectingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowSelectingEventArgs e

The instance of the PXRowSelectingEventArgs type that holds data for the RowSelecting event

Examples of Use

The code below calculates a DAC field value that is not bound to a specific column in a database table.

public class LocationMaint :
 LocationMaintBase<Location, Location,
 Where<Location.bAccountID,
 Equal<Optional<Location.bAccountID>>>>
{

 ...

 protected virtual void Location_RowSelecting(PXCache sender,
 PXRowSelectingEventArgs e)
 {
 Location record = (Location)e.Row;
 if (record != null)
 record.IsARAccountSameAsMain =
 !object.Equals(record.LocationID, record.CARAccountLocationID);
 }

 ...
}

 | API Reference | 172

The code below executes an additional BQL statement to calculate a DAC field value that is not bound to
a specific column in a database table.

public class SOInvoiceEntry : ARInvoiceEntry
{
 ...

 protected virtual void ARInvoice_RowSelecting(PXCache sender,
 PXRowSelectingEventArgs e)
 {
 ARInvoice row = (ARInvoice)e.Row;
 if (row != null && !String.IsNullOrEmpty(row.DocType)
 && !String.IsNullOrEmpty(row.RefNbr))
 {
 row.IsCCPayment = false;
 using (new PXConnectionScope())
 {
 if (PXSelectJoin<
 CustomerPaymentMethodC,
 InnerJoin<
 CA.PaymentMethod,
 On<CA.PaymentMethod.paymentMethodID,
 Equal<CustomerPaymentMethodC.paymentMethodID>>,
 InnerJoin<
 SOInvoice,
 On<SOInvoice.pMInstanceID,
 Equal<CustomerPaymentMethodC.pMInstanceID>>>>,
 Where<SOInvoice.docType,
 Equal<Required<SOInvoice.docType>>,
 And<SOInvoice.refNbr,
 Equal<Required<SOInvoice.refNbr>>,
 And<CA.PaymentMethod.paymentType,
 Equal<CA.PaymentMethodType.creditCard>,
 And<CA.PaymentMethod.aRIsProcessingRequired,
 Equal<True>>>>>>.
 Select(this, row.DocType, row.RefNbr).Count > 0)
 {
 row.IsCCPayment = true;
 }
 }
 }
 }

 ...
}

The code below converts the database table value of a DAC field to the internal presentation.

public class PXDBCryptStringAttribute : PXDBStringAttribute,
 IPXFieldVerifyingSubscriber,
 IPXRowUpdatingSubscriber,
 IPXRowSelectingSubscriber
{
 ...

 public override void RowSelecting(PXCache sender,
 PXRowSelectingEventArgs e)
 {
 base.RowSelecting(sender, e);
 if (e.Row == null || sender.GetStatus(e.Row)
 != PXEntryStatus.Notchanged) return;
 string value = (string)sender.GetValue(e.Row, _FieldOrdinal);
 string result = string.Empty;
 if (!string.IsNullOrEmpty(value))
 {
 try
 {

 | API Reference | 173

 result = Encoding.
 Unicode.
 GetString(Decrypt(Convert.FromBase64String(value)));
 }
 catch (Exception)
 {
 try
 {
 result = Encoding.Unicode.
 GetString(Convert.FromBase64String(value));
 }
 catch (Exception)
 {
 result = value;
 }
 }
 }
 sender.SetValue(e.Row, _FieldOrdinal,
 result.Replace("\0", string.Empty));
 }

 ...
}

Related Types

• PXRowSelectingEventArgs Class

• PXDataRecord Class

PXRowSelectingEventArgs Class

Provides data for the RowSelecting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowSelectingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the DAC object that is being processed.

• public PXDataRecord Record

Gets the proceeded data record in the result set.

• public object Position

Gets or sets the index of the proceeded column in the result set.

• public object IsReadOnly

Gets the value indicating that the DAC object is read-only.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
RowSelecting event handlers specified within the DAC field attributes should be invoked. The
handlers will not be invoked if the property is set to true.

 | API Reference | 174

PXDataRecord Class

Used for wrapping a single record of a result set obtained by executing a BQL statement. A record
includes data fields of all joined tables.

Inherits

IDisposable

Syntax

public class PXDataRecord : IDisposable

Properties

• public virtual int FieldCount

Gets the number of columns in the current data record. If the PXDataRecord instance is not
positioned in a valid data record, the value is 0. The default value is -1.

Methods

• public PXDataRecord(IDataReader reader, IDbCommand command, IDataReader
reader)

• public virtual bool? GetBoolean(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The Boolean value of the column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual byte? GetByte(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The 8-bit unsigned integer value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual long GetBytes(int i, long fieldOffset, byte[] buffer, int
bufferoffset, int i)

Reads a stream of bytes from the specified column offset into the buffer as an array, starting at
the given buffer offset.

 | API Reference | 175

Parameters:

• buffer

The buffer into which to read the stream of bytes.

• bufferoffset

The index for the buffer to start reading.

• fieldOffset

The index within the field from which reading should start.

• i

The index of the zero-based column.

• length

The number of bytes to read.

Returns:

The actual number of bytes read.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual byte[] GetTimeStamp(int i)

• public virtual byte[] GetBytes(int i)

• public virtual char? GetChar(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The character value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual long GetChars(int i, long fieldoffset, char[] buffer, int
bufferoffset, int length)

Reads a stream of characters from the specified column and the offset within it into the buffer as
an array, starting from the provided offset.

Parameters:

• i

The index of the zero-based column.

• fieldoffset

The index within the row from which to start reading.

• buffer

 | API Reference | 176

The buffer into which the stream of bytes should be read.

• bufferoffset

The index in the buffer to start reading from.

• length

The number of bytes to read.

Returns:

The actual number of characters read.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual string GetDataTypeName(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The data type information for the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual DateTime? GetDateTime(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The date and time value of the specified field.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual decimal? GetDecimal(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The fixed-position numeric value of the specified column.

Exceptions:

 | API Reference | 177

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual double? GetDouble(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The double-precision floating point value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual Type GetFieldType(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The System.Type information corresponding to the type of System.Object that would be returned
by System.Data.IDataRecord.GetValue(System.Int32).

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual float? GetFloat(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The single-precision floating point number of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual Guid? GetGuid(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

 | API Reference | 178

The GUID value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual short? GetInt16(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The 16-bit signed integer value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual int? GetInt32(int i)

Parameters:

• i

The index of the zero-based column.

Returns:

The 32-bit signed integer value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual long? GetInt64(int i)

Parameters:

• i

The zero-based column's index.

Returns:

the 64-bit signed integer value of the specified field.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual string GetName(int i)

Parameters:

• i

The zero-based column's index.

 | API Reference | 179

Returns:

The name of the specified column or the empty string (""), if there is no value to return.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual string GetString(int i)

Parameters:

• i

The zero-based column's index.

Returns:

The string value of the specified column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual object GetValue(int i)

Returns the value of the specified column.

Parameters:

• i

The index of the zero-based column.

Returns:

The System.Object containing the value of the column.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

• public virtual bool IsDBNull(int i)

Specifies whether the value of the specified column is null.

Parameters:

• i

The index of the zero-based column.

Returns:

true if the specified column is set to null and false otherwise.

Exceptions:

• System.IndexOutOfRangeException

The index passed was outside the range from 0 to
System.Data.IDataRecord.FieldCount - 1.

 | API Reference | 180

RowPersisting Event

The RowPersisting event is triggered in the process of committing changes to the database for every
data record whose status is Inserted, Updated, or Deleted before the corresponding changes for the
data record are committed to the database.

Committing changes to a database is initiated by invoking the Actions.PressSave() method of the
business logic controller (BLC). While processing this method, the Acumatica Data Access Layer first
commits every Inserted data record, then every Updated data record, and finally each Deleted data
record.

Avoid executing additional BQL statements in a RowPersisting event handler. When the
RowPersisting event is raised, the associated transaction scope is busy saving the changes, and
any other operation performed within this transaction scope may cause performance degradation and
deadlocks.

The RowPersisting event handler is used to:

• Validate the data record before it has been committed to the database.

• Cancel the commit operation of the data record by throwing an exception (see Examples of Use).

Figure: Execution order for RowPersisting event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowPersisting(PXCache sender,
 PXRowPersistingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowPersistingEventArgs e

The instance of the PXRowPersistingEventArgs type that holds data for the RowPersisting event

 | API Reference | 181

Examples of Use

The code below validates the data record before it is committed to the database.

public class CCProcessingCenterMaint : PXGraph<CCProcessingCenterMaint,
 CCProcessingCenter>,
 IProcessingCenterSettingsStorage
{
 ...

 protected virtual void CCProcessingCenter_RowPersisting(
 PXCache sender,
 PXRowPersistingEventArgs e)
 {
 if ((e.Operation & PXDBOperation.Command) != PXDBOperation.Delete &&
 e.Row != null &&
 (bool)((CCProcessingCenter)e.Row).IsActive &&
 string.IsNullOrEmpty(((CCProcessingCenter)e.Row).
 ProcessingTypeName))
 {
 throw new PXRowPersistingException(
 typeof(CCProcessingCenter.processingTypeName).Name,
 null,
 ErrorMessages.FieldIsEmpty,
 typeof(CCProcessingCenter.processingTypeName).Name);
 }
 }

 ...
}

The code below shows a message box as well as the warning and error indications near the input
control for one or multiple fields.

protected virtual void APInvoice_RowPersisting(PXCache sender,
 PXRowPersistingEventArgs e)
{
 APInvoice doc = (APInvoice)e.Row;
 if (doc.PaySel == true && doc.PayDate == null)
 {
 sender.RaiseExceptionHandling<APInvoice.payDate>(
 doc, null,
 new PXSetPropertyException(ErrorMessages.FieldIsEmpty,
 typeof(APInvoice.payDate).Name));
 }
 if (doc.PaySel == true && doc.PayDate != null &&
 ((DateTime)doc.DocDate).CompareTo((DateTime)doc.PayDate) > 0)
 {
 sender.RaiseExceptionHandling<APInvoice.payDate>(
 e.Row, doc.PayDate,
 new PXSetPropertyException(Messages.ApplDate_Less_DocDate,
 PXErrorLevel.RowError,
 typeof(APInvoice.payDate).Name));
 }
}

The code below cancels the operation of committing a data record.

public class CampaignMemberMassProcess : PXGraph<CampaignMemberMassProcess>
{
 ...

 protected virtual void Contact_RowPersisting(PXCache sender,
 PXRowPersistingEventArgs e)
 {
 e.Cancel = true;
 }

 | API Reference | 182

 ...
}

Related Types

• PXRowPersistingEventArgs Class

• PXEntryStatus Enumeration

• PXDBOperation Enumeration

PXRowPersistingEventArgs Class

Provides data for the RowPersisting event.

Inherits

CancelEventArgs

Syntax

public sealed class PXRowPersistingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the DAC object that is being committed to the database.

• public PXDBOperation Operation

Gets the PXDBOperation of the current commit operation

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
RowPersisting event handlers specified within the DAC field attributes should be invoked. If the
property is set to true, the handlers will not be invoked and the commit operation of the data
record will be canceled. Otherwise, the handlers will be invoked and the commit operation will not
be cancelled.

RowPersisted Event

The RowPersisted event is triggered in the process of committing changes to the database for every
data record whose status is Inserted, Updated, or Deleted. The RowPersisted event is triggered
twice:

• When the data record has been committed to the database and the status of the transaction
scope (indicated in the e.TranStatus field) is Open

• When the status of the transaction scope has changed to Completed, indicating successful
committing, or Aborted, indicating that a database error has occurred and changes to the
database have been dropped

The Actions.PressSave() method of the business logic controller (graph) initiates committing
changes to a database. While processing this method, the Acumatica Data Access Layer first commits
every Inserted data record, then each Updated data record, and finally each Deleted data record.

Avoid executing additional BQL statements in a RowPersisted event handler when the status of the
transaction scope is Open. When the RowPersisted event is raised with this status, the associated
transaction scope is busy saving the changes, and any other operation performed within this transcation
scope may cause performance degradation and deadlocks.

The RowPersisted event handler is used to:

 | API Reference | 183

• Retrieve data generated by the database.

• Restore data access class (DAC) field values if the status of the transaction scope is Aborted
(changes have not been saved). Note that in this case the DAC fields do not revert to any
previous state automatically but are left by the Acumatica Data Access Layer in exactly the state
they were in before the committing was initiated.

• Validate the data record while committing it to the database.

Figure: Execution order for RowPersisted event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_RowPersisted(PXCache sender,
 PXRowPersistedEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXRowPersistedEventArgs e

The instance of the PXRowPersistedEventArgs type that holds data for the RowPersisted event

Examples of Use

The code below retrieves data generated by the database.

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Parameter |
 AttributeTargets.Class | AttributeTargets.Method)]
public class PXDBIdentityAttribute : PXDBFieldAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXRowPersistedSubscriber,
 IPXFieldVerifyingSubscriber
{
 ...

 public virtual void RowPersisted(PXCache sender,
 PXRowPersistedEventArgs e)
 {
 if ((e.Operation & PXDBOperation.Command) == PXDBOperation.Insert)

 | API Reference | 184

 {
 if (e.TranStatus == PXTranStatus.Open)
 {
 if (_KeyToAbort == null)
 _KeyToAbort = (int?)sender.GetValue(e.Row, _FieldOrdinal);
 if (_KeyToAbort < 0)
 {
 int? id =
 Convert.ToInt32(PXDatabase.SelectIdentity(_BqlTable));
 if ((id ?? 0m) == 0m)
 {
 PXDataField[] pars =
 new PXDataField[sender.Keys.Count + 1];
 pars[0] = new PXDataField(_DatabaseFieldName);
 for (int i = 0; i < sender.Keys.Count; i++)
 {
 string name = sender.Keys[i];
 PXCommandPreparingEventArgs.
 FieldDescription description = null;
 sender.RaiseCommandPreparing(
 name, e.Row,
 sender.GetValue(e.Row, name),
 PXDBOperation.Select,
 _BqlTable, out description);
 if (description != null &&
 !String.IsNullOrEmpty(
 description.FieldName) &&
 description.IsRestriction)
 {
 pars[i + 1] = new PXDataFieldValue(
 description.FieldName,
 description.DataType,
 description.DataLength,
 description.DataValue);
 }
 }
 using (PXDataRecord record =
 PXDatabase.SelectSingle(_BqlTable, pars))
 {
 if (record != null)
 id = record.GetInt32(0);
 }
 }
 sender.SetValue(e.Row, _FieldOrdinal, id);
 }
 else
 _KeyToAbort = null;
 }
 else if (e.TranStatus == PXTranStatus.Aborted &&
 _KeyToAbort != null)
 {
 sender.SetValue(e.Row, _FieldOrdinal, _KeyToAbort);
 _KeyToAbort = null;
 }
 }
 }

 ...
}

The code below restores the values of a DAC field if the commit operation failed—resulting in the
Aborted status of the transaction scope.

public class AddressRevisionIDAttribute : PXEventSubscriberAttribute,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber
{
 ...

 | API Reference | 185

 public virtual void RowPersisted(PXCache sender,
 PXRowPersistedEventArgs e)
 {
 if (e.TranStatus == PXTranStatus.Aborted &&
 (e.Operation == PXDBOperation.Insert || e.Operation ==
 PXDBOperation.Update))
 {
 int? revision = (int?)sender.GetValue(e.Row, _FieldOrdinal);
 revision--;
 sender.SetValue(e.Row, _FieldOrdinal, revision);
 }
 }

 ...
}

The code below validates a data record while it is being committed to the database.

protected virtual void Batch_RowPersisted(PXCache sender, PXRowPersistedEventArgs e)
{
 if (e.TranStatus == PXTranStatus.Open &&
 Convert.ToInt32(((Batch)e.Row).BatchNbr) > 10)
 throw new PXRowPersistedException(
 typeof(Batch.batchNbr).Name,
 ((Batch)e.Row).BatchNbr,
 "Number of batches created should not exceed 10 in trial mode.");
}

Related Types

• PXRowPersistedEventArgs Class

• PXTranStatus Enumeration

• PXEntryStatus Enumeration

• PXDBOperation Enumeration

PXRowPersistedEventArgs Class

Provides data for the RowPersisted event.

Inherits

EventArgs

Syntax

public sealed class PXRowPersistedEventArgs : EventArgs

Properties

• public object Row

Gets the DAC object that has been committed to the database

• public PXDBOperation Operation

Gets the PXDBOperation value indicating the type of the current commit operation

• public Exception Exception

Gets the Exception object thrown while changes are committed to the database

• public PXTranStatus TranStatus

 | API Reference | 186

Gets the status of the transation scope associated with the current committing operation

PXTranStatus Enumeration

Describes the current status of a transaction scope.

Syntax

public enum PXTranStatus

Members

• Open

The status of the transaction is unknown, because some participants still have to be polled.

• Completed

The changes associated with the transaction scope have been successfully committed to the
database.

• Aborted

The changes within the transaction scope have been dropped because of an error.

ExceptionHandling Event

The ExceptionHandling event is triggered under the following circumstances:

• When the PXSetPropertyException exception is thrown while the system is:

• Processing a data access class (DAC) field value received from the user interface (UI) or
through the Web Service application programming interface (API) when a data record is
being inserted or updated in the PXCache object.

• Processing DAC key field values when deletion of a data record from the PXCache object is
initiated in the UI or through the Web Service API.

• Assigning any field its default value or updating the value when the asignment or update is
initiated by any of the following methods of the PXCache class:

• Insert(IDictionary)

• SetDefaultExt(object, string)

• SetDefaultExt<Field>(object)

• Update(IDictionary, IDictionary)

• SetValueExt(object, string, object)

• SetValueExt<Field>(object, object)

• Converting the external DAC key field presentation to the internal field value initiated by any
of the following methods of the PXCache class:

• Locate(IDictionary)

• Update(IDictionary, IDictionary)

• Delete(IDictionary, IDictionary)

• When the PXCommandPreparingException, PXRowPersistingException, or
PXRowPersistedException exception is thrown in the process of saving an inserted, updated, or
deleted data record in the database.

The ExceptionHandling event handler is used to:

 | API Reference | 187

• Catch and handle the exceptions mentioned above (the platform rethrows all unhandled
exceptions).

• Implement non-standard handling of the exceptions mentioned above.

Figure: Execution order for ExceptionHandling event handlers

Syntax

You should define a graph event handler as follows.

protected virtual void DACName_FieldName_ExceptionHandling(
 PXCache sender,
 PXExceptionHandlingEventArgs e)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

• (required) PXExceptionHandlingEventArgs e

The instance of the PXExceptionHandlingEventArgs type that holds data for the
ExceptionHandling event

Examples of Use

The code below handles an exception on a DAC field and sets the field value.

public class APVendorBalanceEnq : PXGraph<APVendorBalanceEnq>
{
 ...

 protected virtual void APHistoryFilter_AccountID_ExceptionHandling(
 PXCache sender,
 PXExceptionHandlingEventArgs e)
 {
 APHistoryFilter header = e.Row as APHistoryFilter;
 if (header != null)
 {
 e.Cancel = true;
 header.AccountID = null;

 | API Reference | 188

 }
 }

 ...
}

The code below alters an exception on a DAC field by setting its description.

public class CustomerMaint :
 BusinessAccountGraphBase<Customer, Customer,
 Where<BAccount.type,
 Equal<BAccountType.customerType>,
 Or<BAccount.type,
 Equal<BAccountType.combinedType>>>>
{
 ...

 protected virtual void Customer_CustomerClassID_ExceptionHandling(
 PXCache sender,
 PXExceptionHandlingEventArgs e)
 {
 PXSetPropertyException ex = e.Exception as PXSetPropertyException;
 if (ex != null)
 {
 ex.SetMessage(ex.Message + System.Environment.NewLine +
 System.Environment.NewLine +
 "Stack Trace:" + System.Environment.NewLine +
 ex.StackTrace);
 }
 }

 ...
}

Related Types

• PXExceptionHandlingEventArgs Class

PXExceptionHandlingEventArgs Class

Provides data for the ExceptionHandling event.

Inherits

CancelEventArgs

Syntax

public sealed class PXExceptionHandlingEventArgs : CancelEventArgs

Properties

• public object Row

Gets the current DAC object.

• public object NewValue

Gets or sets the values of the DAC field. By default, containsvalues that are:

• Generated in the process of assigning a DAC field its default value.

• Passed as new values when a field is updated.

• Entered in the UI or through the Web Service API.

 | API Reference | 189

• Received with the PXCommandPreparingException, PXRowPersistingException, or
PXRowPersistedException exception.

• public Exception Exception

Gets the initial exception that caused the event to be raised.

• public bool Cancel

Inherited from the CancelEventArgs ancestor class; gets or sets the value indicating whether
ExceptionHandling event handlers specified within the DAC field attributes should be invoked.
If the property is set to true, the handlers will not be invoked and the exception will be handled.
Otherwise, the exception is rethrown.

CacheAttached Event

The CacheAttached handler is used to override data access class (DAC) field attributes declared directly
within the DAC. By declaring a CacheAttached handler and attaching appropriate attributes to the
handler within a graph, the developer forces the framework to completely override DAC field attributes
within this graph.

Figure: Execution order for CacheAttached event handlers

Syntax

You should define a graph event handler as follows.

[DAC_Field_Attribute_1]
...
[DAC_Field_Attribute_N]
protected virtual void DACName_FieldName_CacheAttached(PXCache sender)
{
 ...
}

Parameters

• (required) PXCache sender

The cache object that raised the event

Examples of Use

The code below overrides DAC field attributes within a graph.

public class DimensionMaint : PXGraph<DimensionMaint, Dimension>
{
 ...

 [PXDBString(15, IsUnicode = true, IsKey = true)]
 [PXDefault(typeof(Dimension.dimensionID))]

 | API Reference | 190

 [PXUIField(DisplayName = "Dimension ID", Visibility =
 PXUIVisibility.Invisible, Visible = false)]
 [PXSelector(typeof(Dimension.dimensionID), DirtyRead = true)]
 protected virtual void Segment_DimensionID_CacheAttached(PXCache sender)
 {

 }

 ...
}

Related Types

• PXUIVisibility Enumeration

BQL
This document describes BQL (business query language). BQL is a part of the data access layer of the
Acumatica Framework. BQL statements represent specific SQL queries and are translated into SQL by
the framework. This helps the developer to avoid specifics of the database provider and validate the
queries at compile time.

Most BQL components are directly mapped to SQL keywords (such as different types of joins, OrderBy,
GroupBy, etc.). In addition, BQL introduces custom syntax of Current, Required, and Optional
parameters. The parameters are substituted with specific values taken from the current objects or
specified in code.

The following chapters cover specific topics related to BQL statements construction and execution:

• Constructing Statements

• Filtering

• Querying Multiple Tables

• Grouping and Aggregating

• Using Parameters

• Using Functions

• Executing Statements

• Appendix

Constructing Statements
To construct a specific BQL statement, you take the generic PXSelect<> class or one of its variants and
set its type parameters to the data access class (DAC), which represents a database table, and BQL
classes that represent SQL clauses and keywords.

Defining a DAC

To select data from a database table, you need to define the DAC. For example, to select data from the
Product table, you define the Product DAC.

[System.SerializableAttribute()]
public class Product : PX.Data.IBqlTable
{
 // The type will be used to reference the ProductID field in BQL statements
 public abstract class productID : PX.Data.IBqlField
 {
 }
 // The property will hold the ProductID value

 | API Reference | 191

 [PXDBIdentity]
 public virtual int? ProductID { get; set; }

 // The type will be used to reference the ProductID UnitPrice in BQL statements
 public abstract class unitPrice : PX.Data.IBqlField
 {
 }
 // The property will hold the UnitPrice value
 [PXDBDecimal(2)]
 public virtual int? UnitPrice { get; set; }
}

The definition of a field consists of the type and the property. The type is used to reference the field in
the BQL statements. The property holds the value of a field.

To indicate that the field is bound to the database and represents a table column, you place the
PXDBType attribute on the definition of the property.

Basic Select Statement

The following BQL statement selects all data records from the Product table.

PXSelect<Product>

To execute such BQL statement, the application must define the DAC representing the Product
database table. This BQL statement will be translated into the following SQL query.

SELECT Product.ProductID, Product.UnitPrice FROM Product

The actual SQL query will also include ordering by DAC key fields in ascending order. The framework adds
such ordering to the end of the SQL query if the BQL statement does not specify ordering.

The SQL query generated by the framework selects all bound fields of the requested DACs. We will use
the * sign in further examples to represent selected columns.

Adding the Where Clause

PXSelect has several variants allowing additional clauses. The Where clause is used to specify
conditions.

PXSelect<Product,
 Where<Product.productID, Equal<Required<Product.productID>>>>

This statement will be translated into the following SQL query, which selects the Product data record
that satisfy the condition in the Where clause.

SELECT * FROM Product
 WHERE Product.ProductID = [parameter]

Here, [parameter] will be replaced with the value passed to the Select() method.

To reference a field in a BQL statement, you use the type that is defined in the DAC and represents
the field (Product.productID). The field name must be preceded with the DAC name and start with a
lowercase letter (to distiguish it from the property that holds the value of a field).

The Where clause can be used to specify complex filtering conditions chained by logical operators Or,
And, and Not and nested Where clauses. See examples in Filtering.

 | API Reference | 192

Adding the OrderBy Clause

The result set of a BQL statement is ordered using the OrderBy clause. It can be specified as the
second type parameter in the PXSelectOrderBy statement, as the third type parameter in a PXSelect
statement next to the Where clause, or in more complex constructions with aggregations and joins.

It is possible to order the result set by one or several columns. For each column, the Asc or Desc clause
must be used to specify whether to sort records in ascending or descending order, respectively.

The following statement selects all Product data records and sorts them by the UnitPrice field in
ascending order.

PXSelectOrderBy<Product, OrderBy<Asc<Product.unitPrice>>>

This statement is translated into the following SQL query.

SELECT * FROM Product
 ORDER BY Product.UnitPrice

Using variants of Asc and Desc with two type parameters, you can request ordering by several columns,
as in the following example.

PXSelect<Product,
 OrderBy<Asc<Product.unitPrice, Desc<Product.availQty>>>>

The corresponding SQL query will look like this.

SELECT * FROM Product
 ORDER BY Product.UnitPrice, Product.AvailQty DESC

In the following example the OrderBy clause is added to a statement with a Where clause.

PXSelect<DocTransation,
 Where<DocTransation.lastTransactionDate, Less<Today>>,
 OrderBy<Desc<DocTransation.lastTransactionPrice>>>

This statement selects all DocTransation records of transactions carried out before today and sorts
them by the LastTransactionPrice field in the descending order (records with greater values of this
field go first). The statement is translated into the following SQL query.

SELECT * FROM DocTransaction
 WHERE DocTransaction.LastTransactionDate < [today date]
 ORDER BY DocTransation.LastTransactionPrice DESC

You can construct any combination of Where, OrderBy, Join, and GroupBy.

BQL Statement Execution

To execute a BQL statement, you invoke its Select() method (either statically or dynamically). For
example, the following code may be found in some graph method.

foreach(Product p in PXSelect<Product,
 Where<Product.UnitPrice, IsNotNull>>.Select(this))
{
 ...
}

See Executing Statements for details on execution of BQL statements and processing of the result set.

 | API Reference | 193

PXSelect, Select, and Search Classes

The Select class and its variants represent BQL commands. These classes can parse themselves into
SQL and provide methods for modifying the BQL command. However, you cannot use the Select class
to execute the BQL command.

The PXSelect class and its variants wrap instances of Select and give you convenient interfaces to
execute the BQL command and interact with the cache. The instances of PXSelect classes are complex
objects containing:

• Reference to the PXView object constructed to process the BQL command

• Reference to the Select object—through the PXView object

• Reference to the graph

• Reference to the cache of the DAC type that is specified in the first type parameter of PXSelect

You use PXSelect classes to define data views in a graph and select data from the database in code.

The Search class and its variants also represent BQL commands but select only one particular field,
while the Select classes select all fields. In a BQL expression based on Select or PXSelect the first
type parameter is a DAC.

Select<Product>

In a Search-based statement, the first type parameter is a DAC field.

Search<Product.unitPrice>

The Select and Search classes are used to specify BQL commands when the interfaces to the PXView
and cache are not needed. Typically, you use Select and Search in attributes in DACs. For example,
Select is used in the PXProjection attribute and Search is used in the PXDBScalar attribute.

The syntax of PXSelect, Select, and Search statements is equivalent (except that Search references a
field in the first parameter). Further examples show the syntax only for PXSelect.

PXSelect Classes

The PXSelect class and other classes derived from PXSelectBase (referred to below as PXSelect
classes) are used as a basis for building BQL statements. Such classes are translated into the SQL
SELECT statements.

PXSelect<Table>

The BQL statement above is translated into the following SQL query.

SELECT * FROM Table

The first type parameter of all PXSelect classes is a data access class (DAC) bound to a database table.
The resulting SQL query will select records from this table. Other type parameters are optional and
represent clauses that can be added to the basic select statement:

• Where

• OrderBy

• Join

• Aggregate

Depending on the clauses that will be used in a query, an appropriate variant of the PXSelect class is
picked.

 | API Reference | 194

For example, Where, OrderBy, and Join clauses may be combined in the PXSelectJoin<Table, Join,
Where, OrderBy> class as follows.

PXSelectJoinGroupBy<Table1,
 LeftJoin<Table2, On<Table2.field2, Equal<Table1.field1>>>,
 Where<Table1.field3, IsNotNull>,
 Aggregate<GroupBy<Table1.field1,
 Min<Table2.field2>>>,
 OrderBy<Asc<Table1.field1>>>

This is translated into the following SQL query.

SELECT * FROM Table1
 LEFT JOIN Table2 ON Table2.Field2 = Table1.Field1
 WHERE Table1.Field3 IS NOT NULL
 ORDER BY Table1.Field1

PXSelect<Table> : PXSelectBase<Table>

Selects records from one table. The result set is merged with the modified data records kept in the
PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

PXSelect<Table, Where> : PXSelectBase<Table>

Selects records from one table filtered by an expression set in Where. The result set is merged with the
modified data records kept in the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

PXSelect<Table, Where, OrderBy> : PXSelectBase<Table>

Selects records from one table, filters them by an expression set in Where, and orders by fields specified
in OrderBy. The result set is merged with the modified data records kept in the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

PXSelectJoin<Table, Join> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause. The resulting data records from the
main table are merged with the modified data records from the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

 | API Reference | 195

PXSelectJoin<Table, Join, Where> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause and filters the result set according to
expression set in Where. The resulting data records from the main table are merged with the modified
data records from the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

PXSelectJoinOrderBy<Table, Join, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables linked via the Join clause, filters the result set by the expression
set in Where, and sorts it by the fields specified in OrderBy. The resulting data records from the main
table are merged with the modified data records from the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• OrderBy : IBqlOrderBy, new()

PXSelectJoin<Table, Join, Where, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables. The resulting data records from the main table are merged with
the modified data records from the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

PXSelectOrderBy<Table, OrderBy> : PXSelectBase<Table>

Selects records from one table and sorts them by fields specified in OrderBy. The result set is merged
with the modified data records kept in the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• OrderBy : IBqlOrderBy, new()

PXSelectOrderBy<Table, Join, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables. The resulting data records from the main table are merged with
the modified data records from the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• OrderBy : IBqlOrderBy, new()

 | API Reference | 196

PXSelectReadonly<Table> : PXSelectBase<Table>

Selects records from one table without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

PXSelectReadonly<Table, Where> : PXSelectBase<Table>

Selects records from one table without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

PXSelectReadonly<Table, Where, OrderBy> : PXSelectBase<Table>

Selects records from one table without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

PXSelectReadonly2<Table, Join> : PXSelectBase<Table>

Selects records from one table without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

PXSelectReadonly2<Table, Join, Where> : PXSelectBase<Table>

Selects records from multiple tables without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

PXSelectReadonly2<Table, Join, Where, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

 | API Reference | 197

PXSelectReadonly3<Table, OrderBy> : PXSelectBase<Table>

Selects records from one table without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• OrderBy : IBqlOrderBy, new()

PXSelectReadonly3<Table, Join, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables without merging the result set with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• OrderBy : IBqlOrderBy, new()

PXSelectGroupBy<Table, Aggregate> : PXSelectBase<Table>

Selects records from the one table, grouping and applying aggregations. The result set is not merged
with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Aggregate : IBqlAggregate, new()

PXSelectGroupBy<Table, Where, Aggregate> : PXSelectBase<Table>

Selects records from one table, grouping and applying aggregations. The result set is not merged with
the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

PXSelectGroupBy<Table, Where, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from one table grouping and applying aggregations. The result set is not merged with
the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

PXSelectJoinGroupBy<Table, Join, Aggregate> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the PXCache<Table> object.

Type Parameters:

 | API Reference | 198

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

PXSelectJoinGroupBy<Table, Join, Where, Aggregate> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

PXSelectJoinGroupBy<Table, Join, Where, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

PXSelectGroupByOrderBy<Table, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from one table, grouping and applying aggregations. The result set is not merged with
the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

PXSelectGroupByOrderBy<Table, Join, Aggregate, OrderBy> : PXSelectBase<Table>

Selects records from multiple tables, grouping and applying aggregations. The result set is not merged
with the PXCache<Table> object.

Type Parameters:

• Table : class, IBqlTable, new()

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

 | API Reference | 199

OrderBy Clause

The OrderBy clause sorts the result set of a BQL statement. Sorting may be performed by one or
several fields in ascending (Asc) or descending (Desc) order. The type parameter of OrderBy clause is
set to the Asc or Desc operator specifying the field to sort by. For example:

PXSelect<Table, OrderBy<Asc<Table.field1>>>

This is translated into:

SELECT * FROM Table
ORDER BY Table.field1

An example of sorting by two fields:

PXSelect<Table,
 OrderBy<Asc<Table.field1,
 Desc<Table.field2>>>>

Note that to attach the second ordering field, a variant of Asc with two type parameters is used. To add
sorting by even more fields, you would insert another Asc or Desc operator in the last such operator.
The BQL statement above is translated into:

SELECT * FROM Table
ORDER BY Table.field1, Table.field2 DESC

The result set is sorted by the first field. Then the records that have the same value in the first field are
sorted by the second field, and so on.

If a BQL statement does not include OrderBy,Acumatica Framework automatically appends ordering by
DAC key fields to the SQL query.

OrderBy<List> : IBqlOrderBy

The clause for specifying how to order the result set of a BQL statetement, equivalent to the SQL clause
ORDER BY.

Type Parameters:

• List : IBqlSortColumn

Asc<Field> : IBqlSortColumn

Indication of sorting in ascending order: from the least value to the largest value. The field to order by
is specified in the Field type parameter. The clause itself is used as a type parameter in OrderBy.

Type Parameters:

• Field : IBqlOperand

Desc<Field> : IBqlSortColumn

Indication of sorting in descending order: from the largest value down to the least value. The field
to order by is specified in the Field type parameter. The clause itself is used as a type parameter in
OrderBy.

Type Parameters:

• Field : IBqlOperand

Asc<Field, NextField> : IBqlSortColumn

A variant of the Asc clause used to add additional sort expression.

 | API Reference | 200

Type Parameters:

• Field : IBqlOperand

• NextField : IBqlSortColumn

Desc<Field, NextField> : IBqlSortColumn

A variant of the Desc clause used to add additional sort expression.

Type Parameters:

• Field : IBqlOperand

• NextField : IBqlSortColumn

Filtering
Filtering conditions are constructed using the Where clause. One Where clause can contain several
conditions chained by logical operators. Also, conditions can be organized in nested Where clauses,
which is equivalent to placing conditions in brackets.

Comparisons and Constants

Typically, a condition is a comparison of a particular field with another field, a constant, or null. The
compared field is specified in the first type parameter, while the comparison goes in the second.

PXSelect<Product, Where<Product.bookedQty, Greater<Product.availQty>>>

This statement is translated into the following SQL query, which selects all Product records with the
BookedQty field greater than the AvailQty field.

SELECT * FROM Product WHERE Product.BookedQty > Product.AvailQty

There are a number of other comparisons such as NotEqual, Greater, and Less. They all can be used
to compare one field to another field or a constant.

Constants are BQL classes derived from the Constant<Type> class. The predefined constants
include boolean values True and False, integer Zero, datetime Now, Today, and MaxDate, and string
StringEmpty. The following BQL statement selects all Product records with the Active field equal to
True.

PXSelect<Product, Where<Product.active, Equal<True>>>

A field can also be compared to null (to check if the field value has not been specified) using the IsNull
comparison, as follows.

PXSelect<Product, Where<Product.bookedQty, IsNull>>

This statement is translated into the following SQL query.

SELECT * FROM Product WHERE Product.BookedQty IS NULL

Or you could reverse this condition by using a variant of Where with one type parameter and the logical
operator Not.

PXSelect<Product, Where<Not<Product.bookedQty, IsNull>>>

Below is the corresponding SQL query.

SELECT * FROM Product WHERE NOT (Product.BookedQty IS NULL)

 | API Reference | 201

The predefined constant Null cannot be used in the Where clause with Equal to select records with null
fields. The Null constant is used in Switch conditions in Arithmetic Operations.

Several Conditions in One Where Clause

It is possible to specify several comparisons in one Where clause. For this purpose, you should
use a variant of the Where clause with three type parameters: Where<Operand, Comparison,
NextOperator>. The third type parameter is set to a logical operator (And/And2 or Or/Or2), as the
following example shows.

PXSelect<Product,
 Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>>

This statement will be translated into the following SQL query.

SELECT * FROM Product
WHERE Product.BookedQty > Product.AvailQty
 OR Product.AvailQty < Product.MinAvailQty

This query selects products with BookedQty greater than AvailQty or AvailQty less than MinAvailQty.

You can chain any number of comparisons using binary operators with three type parameters. The third
type parameter is again a set to binary operator, as shown in the following example.

PXSelect<Product,
 Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>,
 Or<Product.availQty, IsNull>>>>

The corresponding SQL query is given below.

SELECT * FROM Product
WHERE Product.BookedQty > Product.AvailQty
 OR Product.AvailQty < Product.MinAvailQty
 OR Product.AvailQty IsNull

To write more complex conditional expressions with logical operator of different type, you may need to
separate some conditions with brackets. For this purpose, you should use nested Where/Where2 clauses.

In the last example above, brackets would be superfluous, since the conditions are joined by the same
logical operator.

Building Complex Where Clauses

To surround a conditional expression part by brackets in the resulting SQL query, you should use a
nested Where/Where2 clause. Brackets may be required in expressions that use different types of logical
operators.

The steps below illustrate the construction of a complex conditional expression on two samples. One
sample expression starts with a simple condition (an operand and a comparison) and has the following
form: (C1 and not C2 and (C3 or C4 or (C5 and C6)) and not (C7 or C8)). Here, C
with a number denotes a specific condition. This expression will be wrapped into the Where clause. The
other sample expressions starts with a group of simple conditions: ((C1 or C2) and (C3 or C4)
and (C5 or C6)). This expression will be wrapped into the Where2 clause.

A conditional expression is build by the following rules:

1. Each group (a pair of brackets) is replaced by a Where, Where2, Not, or Not2 clause:

• Where is used for groups that start with a simple condition. Not is used for the same
groups but preceded with logical "not".

 | API Reference | 202

• Where2 is used for groups that start with a group. Not2 is used for the same groups but
preceded with logical "not".

2. Components of each group are chained using And (Or) or And2 (Or2):

• Simple conditions at the beginning of a group are chained using And (Or). If a condition is
preceded by not, it is wrapped in Not.

Where<C1, And<Not<C2>, ... >

• All groups except for the last one are chained using And2 (Or2), the last one is chained
using And. The first parameter inside a logical operator is Where (or Where2). not
preceding a group is placed inside a Where clause.

Where<C1, And<Not<C2>, And2<Where<...>, And<Not<...>>>>>

"Chained" means that each next logical operator is inserted as a type parameter into the
previous one. Below is another example.

Where2<Where<C1 or C2>, And2<Where<C3 or C4>, And<Where<C5 or C6>>>>

3. Align logical operators of the same level so that they have the same indent (typically, the indent
of the enclosing Where clause plus four more spaces). Do not add line breaks before nested
Where clauses.

Where<C1,
 And<Not<C2>,
 And2<Where<C3 or C4 or (C5 and C6)>,
 And<Not<C7 or C8>>>>>

Expanding nested Where clauses and breaking them into lines, we get the following.

Where<C1,
 And<Not<C2>,
 And2<Where<C3,
 Or<C4,
 Or<Where<C5,
 And<C6>>>>>,
 And<Not<C7,
 Or<C8>>>>>>

As a result, each simple condition is placed on a separate line. For the second example, you first
get the following code.

Where2<Where<C1 or C2>,
 And2<Where<C3 or C4>,
 And<Where<C5 or C6>>>>

And, expanding nested Where clauses and breaking them into lines, you get this:

Where2<Where<C1,
 Or<C2>>,
 And2<Where<C3,
 Or C4>,
 And<Where<C5,
 Or<C6>>>>>

4. Conditions are substituted by the corresponding field-comparison pairs.

Where<Field1, Comparison1,
 And<Not<Field2, Comparison2>,
 And2<Where<Field3, Comparison3,

 | API Reference | 203

 Or<Field4, Comparison4,
 Or<Where<Field5, Comparison5,
 And<Field6, Comparison6>>>>>,
 And<Not<Field7, Comparison7,
 Or<Field8, Comparison8>>>>>>

Unlike the previous examples, this is at last valid BQL code (provided fields and comparisons are
represented by valid BQL code). It can be used in PXSelect statements as the Where clause.

5. All lines except the last line of the BQL statement are ended with a comma. You should ensure
that the right number of closing angle brackets are inserted.

In the BQL statements above, the type parameters set to fields are actually operands. An operand can be a
field as well as an arithmetic expressions involving several fields.

Example with Products

Suppose you need to select all Product data records with the Active field equal to True, and either
BookedQty greater than AvailQty or AvailQty less than MinAvailQty.

This is a group of a simple condition (Product.active equals True) and another group joined by the
"and" operator. This is implemented by the following BQL statement.

PXSelect<Product,
 Where<Product.active, Equal<True>,
 And<Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>>>>

The corresponding SQL query look as follows.

SELECT * FROM Product
WHERE Product.active = 1
 AND(Product.bookedQty > Product.availQty
 OR Product.availQty < Product.minAvailQty)

Suppose the conditional expression in this example is extended to take into account Product data
records with the null Active field values. Then the new condition is added to "Product.active
equals True" using Or. The resulting conditional expression will consists of two Where groups enclosed
in Where2.

Where2<Where<...>, And<Where<...>>>

Nested Where clauses have the following structure.

Where<C1, Or<C2>>

The entire BQL statement will look a follows.

PXSelect<Product,
 Where2<Where<Product.active, Equal<True>,
 Or<Product.active, IsNull>>,
 And<Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>>>>

This statement is translated into the following SQL query.

SELECT * FROM Product
WHERE (Product.Active = 1
 OR Product.Active IS NULL)
 AND(Product.BookedQty > Product.AvailQty
 OR Product.AvailQty < Product.MinAvailQty)

 | API Reference | 204

To additionally ensure that none of the BookedQty, AvailQty, and MinAvailQty is null, you can join
three simple conditions to the existing conditional expression using And.

If the new conditions are added to the end of the overall expression, Where2 remains the outer clause
(since the first its component is still a Where group). The And operator chaining nested Where groups
becomes And2.

PXSelect<Product,
 Where2<Where<Product.active, Equal<True>,
 Or<Product.active, IsNull>>,
 And2<Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>,
 And<Product.bookedQty, IsNotNull,
 And<Product.availQty, IsNotNull,
 And<Product.minAvailQty, IsNotNull>>>>>>

If the new conditions are added to the beginning of the expression, the outer clause changes to Where,
and the first nested Where group becomes chained using And2.

PXSelect<Product,
 Where<Product.bookedQty, IsNotNull,
 And<Product.availQty, IsNotNull,
 And<Product.minAvailQty, IsNotNull,
 And2<Where<Product.active, Equal<True>,
 Or<Product.active, IsNull>>,
 And<Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>>>>>>>

These two BQL statements are equivalent and correspond to the following SQL query.

SELECT * FROM Product
WHERE (Product.Active = 1
 OR Product.Active IS NULL)
 AND(Product.BookedQty > Product.AvailQty
 OR Product.AvailQty < Product.MinAvailQty)
 AND Product.BookedQty IS NOT NULL
 AND Product.AavailQty IS NOT NULL
 AND Product.MinAvailQty IS NOT NULL

Finally, suppose the resulting set should be extended with the Product data records that have the null
AvailQty field. Then the "Product.availQty is not null" condition should be appended to the entire
conditional expression from the previous example via Or. They should be wrapped by a new Where2
clause in the following way.

Where2<ExistingExpression, Or<NewCondition>>

The BQL statement will become something like this.

PXSelect<Product,
 Where2<Where<Product.bookedQty, IsNotNull,
 And<Product.availQty, IsNotNull,
 And<Product.minAvailQty, IsNotNull,
 And2<Where<Product.active, Equal<True>,
 Or<Product.active, IsNull>>,
 And<Where<Product.bookedQty, Greater<Product.availQty>,
 Or<Product.availQty, Less<Product.minAvailQty>>>>>>>>,
 Or<Product.availQty, IsNotNull>>>

It is translated into the following SQL query.

SELECT * FROM Product
WHERE (Product.BookedQty IS NOT NULL
 AND Product.AavailQty IS NOT NULL
 AND Product.MinAvailQty IS NOT NULL
 AND(Product.Active = 1

 | API Reference | 205

 OR Product.Active IS NULL)
 AND(Product.BookedQty > Product.AvailQty
 OR Product.AvailQty < Product.MinAvailQty))
 OR Product.AvailQty IS NOT NULL

Where Clauses

The Where clause specifies filtering expressions for BQL statements. A PXSelect statement with the
Where clause selects only the data records that satisfy the filtering expression.

The Where clause can be specified in PXSelect, Select, and Search statements as well as in the On
and Case clause. Also, a group of conditions in brackets is implemented in a BQL statement by a nested
Where clause.

Where<Operand, Comparison> : IBqlWhere

Specifies a single filtering condition.

Examples:

PXSelect<Table,
 Where<Table.field1, Equal<Table.field2>>>

This is translated into:

SELECT * FROM Table
WHERE Table.Field1 = Table.Field2

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

Where<Operand, Comparison, NextOperator> : IBqlWhere

Specifies a particular condition in the two first type parameters and attaches one more logical operator
(And or Or).

Examples:

PXSelect<Table,
 Where<Table.field1, Greater<Table.field2>,
 And<Table.field3, IsNull>>>

The NextOperator type parameter can specify a single condition or a group of conditions, or again
continue the Where expression:

PXSelect<Table,
 Where<Table.field1, Greater<Table.field2>,
 And<Table.field3, IsNull,
 And<Table.field4, Equal<Today>>>>>

This is translated into:

SELECT * FROM Table
WHERE Table.Field1 > Table.Field2
 AND Table.Field3 IS NULL
 AND Table.Field4 = [today date]

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

 | API Reference | 206

• NextOperator : IBqlBinary

Where<Operator> : IBqlWhere

Specifies an unary operator as the filtering expression. The unary operator is either the Not or Match
operator.

Examples:

PXSelect<Table,
 Where<Not<Table.field1, IsNotNull,
 And<Table.field2, LessEqual<Table.field1>>>>>

This is translated into:

SELECT * FROM Table
WHERE NOT (Table.Field1 IS NOT NULL
 AND Table.Field2 <= Table.Field1)

Type Parameters:

• Operator : IBqlUnary

Where2<Operator, NextOperator> : IBqlWhere

Specifies a complex condition group where the first component is again a group.

Examples:

A filtering expression of the form ((C1 and C2) or (C3 and C4)), where C with a number
denotes a single condition, is implemented by the BQL code of the following form:

Where2<Where<C1,
 And<C2>>,
 Or<Where<C3,
 And<C4>>>>

A full expression of this type may look as something like this:

Where2<Where<Table.field2, Greater<Table.field1>
 And<Table.field3, Between<Table.field1, Table.field2>>>,
 Or<Where<Table.field3, IsNull,
 And<Table.field1, Equal<Table.field2>>>>>

This is translated into:

WHERE (Table.Field2 > Table.Field1
 AND Table.Field3 BETWEEN Table.Field1 AND Table.Field2)
 OR (Table.Field3 IS NULL
 AND Table.Field1 = Table.Field2)

Type Parameters:

• Operator : IBqlUnary

• NextOperator : IBqlBinary

Comparisons

Comparison operators compare an operand with another operand. An operand is a constant, a particular
field, or an expression built from fields and constants using functions.

 | API Reference | 207

The following BQL statement demonstrates the usage of the Greater and Between comparison
operators.

PXSelect<Table,
 Where<Table.field1, Greater<Table.field2>,
 And<Table.field3, Between<Table.field1, Table.field2>>>>

The first compared operand goes in the BQL statement right before the comparison. The second
compared operand is specified as the type parameter of a comparison. Here, the Greater operator
compares Table.field1 with Table.field2. The condition is true if the latter is greater than the
former. The Between operator sets the condition that is true when Table.field3 value is between the
Table.field1 and Table.field2 values.

The BQL statement above is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Field1 > Table.Field2
 AND Table.Field3 BETWEEN Table.Field1 AND Table.Field2

The preceding operand and the comparison together constitute a condition. Conditions are
concatenated using logical operators.

Equal<Operand> : IBqlComparison

Compares the preceding operand with Operand for equality.

Type Parameters:

• Operand : IBqlOperand

NotEqual<Operand> : IBqlComparison

Checks if the preceding operand is not equal to Operand.

Type Parameters:

• Operand : IBqlOperand

Greater<Operand> : IBqlComparison

Checks if the preceding operand is greater than Operand.

Type Parameters:

• Operand : IBqlOperand

Less<Operand> : IBqlComparison

Checks if the preceding operand is less than Operand.

Type Parameters:

• Operand : IBqlOperand

LessEqual<Operand> : IBqlComparison

Checks if the preceding operand is less or equal to Operand.

Type Parameters:

• Operand : IBqlOperand

GreaterEqual<Operand> : IBqlComparison

Checks if the preceding operand is greater or equal to Operand.

 | API Reference | 208

Type Parameters:

• Operand : IBqlOperand

Like<Operand> : IBqlComparison

Compares the preceding operand with the pattern specified in Operand. Equivalent to the SQL operator
LIKE.

Operand should have a wildcard string value in which the sign "%" is used to substitute missing letters.
For example, "%land%" will be matched by "Iceland" and "Laplandia".

Type Parameters:

• Operand : IBqlOperand

NotLike<Operand> : IBqlComparison

Checks if the preceding operand does not match the pattern specified in Operand. Equivalent to SQL
operator NOT LIKE.

Type Parameters:

• Operand : IBqlOperand

Between<Operand1, Operand2> : IBqlComparison

Checks if the value of the preceding operand falls between the values of Operand1 and Operand2.
Equivalent to SQL operator BETWEEN.

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

NotBetween<Operand1, Operand2> : IBqlComparison

Checks if the value of the preceding operand does not fall between the values of Operand1 and
Operand2. Equivalent to SQL operator NOT BETWEEN.

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

IsNull : IBqlComparison

Checks if the preceding field is null. Equivalent to SQL operator IS NULL.

IsNotNull : IBqlComparison

Checks if the preceding field is not null. Results in true for data records with this field containing a
value. Equivalent to SQL operator IS NOT NULL.

Logical Operators

Logical operators concatenate conditions and condition groups into conditional expressions. They can be
used in Where and On clauses.

To append one more logical operator to the current one, you should use a form with the NextOperator
type parameter. NextOperator is set to the next logical operator. For example, an expression (C1 and

 | API Reference | 209

C2 and C3 and C4) corresponds to a BQL code of the following form (C with a number denotes a
single condition).

Where<C1, And<C2, And<C3, And<C4>>>>

The BQL statement below gives an example of such expression.

PXSelect<Table
 Where<Table.field1, Equal<Table.field2>,
 And<Table.field3, Greater<Zero>,
 And<Table.field3, IsNotNull>,
 And<Table.field4, Less<Table.field5>>>>>>

This is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Field1 = Table.Field2
 AND Table.Field3 > 0
 AND Table.Field3 IS NOT NULL
 AND Table.Field4 < Table.Field5

And<Operand, Comparison> : IBqlBinary

Appends a single condition to a conditional expression via logical "and".

Examples:

And<Table.field1, Greater<Table.field2>>

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

And<Operand, Comparison, NextOperator> : IBqlBinary

Appends a single condition to a conditional expression via logical "and" and continues the chain of
conditions. The condition is set by Operand and Comparison. NextOperator is set to And (And2) or Or
(Or2) operator which continues the filtering expression.

Examples:

And<Table.field1, IsNull,
And<Table.field2, IsNotNull,
And<...>>>

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison, new()

• NextOperator : IBqlBinary

And<Operator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "and". The unary operator is the Not,
Where, or Match operator.

Examples:

And<Not<Table.field1, Equal<Zero>>>

 | API Reference | 210

Type Parameters:

• Operator : IBqlUnary

And2<Operator, NextOperator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "and" and continues the chain of
conditions. The unary operator is the Not, Where, or Match operator.

Type Parameters:

• Operator : IBqlUnary, new()

• NextOperator : IBqlBinary

Or<Operand, Comparison> : IBqlBinary

Appends a single condition or a group of conditions wrapped in Where to a conditional expression via
logical "or".

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

Or<Operand, Comparison, NextOperator> : IBqlBinary

Appends a single condition to a conditional expression via logical "or" and continues the chain of
conditions. The condition is set by Operand and Comparison. NextOperator is set to And (And2) or Or
(Or2) operator which continues the filtering expression.

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison, new()

• NextOperator : IBqlBinary

Or<Operator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "or". The unary operator is the Not,
Where, or Match operator.

Type Parameters:

• Operator : IBqlUnary

Or2<Operator, NextOperator> : IBqlBinary

Appends a unary operator to a conditional expression via logical "or" and continues the chain of
conditions. The unary operator is the Not, Where, or Match operator.

Type Parameters:

• Operator : IBqlUnary, new()

• NextOperator : IBqlBinary

Not<Operand, Comparison> : IBqlUnary

Adds logical "not" to a single condition.

Type Parameters:

• Operand : IBqlOperand

 | API Reference | 211

• Comparison : IBqlComparison

Not<Operand, Comparison, NextOperator> : IBqlUnary

Adds logical "not" to a conditional expression. In the resulting SQL, the group is preceded with not and
surrounded by brackets.

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

• NextOperator : IBqlBinary

Not<Operator> : IBqlUnary

Add logical "not" to a unary operator. A unary operator is the Where or Match operator. In the resulting
SQL the group is preceded with not and surrounded by brackets.

Type Parameters:

• Operator : IBqlUnary

Not2<Operator, NextOperator> : IBqlUnary

Add logical "not" to a unary operator. A unary operator is the Where or Match operator. In the resulting
SQL the group is preceded with not and surrounded by brackets.

Type Parameters:

• Operator : IBqlUnary

• NextOperator : IBqlBinary

Match<Parameter> : IBqlUnary

Matches only the data records the specified user has access rights for. The condition is applied to
the data records of the first table mentioned in a BQL statement. The user is specified in Parameter,
typically through the Current parameter.

Examples:

PXSelect<Table,
 Where<Match<Current<AccessInfo.userName>>>>

Type Parameters:

• Parameter : IBqlParameter

Match<Table, Parameter> : IBqlUnary

Matches only the data records the specified user has access rights for. The condition is applied to the
data records of the table set with Table. The user is specified in Parameter, typically through the
Current parameter.

This form of Match is used when the filtered table is added though a join clause.

Examples:

PXSelectJoin<Table1,
 InnerJoin<Table2, On<Table1.field1, Equal<Table2.field2>>>,
 Where<Match<Table2, Current<AccessInfo.userName>>>>

Type Parameters:

 | API Reference | 212

• Table : IBqlTable

• Parameter : IBqlParameter

CurrentMatch<Field> : IBqlUnary

Equivalent to Match<Field>, but is used in the PXProjection attribute.

Type Parameters:

• Field : IBqlField

CurrentMatch<Table, Field> : IBqlUnary

Equivalent to Match<Table, Field>, but is used in the PXProjection attribute.

Type Parameters:

• Table : IBqlTable

• Field : IBqlField

MatchWithBranch<Field> : IBqlUnary

Matches the data records whose field is null or holds the ID of a branch that can be accessed from
within the current branch. The current branch is the branch to which the user is signed in.

Type Parameters:

• Field : IBqlOperand

A field where to look for the branch ID whose rights should be checked.

MatchWithBranch<Field, Parameter> : IBqlUnary

Matches the data records whose field is null or holds the ID of a branch that can be accessed from
within the specified branch or its subsidiaries.

Type Parameters:

• Field : IBqlOperand

A field where to look for the branch ID whose rights should be checked.

• Parameter : IBqlParameter

The branch to check against the branch found in Field.

Constants

Constants represent predefined values. They can be used in conditional expressions, for comparison
with fields, and in arithmetic expressions.

Constants are implemented as classes derived from the generic Constant<ConstType> class. You can
define custom constants.

Constant<ConstType> : Constant, IBqlOperand, IBqlCreator

The base class for BQL constants.

To define a custom constant in the application, derive a class from Constant. Specify constant's type in
the ConstType type parameter and implement the constructor. The constructor should inherit base class
constructor and provide the constant's actual value in its argument.

Examples:

 | API Reference | 213

The predefined constant Zero represents integer 0 and is not suitable for comparison with
decimal values. The application should define a custom constant for decimal zero, deriving it from
Constant<Decimal> in the following way:

public class decimal_0 : Constant<Decimal>
{
 public decimal_0()
 : base(0m)
 {
 }
}

This constant can be used in BQL statements in the following way:

PXSelect<Table,
 Where<Table.decimalField, Greater<decimal_0>>>

This BQL statement is tranlsated into the following SQL query:

SELECT * FROM Table
WHERE Table.DecimalField > .0

Null : IBqlOperand, IBqlCreator

The null value used in Switch clauses as a default value. Don't use this constant for checking fields for
null value — use the IsNull and IsNotNull comparisons instead.

Now : Constant<DateTime>

Current UTC time.

Today : Constant<DateTime>

Represents today date.

Tomorrow : Constant<DateTime>

Represents tomorrow date.

True : Constant<short>

The true value for comparing with boolean fields. In translation to SQL corresponds to CONVERT(BIT,
1).

False : Constant<short>

The false value for comparing with boolean fields. In translation to SQL corresponds to CONVERT(BIT,
0).

Zero : Constant<int>

The integer zero, not comparable with floating point numeric types (such as decimal).

StringEmpty : Constant<string>

An empty string.

MaxDate : Constant<DateTime>

The maximum date: 06/06/2079.

 | API Reference | 214

Querying Multiple Tables
BQL statements can join several database tables using the following clauses directly mapped to SQL
JOIN clauses:

• InnerJoin returns all records where there is at least one match in both tables.

• LeftJoin returns all records from the left table, and the matched records from the right table.
Where there are no matched records from the right table, null values are inserted.

• RightJoin returns all records from the right table, and the matched records from the left table.
Where there are no matched records from the left table, null values are inserted.

• FullJoin returns all records when there is a match in one of the tables.

• CrossJoin returns the entire Cartesian product of two tables.

A result set record of a BQL statement with joins consists of all fields of each of the joined tables. Such
record (as an instance of the PXResult<> class) can be cast to any of the DACs corresponding to the
joined tables.

A join clause is specified as the second type parameter of PXSelectJoin and other forms of
PXSelectJoin that have a type parameter derived from IBqlJoin, as follows.

PXSelectJoin<SalesOrder,
 InnerJoin<OrderDetail,
 On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>>>

This BQL statement will select all SalesOrder records along with related OrderDetail records. It is
translated into the following SQL code.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail
 ON OrderDetail.OrderNbr = SalesOrder.OrderNbr

Each join clause has two variants, with two type parameters and with three type parameters. You use
the version with two type parameters to provide one join clause. To specify several join clauses, you the
version with three type parameters. Each next join clause is specified as the last type parameter of the
previous join clause, as shown in the following code.

PXSelectJoin<SalesOrder,
 InnerJoin<OrderDetail,
 On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>,
 LeftJoin<Employee,
 On<Employee.employeeID, Equal<SalesOrder.employeeID>>>>>

Which is translated to the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail
 ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
LEFT JOIN Employee
 ON Employee.EmployeeID = SalesOrder.EmployeeID

The On conditions in subsequent join clauses can refer to fields from any linked table. Also, the On
clause can contain any number of conditions. These conditions should be chained by logical operators as
in filtering conditions.

PXSelectJoin<SalesOrder,
 InnerJoin<OrderDetail,
 On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>,
 LeftJoin<Employee,
 On<Employee.employeeID, Equal<SalesOrder.employeeID>>,
 RightJoin<Product,
 On<Product.productID, Equal<OrderDetail.productID>,

 | API Reference | 215

 And<Product.unitPrice, Equal<OrderDetail.unitPrice>>>>>>>

This is traslated into the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail
 ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
LEFT JOIN Employee
 ON Employee.EmployeeID = SalesOrder.EmployeeID
RIGHT JOIN Product
 ON (Product.ProductID = OrderDetail.ProductID AND
 Product.UnitPrice = OrderDetail.UnitPrice)

For CrossJoin, the On condition is not spesified, since it creates an unrestricted set of all possible pairs
of records from two tables. An example is given below.

PXSelectJoin<Product, CrossJoin<Supplier>>

This is translated into the following SQL query.

SELECT * FROM Product CROSS JOIN Supplier

Attaching the Where Clause

To add the Where clause, you should take an appropriate PXSelect variant. Where is specified after the
joining operator.

The following BQL statement joins the SupplierProduct (which implements a many-to-many
relationship) and Supplier tables to the Product table and filters them by SupplierProduct fields.

PXSelectJoin<Product,
 InnerJoin<SupplierProduct,
 On<SupplierProduct.productID, Equal<Product.productID>>,
 InnerJoin<Supplier,
 On<Supplier.accountID, Equal<SupplierProduct.accountID>>>>,
 Where<SupplierProduct.lastPurchaseDate, IsNotNull,
 And<SupplierProduct.lastSupplierPrice, LessEqual<Product.unitPrice>>>>

This BQL statement is translated into the following SQL code.

SELECT * FROM Product
INNER JOIN SupplierProduct
 ON SupplierProduct.ProductID = Product.ProductID
INNER JOIN Supplier
 ON Supplier.AccountID = SupplierProduct.AccountID
WHERE SupplierProduct.LastPurchaseDate IS NOT NULL
 AND SupplierProduct.LastSupplierPrice <= Product.UnitPrice

Note that the Where conditional expression applies to the set formed by all joined tables. In particular,
the filtering conditions can refer to any field of any of the joined tables.

Attaching the OrderBy Clause

The OrderBy clause is specified after the Where clause if there is one in the statement, or after the join
clause.

If a BQL statement should include a join clause and applying filtering and ordering, it is based on the
PXSelectJoin version of with four type parameters.

PXSelectJoin<SalesOrder,
 InnerJoin<OrderDetail,
 On<OrderDetail.orderNbr, Equal<SalesOrder.orderNbr>>>,
 Where<SalesOrder.requiredDate, Less<Today>>,

 | API Reference | 216

 OrderBy<Desc<OrderDetail.orderDetailQty>>>

This BQL statement is translated into the following SQL query.

SELECT * FROM SalesOrder
INNER JOIN OrderDetail
 ON OrderDetail.OrderNbr = SalesOrder.OrderNbr
WHERE SalesOrder.RequiredDate < [today date]
ORDER BY OrderDetail.OrderDetailQty DESC

If a BQL statement should include only a join clause and apply ordering, it is based on
PXSelectOrderBy with three type parameters, as follows.

PXSelectOrderBy<Product,
 LeftJoin<OrderDetail,
 On<OrderDetail.productID, Equal<Product.productID>,
 AND<OrderDetail.unitPrice, Equal<Product.unitPrice>>>>,
 OrderBy<Asc<Product.productName>>>>

This is translated into the following SQL query.

SELECT * FROM Product
LEFT JOIN OrderDetail
 ON (OrderDetail.ProductID = Product.ProductID AND
 OrderDetail.UnitPrice = Product.UnitPrice)
ORDER BY Product.ProductName

Join Clauses

"Join" clauses link other tables to the main one specified as the first type parameter in the BQL
statement. An example is given below.

PXSelectJoin<Table1,
 InnerJoin<Table2, On<Table2.field2, Equal<Table1.field1>>,
 LeftJoin<Table3, On<Table3.field3, Equal<Table1.field4>>>>>

This is tranlsated into the following SQL query.

SELECT * FROM Table1
INNER JOIN Table2
 ON Table2.Field2 = Table1.Field1
LEFT JOIN Table3
 ON Table3.Field3 = Table1.Field4

Conditional expression for joining is specified using the On classes. The syntax for conditional
expressions set in On is the same as used in Where.

InnerJoin<Table, On> : IBqlJoin

Joins a table via INNER JOIN.

Type Parameters:

• Table : IBqlTable

• On : IBqlOn

InnerJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via INNER JOIN and allows joining one or several more tables..

Type Parameters:

• Table : IBqlTable

 | API Reference | 217

• On : IBqlOn, new()

• NextJoin : IBqlJoin

LeftJoin<Table, On> : IBqlJoin

Joins a table via LEFT JOIN.

Type Parameters:

• Table : IBqlTable

• On : IBqlOn

LeftJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via LEFT JOIN and allows joining one or several more tables..

Type Parameters:

• Table : IBqlTable

• On : IBqlOn, new()

• NextJoin : IBqlJoin

RightJoin<Table, On> : IBqlJoin

Joins a table via RIGHT JOIN.

Type Parameters:

• Table : IBqlTable

• On : IBqlOn

RightJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via RIGHT JOIN and allows joining one or several more tables..

Type Parameters:

• Table : IBqlTable

• On : IBqlOn, new()

• NextJoin : IBqlJoin

FullJoin<Table, On> : IBqlJoin

Joins a table via FULL JOIN.

Type Parameters:

• Table : IBqlTable

• On : IBqlOn

FullJoin<Table, On, NextJoin> : IBqlJoin

Joins a table via FULL JOIN and allows joining one or several more tables..

Type Parameters:

• Table : IBqlTable

• On : IBqlOn, new()

 | API Reference | 218

• NextJoin : IBqlJoin

CrossJoin<Table> : IBqlJoin

Joins a table via CROSS JOIN. Not joining condition is specified.

Examples:

PXSelectJoin<Table1, CrossJoin<Table2>>

This is translated into:

SELECT * FROM Table1 CROSS JOIN Table2

Type Parameters:

• Table : IBqlTable

CrossJoin<Table, NextJoin> : IBqlJoin

Joins a table via CROSS JOIN and allows joining one or several more tables.

Type Parameters:

• Table : IBqlTable

• NextJoin : IBqlJoin

On Clause

The On clause defines the conditional expression for table joining.

On<Operand, Comparison> : IBqlOn

Specifies a single joining condition. Corresponds to SQL keyword ON.

Examples:

PXSelectJoin<Table1,
 InnerJoin<Table2, On<Table2.field2, Equal<Table1.field1>>>>

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

On<Operator> : IBqlOn

Specifies the joining condition through the Not, Where, or Where2 clause. Corresponds to SQL keyword
ON.

Examples:

PXSelectJoin<Table1,
 InnerJoin<Table2, On<Not<Table2.field2, Equal<Table1.field1>>>>>

Type Parameters:

• Operator : IBqlUnary

On<Operand, Comparison, NextOperator> : IBqlOn

Specifies a single joining condition and allows continuing the chain of conditions using a logical operator.
Corresponds to SQL keyword ON.

 | API Reference | 219

Examples:

PXSelectJoin<Table1,
 InnerJoin<Table2,
 On<Table2.field1, Equal<Table1.field2>,
 And<Table2.field3, Equal<Table1.field4>>>>>

This is translated into:

SELECT * FROM Table1
INNER JOIN Table2 ON
 Table2.Field1 = Table1.Field2 AND Table2.Field3 = Table1.Field4

Type Parameters:

• Operand : IBqlOperand

• Comparison : IBqlComparison

• NextOperator : IBqlBinary

On2<Operator, NextOperator> : IBqlOn

Specifies the joining condition using Not, Where, or Where2 and allows continuing the chain of conditions
using a logical operator. Corresponds to SQL keyword ON.

Type Parameters:

• Operator : IBqlUnary

• NextOperator : IBqlBinary

Grouping and Aggregating
The BQL grouping and aggregating syntax is similar to the SQL syntax. BQL implements:

• The GroupBy clause for grouping

• The equivalents of SQL aggregation functions: Min, Max, Sum, Avg, and Count.

All grouping conditions and aggregation functions are specified in the Aggregate clause. For example,
to group the result set by a field, place the GroupBy clause into Aggregate as follows.

PXSelectGroupBy<Product,
 Aggregate<GroupBy<Product.categoryCD>>>

Note that you should take an appropriate PXSelect version with the Aggregate type parameter, such as
PXSelectGroupBy<Table, Aggregate>. The statement above is translated into the following SQL code.

SELECT Product.CategoryCD,
 [MAX(Field) or NULL for other fields]
FROM Product
GROUP BY Product.CategoryCD

Fields specified in GroupBy clauses are selected as is. To all other fields, an aggregation function is
applied. The default Max function is used if no function is specified for a field. If Max cannot be applied
to the type of a field, NULL is selected for it.

Another GroupBy clause or aggregation function is inserted as the second type parameter of the
previous GroupBy clause or aggregation function.

PXSelectGroupBy<Product,
 Aggregate<GroupBy<Product.categoryCD, Sum<Product.availQty>>>>

 | API Reference | 220

This BQL statement will count the sum of of the AvailQty field for each group of records with equal
CategoryCD field values. NULL is also considered a value here. The following SQL query corresponds to
the statement above.

SELECT Product.CategoryCD, SUM(Product.AvailQty),
 [MAX(Field) or NULL for other fields]
FROM Product
GROUP BY Product.CategoryCD

Grouping can be applied to several fields. In this case, a combination of such fields is considered equal
to another one only if all fields in them concide.

The previous example can be extended by adding the GroupBy clause for the StockUnit field. As a
result, Product records will be grouped by both categories and stock units. Some aggregation functions
might be added as well, as in the following example.

PXSelectGroupBy<Product,
 Aggregate<GroupBy<Product.categoryCD,
 Sum<Product.availQty,
 Sum<Product.bookedQty,
 GroupBy<Product.stockUnit,
 Min<Product.unitPrice>>>>>>>

This is translated into the following SQL query.

SELECT Product.CategoryCD, Product.StockUnit,
 SUM(Product.AvailQty), SUM(Product.AvailQty), MIN(Product.UnitPrice),
 [MAX(Field) or NULL for other fields]
FROM Product
GROUP BY Product.CategoryCD, Product.StockUnit

Aggregate and GroupBy Clauses

This set of classes implement SQL GROUP BY and the aggregate functions.

Unlike SQL, all grouping clauses and aggregations are gathered in a BQL statement in one Aggregate
clause. The Aggregate clause is specified as the PXSelectGroupBy variant's type parameter .

In the SQL translation, alll fields not specified in GroupBy clauses are aggregated using:

• The aggregation function specified in the Aggregate clause

• The MAX function if no aggregation function is specified explicitly for a field

• NULL if MAX is not applicable to the field

For example, consider the folloing BQL statement.

PXSelectGroupBy<Table,
 Aggregate<GroupBy<Table.field1>>>

It is translated into:

SELECT Table.Field1,
 [MAX(Table.Field) or NULL for all fields]
FROM Table
GROUP BY Table.Field1

While the following BQL statement:

PXSelectGroupBy<Table,
 Aggregate<GroupBy<Table.field1,
 Avg<Table.field2,
 Min<Table.field3>>>>>

 | API Reference | 221

is translated into:

SELECT Table.Field1,
 AVG(Table.Field2), MIN(Table.Field3),
 [MAX(Table.Field) or NULL for all other fields]
FROM Table
GROUP BY Table.Field1

An aggregation BQL statement has a read-only result set.

Aggregate<Function> : IBqlAggregate

A wrapper clause for the GroupBy clauses and aggregation functions.

Examples:

The following BQL statement groups Table records by the Table.field1 field and calculates sums of
the Table.field2 field in each group.

PXSelectGroupBy<Table,
 Aggregate<GroupBy<Table.field1, Sum<Table.field2>>>>

This is translated into the following SQL code.

SELECT Table.Field1, SUM(Table.Field2),
 [MAX(Table.Field) or NULL for other fields]
FROM Table
GROUP BY Table.Field1

Type Parameters:

• Function : IBqlFunction

GroupBy<Field> : IBqlFunction

Adds grouping by the field specified in Field. Equivalent to SQL operator GROUP BY.

Type Parameters:

• Field : IBqlField

GroupBy<Field, NextAggregate> : IBqlFunction

Adds grouping by the field specified in Field and continues the aggregation clause with
NextAggregate. Equivalent to SQL operator GROUP BY.

Type Parameters:

• Field : IBqlField

• NextAggregate : IBqlFunction

Aggregation Functions

The aggregation functions are calculated for all field values in a group. To apply an aggregation to a
field, specify the field in the type parameter and append the clause to the Aggregate operator.

Sum<Field> : IBqlFunction

Returns the sum of all Field values in a group. Equivalent to SQL function SUM.

Type Parameters:

• Field : IBqlField

 | API Reference | 222

Sum<Field, NextAggregate> : IBqlFunction

Returns the sum of all Field values in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function SUM.

Examples:

PXSelectGroupBy<Table,
 Aggregate<Sum<Table.field1,
 Sum<Table.field2,
 GroupBy<Table.field3>>>>>

Type Parameters:

• Field : IBqlField

• NextAggregate : IBqlFunction

Avg<Field> : IBqlFunction

Returns the average of the values of Field in a group. Equivalent to SQL function AVG.

Type Parameters:

• Field : IBqlField

Avg<Field, NextAggregate> : IBqlFunction

Returns the average of the values of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function AVG.

Type Parameters:

• Field : IBqlField

• NextAggregate : IBqlFunction

Min<Field> : IBqlFunction

Returns the minimum value of Field in a group. Equivalent to SQL function MIN.

Type Parameters:

• Field : IBqlField

Min<Field, NextAggregate> : IBqlFunction

Returns the minimum value of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function MIN.

Type Parameters:

• Field : IBqlField

• NextAggregate : IBqlFunction

Max<Field> : IBqlFunction

Returns the maximum value of Field in a group. Equivalent to SQL function MAX.

Type Parameters:

• Field : IBqlField

 | API Reference | 223

Max<Field, NextAggregate> : IBqlFunction

Returns the maximum value of Field in a group and continues the aggregation clause with
NextAggregate. Equivalent to SQL function MAX.

Type Parameters:

• Field : IBqlField

• NextAggregate : IBqlFunction

Count : IBqlFunction

Counts the number of items in a group if a GroupBy clause is specified or, otherwise, the total number
of records in the result set. In the translation to SQL, it is represented by COUNT(*) added to the list of
selected columns.

You access the calculated value through the RowCount property of the PXResult<> type.

Examples:

PXResult<Table> res =
 PXSelectGroupBy<Table, Aggregate<Count>>.Select(this);

// The calculated number of records is stored in the
// PXResult.RowCount property.
int tableRecordsNumber = res.RowCount;

The BQL code in this example is translated into the following SQL query.

SELECT [MAX(Table.Field) or NULL for all fields defined in the Table DAC],
 COUNT(*)
FROM Table

Count<Field> : IBqlFunction

Counts distinct values of the specified field in a group. Equivalent to SQL function COUNT DISTINCT.

You access the calculated value through the RowCount property of the PXResult<> type. Note that you
should use only one Count<> function in a BQL query, because you won't be able to access other such
counted values.

Examples:

foreach(PXResult<Table> row in PXSelectGroupBy<Table,
 Aggregate<GroupBy<Table.field1, Count<Table.field2>>>>.Select(this))
{
 // The calculated number of distinct values of field2 in a group
 int field2CountInGroup = row.RowCount;
 ...
}

The BQL code in this example is translated into the following SQL query.

SELECT COUNT(DISTINCT Table.Field2),
 [MAX(Table.Field) or NULL for all other fields defined in the Table DAC]
FROM Table
GROUP BY Table.Field1

Type Parameters:

• Field : IBqlField

 | API Reference | 224

Using Parameters
BQL parameters are replaced in the translation to SQL with specific values. There are four type of
parameters: Current (Current2), Optional (Optional2), Required, and Argument.

Current Parameter

By using the Current parameter in the declaration of a data view, you can reference another view to
relate them to each other. A typical example is referencing the current master record on master-detail
webpages.

The Current parameter actually inserts the Current object's field value from the PXCache object. For
example, suppose the following BQL statement defines the master view.

// The view declaration in a graph
PXSelect<SalesOrder> MasterRecords;

The details view might be defined as follows.

// The view declaration in the same graph
PXSelect<OrderDetail,
 Where<OrderDetail.orderNbr, Equal<Current<SalesOrder.orderNbr>>>>
 DetailsRecords;

Exectuion of the second data view will produce the following SQL query.

SELECT * FROM OrderDetail
WHERE OrderDetail.OrderNbr = [parameter]

Here [parameter] is the OrderNbr value taken from the Current property of the OrderDetail cache.

This value can be obtained through the following code executed in a graph:
((OrderDetail)Caches[typeof(OrderDetail)].Current).OrderNbr.

Suppose there is a many-to-one relationship between the DocTransaction and Document DACs. Let
it be implemented through the DocNbr and DocType key fields. The views connecting Document and
DocTransaction records might be defined as follows.

// The views declarations in a graph
PXSelect<Document> Documents;
PXSelect<DocTransaction,
 Where<DocTransaction.docNbr, Equal<Current<Document.docNbr>>,
 And<DocTransaction.docType, Equal<Current<Document.docType>>>>>
 DocTransactions;

Second view's execution will produce the following SQL query:

SELECT * FROM DocTransaction
WHERE DocTransaction.DocNbr = [parameter1]
 AND DocTransaction.DocType = [parameter2]

Where [parameter1] is the DocNbr value and [parameter2] is the DocType value taken from the
Current property of the DocTransaction cache.

If the field specified in the Current parameter is null, the default value will be inserted. The default
value assignment procedure takes into account the PXDefault attribute value and triggers the
FieldDefaulting event handlers. The value eventually returned by the procedure is inserted into the
SQL query in place of the Current parameter.

This procedure doesn't start if the Current2 version of the parameter is used.

 | API Reference | 225

Required Parameter

To pass a specific value to the SQL query, you should use the Required parameter. To execute a BQL
statement with the Required parameter, specify the value as the Select() method argument.

The Required parameter should be used only in the BQL statements that are executed in the
application code. The value passed to Select() must be of the same type as the specified field.

The code below shows execution of BQL statement with the Required parameter.

// Suppose an event handendler related to the Product DAC
// is being executed
Product product = (Product)e.Row;

// Select the Category record with the specified CategoryCD
Category category =
 PXSelect<Category,
 Where<Category.categoryCD, Equal<Required<Category.categoryCD>>>>
 .Select(this, product.CategoryCD);

The BQL statement used in this example is translated into the following SQL query.

SELECT * FROM Category
WHERE Category.CategoryCD = [parameter]

Where [parameter] is the product.CategoryCD variable's value at the moment the Select()
method is invoked.

A BQL statement can include several Required parameters. The number of Required parameters must
match the number of parameters passed to the Select() function. See the example below.

// Suppose an event handler related to the DocTransaction DAC
// is being executed
DocTransaction line = (DocTransaction)e.Row;
...
Document doc =
 PXSelect<Document,
 Where<Document.docNbr, Equal<Required<DocTransaction.docNbr>,
 And<Document.docType, Equal<Required<DocTransaction.docType>>>>>
 .Select(this, line.DocNbr, line.DocType);

In this example, the BQL statement corresponds to the following SQL query.

SELECT * FROM Document
WHERE Document.DocNbr = [line.DocNbr value]
 AND Document.DocType = [line.DocType value]

The Required parameter can be used together with other parameter as follows.

// Suppose an event handler related to the DocTransaction DAC
// is being executed
DocTransaction line = (DocTransaction)e.Row;
...
SupplierProduct suppdata =
 PXSelect<SupplierProduct,
 Where<SupplierProduct.accountID, Equal<Current<Document.accountID>>,
 And<SupplierProduct.productID, Equal<Required<Product.productID>>>>>
 .Select(this, line.ProductID);

Here only one parameter is passed to the Select() method (excluding graph reference), because
Current doesn't need an explicitly passed value.

 | API Reference | 226

Optional Parameter

The Optional parameter is used to pass field's "external value" to the SQL query. Parameter execution
triggers the FieldUpdating event handlers, which can transform it to "internal value". The value is
passed to the Select() method. If the value is not specified or is null, the default field value is used.

For example, suppose the OrderDetail DAC adds the PXSelector attribute to the ProductID field.
PXSelector replaces it in the user interface (UI) with the human-readable ProductCD field.

[PXSelector(typeof(Search<Product.productID>),
 new Type [] {
 typeof(Product.productCD),
 typeof(Product.productName)
 },
 SubstituteKey = typeof(Product.productCD))]
public virtual int? ProductID { get; set; }

In the UI control for this field, the user inputs a ProductCD value. The PXSelector attribute implements
the FieldUpdating event handler which replaces it with the corresponding ProductID value. The
following code could be used to select OrderDetail records related to a Product record.

// Product data record obtained somehow
Product p = ...
// Selecting OrderDetail records - ProductCD value is passed
// to the Select() method.
PXSelect<OrderDetail,
 Where<OrderDetail.ProductID, Equal<Optional<OrderDetail.ProductID>>>>
 .Select(this, p.ProductCD);

If the Required parameter goes after an Optional parameter in a BQL command, the Optional
parameter has to be provided with a value. The general rule is to provide values for all Optional,
Required, and Argument parameters up to the last Required or Argument parameter in the BQL
statement.

// Related OrderDetail and Product records obtained somehow
OrderDetail od = ...
Product p = ...

// At least three values (in addition to graph reference) must
// be passed to the Select() method below.
// The second Optional parameter here will be substituted with the
// default UnitPrice value.
PXResultSet<OrderDetail> details =
 PXSelect<OrderDetail,
 Where<OrderDetail.productID, Equal<Optional<OrderDetail.productID>>,
 And<OrderDetail.extPrice, Less<Required<OrderDetail.extPrice>>,
 And<OrderDetail.unitPrice, Greater<Required<OrderDetail.unitPrice>>,
 And<OrderDetail.taxRate, Equal<Optional<OrderDetail.taxRate>>>>>>>
 .Select(this, p.ProductCD, od.ExtPrice, od.UnitPrice);

The BQL statement in this example is translated into the following SQL query.

SELECT * FROM OrderDetail
WHERE OrderDetail.ProductID = [line.ProductID value or default]
 AND OrderDetail.ExtPrice < [line.ExtPrice value]
 AND OrderDetail.UnitPrice > [line.UnitPrice value]
 AND OrderDetail.TaxRate = [Default TaxRate value]

Argument Parameter

The Argument parameter is used to pass values from UI controls to the optional method of a data view.
In this case, the optional method should have the parameters through which you can access the values
passed from the UI. When a BQL statement with the Argument parameter is executed in code, the value
must be specifed in the parameters of the Select() method.

 | API Reference | 227

In the Argument type parameter, you specify the data type of the expected value, as follows.

PXSelect<TreeViewItem,
 Where<TreeViewItem.parentID, Equal<Argument<int?>>>,
 OrderBy<Asc<TreeViewItem.parentID>>> GridDataSource;

The BQL statement from this example in translated into the following SQL query.

SELECT * FROM TreeViewItem
WHERE TreeViewItem.ParentID = [parameter]
ORDER BY TreeViewItem.ParentID

Where [parameter] will contain the value received from the UI control and passed to the Select()
method.

Parameters

Parameters are used as operands in conditional expressions to pass values determined at run time into
the resulting SQL.

Current<Field> : IBqlParameter

Inserts the field value from the Current property of the cache. If the Current property is null or the
field value is null, the parameter is replaced by the default value.

Examples:

// Declaration of views in a BLC
PXSelect<Table1> MasterRecords;
PXSelect<Table2,
 Where<Table2.tableID, Equal<Current<Table1.tableID>>>> DetailRecords;

The second view corresponds to the following SQL query.

SELECT * FROM Table2
WHERE Table2.TableID = [value]

Where [value] is the TableID value from the Current property of the PXCache<Table1> object.

Type Parameters:

• Field : IBqlField

Current2<Field> : IBqlParameter

The same as Current, but in case the null value is passed to the parameter, doesn't insert the default
value.

Type Parameters:

• Field : IBqlField

CurrentValue<Field> : IBqlOperand, IBqlCreator

Equivalent to the Current parameter, but is used in the PXProjection attribute.

Type Parameters:

• Field : IBqlField

Required<Field> : IBqlParameter

Is replaced by a value passed to the Select() method. The value type should match the type of the
field specified as Field.

 | API Reference | 228

Examples:

PXResutset<Table> res =
 PXSelect<Table, Where<Table.field1, Equal<Required<Table.field1>>>>
 .Select(this, val);

The BQL statement in this example is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Field1 = [the val variable value]

Type Parameters:

• Field : IBqlField

Optional<Field> : IBqlParameter

Inserts the value from the Current property of the cache or the value explicitly passed to the Select()
method. In the latter case, the parameter causes raising of the FieldUpdating event for the specified
field (which can modify or substitute the value). If the null value is passed or the Current property is
null, the default value of the field is inserted.

Examples:

PXResutset<Table1> res =
 PXSelect<Table1, Where<Table1.field1, Equal<Optional<Table2.field1>>>>
 .Select(this, val);

The view corresponds to the following SQL query:

SELECT * FROM Table1
WHERE Table1.Field1 = [value]

Where [value] is the value of the val variable, possibly, modified by FieldUpdating event handlers.

Type Parameters:

• Field : IBqlField

Optional2<Field> : IBqlParameter

The same as Optional, but in case the null value is passed to the parameter, doesn't insert the default
value.

Type Parameters:

• Field : IBqlField

Argument<ArgumentType> : IBqlParameter

Is used to pass a value of a particular data type from a UI control to the associated view. When a BQL
statement with Argument is executed in code, a value is passed in the Select() method's arguments.

Examples:

// Declaration of a view in a BLC
PXSelect<Table, Where<Table.field1, Greater<Argument<int?>>>> Records;
...
// Execution of the view in code
foreach(Table rec in Records.Select(5))
 ...

 | API Reference | 229

The BQL here is translated into the following SQL query.

SELECT * FROM Table
WHERE Table.Field1 > 5

Type Parameters:

• ArgumentType : Type

Using Functions
Functions are primaritly used in attributes to calculate a field from other fields. They can also be used
as operands in Where and OrderBy clauses.

Arithmetic Operations

The following BQL classes implement arithmetic operations:

• Add<Operand1, Operand2> corresponds to (Operand1 + Operand2).

• Sub<Operand1, Operand2> corresponds to (Operand1 - Operand2).

• Mult<Operand1, Operand2> corresponds to (Operand1 * Operand2).

• Div<Operand1, Operand2> corresponds to (Operand1 / Operand2).

• Minus<Operand> corresponds to -Operand.

For example, product reorder discrepancy can be calculated using the following expression:

Minus<
 Sub<Sub<IsNull<Product.availQty, decimal_0>,
 IsNull<Product.bookedQty, decimal_0>>,
 Product.minAvailQty>>

Where the decimal_0 constant represents the 0 decimal value. The expression is translated to the
following SQL code:

 -((ISNULL(Product.AvailQty, .0) - ISNULL(Product.BookedQty, .0))
 - Product.MinAvailQty)

IsNull returns the first argument if it is not null or the second argument otherwise.

Such expression could be used in an attribute (for instance, PXDBCacled) to define a calculated field not
bound to a database column:

// Data field definition in a DAC
[PXDecimal(2)]
[PXDBCalced(typeof(Minus<
 Sub<Sub<IsNull<Product.availQty, decimal_0>,
 IsNull<Product.bookedQty, decimal_0>>,
 Product.minAvailQty>>),
 typeof(Decimal))]
public virtual decimal? Discrepancy { get; set; }

Also, it may be used in a conditional expression in a BQL statement like the following one.

PXSelect<Product,
 Where<Minus<
 Sub<Sub<IsNull<Product.availQty, decimal_0>,
 IsNull<Product.bookedQty, decimal_0>>,
 Product.minAvailQty>>,
 NotEqual<decimal_0>>>

 | API Reference | 230

This corresponding SQL query retrieves Product records that don't make the expression equal 0.

SELECT * FROM Product
WHERE -((ISNULL(Product.AvailQty, .0) - ISNULL(Product.BookedQty, .0))
 - Product.MinAvailQty) <> .0

Let us consider another example. Suppose an OrderDetail record represents sales order information
for a single product. Then its total discount price may be calculated by the following formula.

Quantity * UnitPrice * (1 - DiscountRate/100)

This formula may be implemented in BQL as follows.

Mult<Mult<OrderDetail.unitPrice,
 OrderDetail.orderDetailQty>,
 Sub<decimal_1,
 Div<OrderDetail.discountRate,
 decimal_100>>>

Here, decimal_1 and decimal_100 are classes derived from Constant<decimal> and represent the 1
and 100 decimal values.

This expression could be written differently in BQL. For example, rounding the discount as shown below.

Sub<Mult<OrderDetail.unitPrice,
 OrderDetail.orderDetailQty>,
 Round<Div<Mult<Mult<OrderDetail.unitPrice,
 OrderDetail.orderDetailQty>,
 OrderDetail.discountRate>,
 decimal_100>,
 Minus<int_1>>>

The latter expression will be translated into the following SQL code.

((OrderDetail.UnitPrice * OrderDetail.OrderDetailQty)
 - ROUND(OrderDetail.UnitPrice *
 OrderDetail.OrderDetailQty *
 OrderDetail.DiscountRate / 100., -1))

Equivalents of SQL Functions

The BQL library defines the following SQL function equivalents:

• IsNull<Operand1, Operand2> corresponds to ISNULL(Operand1, Operand2).

• NullIf<Operand1, Operand2> corresponds to NULLIF(Operand1, Operand2).

• Round<Operand1, Operand2> corresponds to ROUND(Operand1, Operand2).

• Substring<Operand, Start, Length> corresponds to SUBSTRING(Operand, Start,
Length).

• Replace<Operand, toReplace, replaceWith> corresponds to REPLACE(Operand,
toReplace, replaceWith).

• DateDiff<Operand1, Operand2, OUM> corresponds to DATEDIFF(OUM, Operand1,
Operand2).

Also, the BQL library defines the Switch class translated to SQL operator CASE.

Example – Conditional Ordering

The Switch clause can be used in OrderBy to sort data records according to a condition.

 | API Reference | 231

For example, data records with a specific field greater than another one can be placed above
other data records. In this case, you should put the Switch clause inside Asc or Desc as in
OrderBy<Asc<Switch<...>>>, as follows.

PXSelectOrderBy<Product,
 OrderBy<Asc<
 Switch<Case<Where<Product.availQty, Greater<Product.bookedQty>>, True>,
 False>>>>

This BQL statement is translated into the following SQL query.

SELECT * FROM Product
ORDER BY
 (CASE
 WHEN Product.AvailQty > Product.BookedQty THEN 1
 ELSE 0
 END)

In the result set, the records with AvailQty values less or equal to BookedQty values will go first.

Arithmetic Operations

Arithmetic functions are used to construct arithmetic expressions out of fields, constants, and other
functions.

Add<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns the sum of Operand1 and Operand2.

Examples:

Add<Table.field1, Table.field2>

This is tranlsated into:

(Table.Field1 + Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

Sub<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns the substraction of Operand2 from Operand1

Examples:

Sub<Table.field1, Table.field2>

This is tranlsated into:

(Table.Field1 - Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

Mult<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns the multiplication of Operand1 by Operand2.

 | API Reference | 232

Examples:

Mult<Table.field1, Table.field2>

This is tranlsated into:

(Table.Field1 * Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

Div<Operand1, Operand2> : IBqlOperand, IBqlCreator

Return the division of Operand1 on Operand2.

Examples:

Div<Table.field1, Table.field2>

This is tranlsated into:

(Table.Field1 / Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

Minus<Operand> : IBqlOperand, IBqlCreator

Returns -Operand (multiplies by -1).

Examples:

Minus<Table.field>

This is tranlsated into:

-Table.Field

Type Parameters:

• Operand : IBqlOperand

Common Functions

Common functions are translated to the equivalent SQL functions.

IsNull<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns Operand1 if it is not null, or Operand2 otherwise. Equivalent to SQL function ISNULL.

Examples:

IsNull<Table.field1, Table.field2>

This is tranlsated into:

ISNULL(Table.Field1, Table.Field2)

 | API Reference | 233

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

Substring<Operand, Start, Length> : IBqlOperand, IBqlCreator

Returns the Length characters from the Operand string starting from the Start index (the first
character has index 1). Equivalent to SQL function SUBSTRING.

To use constant numeric values in Start and Length, define the corresponding integer constants as
classes derived from Constant<int>.

Examples:

Substring<Table.field, int_1, int_5>

Provided int_1 and int_5 are classes representing integer constants 1 and 5, this is tranlsated into:

SUBSTRING(Table.Field, 1, 5)

Type Parameters:

• Operand : IBqlOperand

• Start : IBqlOperand

• Length : IBqlOperand

Round<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns a numeric value rounded to the specified precision. Equivalent to SQL function ROUND.

Examples:

Round<Table.field1, Table.field2>

This is tranlsated into:

Round(Table.Field1, Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

NullIf<Operand1, Operand2> : IBqlOperand, IBqlCreator

Returns null if Operand1 equals Operand2 and returns Operand1 if the two expression are not equal.
Equivalent to SQL function NULLIF.

Examples:

NullIf<Table.field1, Table.field2>

This is tranlsated into:

NULLIF(Table.Field1, Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

 | API Reference | 234

• Operand2 : IBqlOperand

Replace<Operand, toReplace, replaceWith> : IBqlOperand, IBqlCreator

Replaces all occurrences of a string with another string in the source expression. Equivalent to SQL
function REPLACE.

Examples:

Replace<Table.field, str_AAA, str_BBB>

Provided str_AAA and str_BBB are classes representing string constants "AAA" and "BBB", this is
tranlsated into:

REPLACE(Table.Field, "AAA", "BBB")

Type Parameters:

• Operand : IBqlOperand

• toReplace : IBqlOperand

• replaceWith : IBqlOperand

DateDiff<Operand1, Operand2, UOM> : IBqlOperand, IBqlCreator

Returns the count of the datepart boundaries specified in UOM crossed between Operand1 and Operand2.
Equivalent to SQL function DATEDIFF.

Examples:

DateDiff<Table.field1, Table.field2, DateDiff.hour>

This is translated into:

DATEDIFF(hh, Table.Field1, Table.Field2)

Type Parameters:

• Operand1 : IBqlOperand

• Operand2 : IBqlOperand

• UOM : Constant<string>, new()

DateDiff

Wraps string constants that can be used as the third argument in the DateDiff function.

• public class day : Constant<string>

Constant dd.

• public class hour : Constant<string>

Constant hh.

• public class minute : Constant<string>

Constant mi.

• public class second : Constant<string>

Constant ss.

• public class millisecond : Constant<string>

 | API Reference | 235

Constant ms.

Switch Clause

The Switch clause returns one of the possible values depending on a condition.

Switch<Case> : IBqlOperand, IBqlCreator

Evaluates conditions and returns one of multiple possible values. Equivalent to SQL CASE expression
without the ELSE expression. Pairs condition-value are specified via the Case clause.

The Switch clause can be used as an Operand type parameter in the Where or OrderBy clause.

Examples:

Switch<
 Case<Where<Table.field1, Less<Table.field2>>, Table.field3,
 Case<Where<Table.field1, Equal<Table.field2>>, Table.field4,
 Case<Where<Table.field1, Greater<Table.field2>>, Table.field5>>>>

This is translated into:

CASE
 WHEN Table.Field1 < Table.Field2 THEN Table.Field3
 WHEN Table.Field1 = Table.Field2 THEN Table.Field4
 WHEN Table.Field1 > Table.Field2 THEN Table.Field5
END

Type Parameters:

• Case : IBqlCase, new()

Switch<Case, Default> : IBqlOperand, IBqlCreator, ISwitch

Evaluates conditions and returns one of multiple possible values or the default value if none of the
conditions is satisfied. Equivalent to SQL CASE-ELSE expression. Pairs condition-value are specified via
the Case clause.

Examples:

Switch<
 Case<Where<Table.field1, Greater<Table.field2>,
 Or<Table.field2, IsNull>>, True>,
 False>

This is translated into:

CASE
 WHEN Table.Field1 > Table.Field2 OR Table.Field2 IS NULL THEN 1
 ELSE 0
END

Type Parameters:

• Case : IBqlCase, new()

• Default : IBqlOperand

Case<Where, Operand> : IBqlCase

Specifies a condition to evaluate in the Switch clause and the expression to return if the condition is
satisfied.

The condition is set by the Where clause. In the tranlation to SQL, Case is replaced with WHEN
[conditions] THEN [expression].

 | API Reference | 236

Type Parameters:

• Where : IBqlWhere, new()

• Operand : IBqlOperand

Case<Where, Operand, NextCase> : IBqlCase

Specifies a single condition to evaluate and the expression to return if the condition is satisfied, and
allows attaching more Case clauses.

Examples:

Switch<
 Case<Where<Table.field1, Equal<Table.field2>>, int0,
 Case<Where<Table.field1, Equal<Table.field3>>, int1>,
 int2>

Where int0, int1, and int2 are derived from Constant<int> and represent the 0, 1, and 2
integers. The corresponding SQL code:

CASE
 WHEN Table.Field1 = Table.Field2 THEN 0
 WHEN Table.Field1 = Table.Field3 THEN 1
 ELSE 2
END

Type Parameters:

• Where : IBqlWhere, new()

• Operand : IBqlOperand

• NextCase : IBqlCase, new()

Executing Statements
To send a request to the database, you should call the Select() method of the PXSelect class.
Additional parameters are provided if a BQL statement includes parameters. The Select() method
returns the PXResultset<> object, which represents the result set.

The Select() method invokes the method of the underlying PXView object, which is responsible for
further processing of the request. The PXView object translates the BQL statement into the SQL query,
sends it to the database, and maintains the result set.

Different Ways of Executing a Statement

You use the PXSelect class or its variant to define a data view in one of the following ways:

• Declared as a member in a graph. Such data view can be specified as the data member of the
webpage control and used for basic data manipulation (inserting a data record, updating a data
records, and deleting a data record). You can execute the data view by calling the Select()
method.

• Executed using the static Select() method. As the first parameter, you provide a graph object
(typically, as the this variable).

• Dynamically instantiatated in code and executed using the Select() method. You provide the
graph object as a parameter to the PXSelect constructor.

The following code example demonstrates different ways of BQL statement execution.

// Business logic controller (graph) declaration.
public class OrderDataEntry : PXGraph<OrderDataEntry, SalesOrder>
{

 | API Reference | 237

 // A data view declared as a graph member
 public PXSelectOrderBy<SalesOrder,
 OrderBy<Asc<SalesOrder.orderNbr>>> Orders;
 ...
 public void SomeMethod()
 {
 // An execution of the data view in code
 foreach(SalesOrder so in Orders.Select())
 {
 // The SalesOrder record selected by a data view can
 // be modified and updated through the Update() method
 so.OrderTotal = so.LinesTotal + so.FreightAmt;
 // Update the SalesOrder data record in the cache
 Orders.Update(so);
 }

 // Execution through the static Select() method
 foreach(SalesOrder so in
 PXSelectReadOnly3<SalesOrder,
 OrderBy<Asc<SalesOrder.orderNbr>>>.Select(this))
 ...

 // Dynamic instantiation of a data view
 PXSelectBase<SalesOrder> orders =
 new PXSelectOrderBy<SalesOrder,
 OrderBy<Asc<SalesOrder.orderNbr>>>(this);

 // An execution of a dynamically created BQL statement
 foreach(SalesOrder so in orders.Select())
 ...
 }
}

Note that the statically executed statement here is based on the PXSelectReadOnly class. Its result
set will not reflect the changes to the SalesOrder records made three lines above. At the same time,
orders.Select() will reflect the changes, because the result set will be merged with the cache.

Result Set Merging with Cache

If a BQL statement is not read-only and does not contain joins, the result set is merged with the
appropriate PXCache object and the Select() method returns the merged result set.

If the BQL statement is not read-only and joins data from multiple tables, the result set is merged only
with the PXCache object that corresponds to the first table of the BQL statement. The PXResultset<>
object, which represents the result set, contains objects of generic PXResult<> type. This type can
be cast to the DACs that represent the joined tables. The instance of the primary DAC to which the
PXResult<> is cast will contain the modifications stored in the cache. Moreover, the casting will
return the instance from the cache. On the other hand, casting PXResult<> to joined DACs will return
the instances that contain values from the database and have no relation with the caches of the
correponding DAC types.

A BQL statement is read-only if it uses aggregation or is based on the PXSelectReadonly class or its
variant. For such statements, the result set is not merged with a PXCache object. The Select() method
returns the data records as they are currently stored in the database.

Processing the Result Set

Select() returns the PXResultset<> object. The type parameter is set to the first table selected by the
BQL statement.

You can iterate through the result set in a foreach loop, obtaining:

• DAC instances

• PXResult<> instances

 | API Reference | 238

A PXResult<> instance represents a whole result set record. It can be cast to any of the DAC types
joined in the BQL statement.

In the following example, records are selected from one table.

// Result set records are implicitly casted to the Document DAC.
foreach(Document doc in PXSelect<Document>.Select(this))
{
 ...
}

The following example shows how to process a result set of a BQL statement joining two tables.

// The static Select() method is called to execute a BQL command.
PXResultset<OrderDetail> result =
 PXSelectJoin<OrderDetail, InnerJoin<SalesOrder,
 On<SalesOrder.orderNbr, Equal<OrderDetail.orderNbr>>>>.Select(this);

// Iterating over the result set.
// PXResult should be specialized with DACs of all joined tables
// to be able to cast to these DACs.
foreach(PXResult<OrderDetail, SalesOrder> record in result)
{
 // Casting a result set record to the OrderDetail DAC.
 OrderDetail detail = (OrderDetail)record;
 // Casting a result set record to the SalesOrder DAC.
 SalesOrder order = (SalesOrder)record;
 ...
}

Note that the PXResult<> type should be specialized with DACs of all joined tables. In the example
above, the DACs are OrderDetail and SalesOrder.

The detail variable above references the OrderDetail instance located in the OrderDetail cache.

The order variable above references a SalesOrder instance that is initialized with the values from the
database and is placed in the part of the memory that have no relation to the SalesOrder cache.

Executing Statements with Parameters

Current, Optional, and Required parameters are used to pass specific values to a BQL statement. The
following example demonstrates their usage.

// Declaration of a BLC
public class ReceiptDataEntry : PXGraph<ReceiptDataEntry, Document>
{
 // When a screen associated with this BLC is first opened,
 // the Optional parameter will be replaced with the default DocType value.
 public PXSelect<Document,
 Where<Document.docType, Equal<Optional<Document.docType>>>> Receipts;

 // The Current parameters will be replaced with the values from
 // the PXCache<Document> object's Current property.
 public PXSelect<DocTransaction,
 Where<DocTransaction.docNbr, Equal<Current<Document.docNbr>>,
 And<DocTransaction.docType, Equal<Current<Document.docType>>>>,
 OrderBy<Asc<DocTransaction.lineNbr>>> ReceiptTransactions;

 public void SomeMethod()
 {
 // Select documents of the same DocType as the Current document
 // has or of the default DocType if Current is null.
 PXResult<Document> res1 = Receipts.Select();

 // Select documents of the "N" DocType
 PXResult<Document> res2 = Receipts.Select("N");

 | API Reference | 239

 // Parameter values are taken from the Current document
 PXResult<DocTransaction> res3 = ReceiptTransactions.Select();

 // Use the Required parameter to provide values in code.
 // The result set here is the same as res2.
 PXResult<Document> res4 =
 PXSelect<Document,
 Where<Document.docType, Equal<Required<Document.docType>>>>
 .Select(this, "N");
 }
 ...
}

For more details on parameters usage in BQL statement, see Using Parameters.

More Methods

Using other methods of the PXSelectBase class you can select a specific number of records, append
additional conditions to the Where clause, join more tables, and redefine ordering.

Implementing Optional Select Method

In some cases the data requested from the database cannot be described by a declarative BQL
statement. In this case you can implement the optional method that will be used instead of the
standard Select() logic to retrieve data from the database. The data request will still be executed via
the Select() method, but his will result in the optional method invocation.

If the optional method is not defined or returns null, the standard Select() logic will be executed.

The optional method of a data view should have the same name as the data view except for the first
letter, which must have a different case. The optional method should return IEnumerable, as shown in
the following example.

// A view declaration in a graph.
public PXSelectJoin<BalancedAPDocument,
 LeftJoin<APInvoice,
 On<APInvoice.docType, Equal<BalancedAPDocument.docType>,
 And<APInvoice.refNbr, Equal<BalancedAPDocument.refNbr>>>,
 LeftJoin<APPayment,
 On<APPayment.docType, Equal<BalancedAPDocument.docType>,
 And<APPayment.refNbr, Equal<BalancedAPDocument.refNbr>>>>>>
 DocumentList;

// The optional method executed on DocumentList.Select().
protected virtual IEnumerable apdocumentlist()
{
 // An empty result set is created.
 // All DAC types that will be included in the set must be specified.
 PXResultset<BalancedAPDocument, APInvoice, APPayment>
 ret = new PXResultset<BalancedAPDocument, APInvoice, APPayment>();

 // Iterating over the result set of a complex BQL statement.
 foreach (PXResult<BalancedAPDocument, APInvoice, APPayment, APAdjust> res in
 PXSelectJoinGroupBy<BalancedAPDocument,
 LeftJoin<APInvoice,
 On<APInvoice.docType, Equal<BalancedAPDocument.docType>,
 And<APInvoice.refNbr, Equal<BalancedAPDocument.refNbr>>>,
 LeftJoin<APPayment,
 On<APPayment.docType, Equal<BalancedAPDocument.docType>,
 And<APPayment.refNbr, Equal<BalancedAPDocument.refNbr>>>,
 LeftJoin<APAdjust,
 On<APAdjust.adjgDocType,Equal<BalancedAPDocument.docType>>>>>,
 Aggregate<GroupBy<BalancedAPDocument.docType,
 GroupBy<BalancedAPDocument.refNbr,
 GroupBy<BalancedAPDocument.released,

 | API Reference | 240

 GroupBy<BalancedAPDocument.prebooked,
 GroupBy<BalancedAPDocument.openDoc>>>>>>>.Select(this))
 {
 // Casting a result set record to DAC types.
 BalancedAPDocument apdoc = (BalancedAPDocument)res;
 APAdjust adj = (APAdjust)res;
 // Checking some conditions and modifying records
 ...
 // Adding a record to the result set.
 // PXResult record passed as a parameter to the constructor is
 // automatically casted to the appropriate type.
 ret.Add(new PXResult<BalancedAPDocument, APInvoice, APPayment>(
 apdoc, res, res));
 }
 return ret;
}

In this example, the apdocumentlist() method creates an empty result set. The PXResultSet type
in this case should be parametrized with all DAC types that will be wrapped in a result set record. The
apdocumentlist() method then executes a complex SQL query with aggregation, processes the result
set and constructs records for the output result set.

A record is added to the PXResultset object via the Add() method. Note that you can pass a PXResult
object as a parameter to the PXResult contructor. The PXResult object will be implicitly casted to the
appropriate DAC type (here, APInvoice and APPayment).

Appendix
This chapter provides reference information for the following BQL API components:

• Search Classes

• Select Classes

Search Classes

The Search classes are used for specifying BQL statements in such attributes as PXSelector,
PXDBScalar, and PXDefault. A Search statement selects a value of a particular field rather than a
whole record. The field is specified as the first type parameter instead of the table. Apart from this, the
syntax of BQL statements based on Search and PXSelect classes is identical.

In the example below, the PXDBScalar attribute will add a subrequest into SQL queries that request
SomeField.

// Declaration of a field in the DAC representing Table1.
// SomeField will be assigned a value retrieved from Table2.
[PXDecimal(2)]
[PXDBScalar(typeof(
 Search<Table2.someField,
 Where<Table2.field2, Equal<Table1.field1>>>))]
public virtual decimal? SomeField { get; set; }

For more details on attributes and examples, see Attributes Reference.

Search<Field> : BqlCommand, IBqlSearch

Retrieves a field value.

Type Parameters:

• Field : IBqlField

Search<Field, Where> : BqlCommand, IBqlSearch

Retrieves a field value, applying filtering.

 | API Reference | 241

Type Parameters:

• Field : IBqlField

• Where : IBqlWhere, new()

Search<Field, Where, OrderBy> : BqlCommand, IBqlSearch

Retrieves a field from a table, applying filtering and ordering.

Type Parameters:

• Field : IBqlField

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

Search2<Field, Join> : BqlCommand, IBqlSearch, IBqlJoinedSelect

Retrieves a field from a table joined with other tables.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

Search2<Field, Join, Where> : BqlCommand, IBqlSearch, IBqlJoinedSelect

Retrieves a field from a table joined with other tables, applying filtering.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

Search2<Field, Join, Where, OrderBy> : BqlCommand, IBqlSearch, IBqlJoinedSelect

Retrieves a field from a table joined with other tables, applying filtering and ordering.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

Search3<Field, OrderBy> : BqlCommand, IBqlSearch

Retrieves a field value, applying ordering.

Type Parameters:

• Field : IBqlField

• OrderBy : IBqlOrderBy, new()

Search3<Field, Join, OrderBy> : BqlCommand, IBqlSearch, IBqlJoinedSelect

Retrieves a field value from a table joined with other tables, applying ordering.

 | API Reference | 242

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• OrderBy : IBqlOrderBy, new()

Search4<Field, Aggregate> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value.

Type Parameters:

• Field : IBqlField

• Aggregate : IBqlAggregate, new()

Search4<Field, Where, Aggregate> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieve an aggregated field value, applying filtering.

Type Parameters:

• Field : IBqlField

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

Search4<Field, Where, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value, applying filtering and ordering.

Type Parameters:

• Field : IBqlField

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Search5<Field, Join, Aggregate> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value from one table joined with other tables.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

Search5<Field, Join, Where, Aggregate> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value from one table joined with other tables, applying filtering.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

 | API Reference | 243

Search5<Field, Join, Where, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value from one table joined with other tables, applying filtering and
ordering.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Search6<Field, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value, applying ordering.

Type Parameters:

• Field : IBqlField

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Search6<Field, Join, Aggregate, OrderBy> : BqlCommand, IBqlSearch, IBqlAggregate

Retrieves an aggregated field value from one table joined with other tables, applying ordering.

Type Parameters:

• Field : IBqlField

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Coalesce<Search1, Search2> : BqlCommand, IBqlSearch, IBqlCoalesce

Retrieves a value using Search1 or, if it returns null, Search2.

Type Parameters:

• Search1 : IBqlSearch, new()

• Search2 : IBqlSearch, new()

Select Classes

The Select classes represent BQL commands and are primarily passed to PXView objects, which
execute the BQL command. However, to select data from the database, you use one of the PXSelect
classes, which initializes the Select object and passes it to the PXView object for you.

The Select and PXSelect BQL statements syntax is identical, only the names of the classes themselves
are different. For example, the PXSelectJoinOrderBy<Table, Join, OrderBy> type initializes the
object of Select3<Table, Join, OrderBy> type.

The Select classes are also used for specifying BQL statements in such attributes as PXParent and
PXProjection.

For more details on attributes and examples, see Attributes Reference.

 | API Reference | 244

Select<Table> : BqlCommand, IBqlSelect

Selects data records from a single table.

Type Parameters:

• Table : IBqlTable

Select<Table, Where> : BqlCommand, IBqlSelect

Selects data records from a single table with filtering.

Type Parameters:

• Table : IBqlTable

• Where : IBqlWhere, new()

Select<Table, Where, OrderBy> : BqlCommand, IBqlSelect

Selects data records from a single table with filtering and ordering.

Type Parameters:

• Table : IBqlTable

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

Select2<Table, Join> : BqlCommand, IBqlSelect, IBqlJoinedSelect

Selects data records from multiple tables.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

Select2<Table, Join, Where> : BqlCommand, IBqlSelect, IBqlJoinedSelect

Selects data records from multiple tables with filtering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

Select2<Table, Join, Where, OrderBy> : BqlCommand, IBqlSelect, IBqlJoinedSelect

Selects data records from multiple tables with filtering and ordering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• OrderBy : IBqlOrderBy, new()

 | API Reference | 245

Select3<Table, OrderBy> : BqlCommand, IBqlSelect

Selects data records from a single table with ordering.

Type Parameters:

• Table : IBqlTable

• OrderBy : IBqlOrderBy, new()

Select3<Table, Join, OrderBy> : BqlCommand, IBqlSelect, IBqlJoinedSelect

Selects data records from multiple tables with ordering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• OrderBy : IBqlOrderBy, new()

Select4<Table, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from a single table.

Type Parameters:

• Table : IBqlTable

• Aggregate : IBqlAggregate, new()

Select4<Table, Where, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from a single table with filtering.

Type Parameters:

• Table : IBqlTable

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

Select4<Table, Where, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from a single table with filtering and ordering.

Type Parameters:

• Table : IBqlTable

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Select5<Table, Join, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

 | API Reference | 246

Select5<Table, Join, Where, Aggregate> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with filtering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

Select5<Table, Join, Where, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with filtering and ordering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Where : IBqlWhere, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Select6<Table, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from a single table with ordering.

Type Parameters:

• Table : IBqlTable

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Select6<Table, Join, Aggregate, OrderBy> : BqlCommand, IBqlSelect, IBqlAggregate

Selects aggregated values from multiple tables with ordering.

Type Parameters:

• Table : IBqlTable

• Join : IBqlJoin, new()

• Aggregate : IBqlAggregate, new()

• OrderBy : IBqlOrderBy, new()

Core Classes
The developer of Acumatica Framework applications deals most of the time with the following classes
that form the core of the framework:

• The PXCache<> class represents the cache and the controller of modified data records from a
particular database table.

• The PXSelect<> and related classes define a data view for retrieving a particular data set from
the database.

 | API Reference | 247

• The successors of the PXGraph class are the base types for business logic controllers (graphs). In
a graph, the application defines data views, actions, and event handlers.

• The PXView class is instantiated to execute a data view. The objects of this type are handled
mostly internally.

PXCache<Table> Class
Represents the cache of modified data records from a paricular table and the controller for basic
operations over these data records. The type parameter is set to the data access class (DAC) that
represents this table.

The cache objects consists conceptually of two parts:

• The collections of the data records that were modified and not yet saved to the database, such as
Updated, Inserted, Deleted, and Dirty. See Properties for description of these items.

• The controller that executes basic data-related operations through the use of the methods, such
as Update(), Insert(), Delete(), Persist(), and other methods.

During execution of these methods, the cache raises events. The graph and attributes can subscribe to
these events to implement business logic. The methods applied to a previously unchanged data record
result in placing of the data record into the cache.

See Remarks for more details.

Inheritance Hierarchy

PXCache

Syntax

[System.Security.Permissions.ReflectionPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[System.Security.Permissions.SecurityPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[DebuggerTypeProxy(typeof(PXCache<>.PXCacheDebugView))]
public class PXCache<TNode> : PXCache
 where TNode : class, IBqlTable, new()

The PXCache<Table> type exposes the following members.

Constructors

The application does not need to instantiate PXCache directly, as the system creates caches
automatically whenever they are needed. A cache instance is always bound to an instance of the
business logic controller (graph). The application typically accesses a cache instance through the Cache
property of a data view. The property always returns the valid cache instance, even if it didn't exist
before the property was accessed. A cache instance is also available through the Caches property of the
graph to which the cache instance is bound.

Properties

• public virtual bool AllowDelete

Gets or sets the value that indicates whether the cache allows deletion of data records from the
user interface. This value does not affect the ability to delete a data record via the methods. By
default, the property equals true.

• public virtual bool AllowInsert

 | API Reference | 248

Gets or sets the value that indicates whether the cache allows insertion of data records from the
user interface. This value does not affect the ability to insert a data record via the methods. By
default, the property equals true.

• public virtual bool AllowSelect

Get, set. By default, the property equals true.

• public virtual bool AllowUpdate

Gets or sets the value that indicates whether the cache allows update of data records from the
user interface. This value does not affect the ability to update a data record via the methods. By
default, the property equals true.

• public override object Current

Gets or sets the current data record. This property points to the last data record displayed in the
user interface. If the user selects a data record in a grid, this property points to this data record.
If the user or the application inserts, updates, or deletes a data record, the property points to this
data record. Assigning this property raises the RowSelected event.

You can reference the Current data record and its fields in the PXSelect BQL statements by using
the Current parameter.

• public virtual PXGraph Graph

Gets or sets the business logic controller the cache is related to.

• public override IEnumerable Dirty

Gets the collection of updated, inserted, and deleted data records. The collection contains data
records with the Updated, Inserted, or Deleted status.

• public override IEnumerable Updated

Gets the collection of updated data records that exist in the database. The collection contains data
records with the Updated status.

• public override IEnumerable Inserted

Gets the collection of inserted data records that does not exist in the database. The collection
contains data records with the Inserted status.

• public override IEnumerable Deleted

Gets the collection of deleted data records that exist in the database. The collection contains data
records with the Deleted status.

• public override IEnumerable Cached

Get the collection of all cached data records. The collection contains data records with any status.
The developer should not rely on the presense of data records with statuses other than Updated,
Inserted, and Deleted in this collection.

• public override bool IsInsertedUpdatedDeleted

Gets the value that indicates if the cache contains modified data records to be saved to database.

• public virtual bool IsDirty

Gets or sets the value that indicates whether the cache contains the modified data records.

• public override PXFieldCollection Fields

Gets the collection of names of fields and virtual fields. By default, the collection includes all
public properties of the DAC that is associated with the cache. The collection may also include
the virtual fields that are injected by attributes (such as the description field of the PXSelector
attribute). The developer can add any field to the collection.

 | API Reference | 249

• public virtual List<string> AlteredFields

Gets the collection of field names. Placing the field name in this collection forces calculation of the
PXFieldState object in the GetValueExt<>() method.

• public virtual List<string> Keys

Gets the list of the key fied names (that form the identity of a data record). The collection
contains the fields that have the IsKey property set to true in the attribute that specifies the field
data type.

• public virtual string Identity

Gets the name of the identity field if the DAC defines it.

• public override List<Type> BqlFields

Gets the list of classes that implement IBqlField and are nested in the DAC and its base type.
These types represent DAC fields in BQL queries. This list differs from the list that the Fields
property returns.

• public override List<Type> BqlKeys

Gets the collection of BQL types that correspond to the key fields which the DAC defines.

• public override Type BqlTable

Gets the DAC the cache is associated with. The DAC is specified through the type parameter when
the cache is instantiated.

• public string DisplayName

Gets or sets the user-friendly name set via the PXCacheName attribute.

Methods

Method Description

Clear() Clears the cache from all data

ClearQueryCache() Clears the internal cache of database query results

CreateCopy(Table) Initializes a new data record with the field values got
from the provided data record

CreateCopy(object) Creates a clone of the provided data record by
initializing a new data record with the field values get
from the provided data record

CreateInstance() Returns a new data record of the DAC type of the
cache

Delete(object) Places the data record into the cache with the Deleted
or InsertedDeleted status

Delete(IDictionary, IDictionary) Initializes the data record with the provided key values
and places it into the cache with the Deleted or
InsertedDeleted status

Extend<Parent>(Parent) Initializes a data record of the DAC type of the cache
from the provided data record of the base DAC type
and inserts the new data record into the cache

FromXml(string) Initializes the data record from the provided XML string

 | API Reference | 250

Method Description

GetAttributes(string) Returns the cach-level instances of attributes placed
on the specified field and all item-level instances
currently stored in the cache

GetAttributes(object, string) Returns the item-level instances of attributes placed
on the specified field

GetAttributes<Field>() Returns the cach-level instances of attributes placed
on the specified field and all item-level instances
currently stored in the cache

GetAttributes<Field>(object) Returns the item-level instances of attributes placed
on the specified field

GetAttributesReadonly(string) Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly(string, bool) Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly(object, string) Returns the item-level attribute instances placed
on the specified field if such instances exist for the
provided data record or the cache-level instances
otherwise

GetAttributesReadonly<Field>() Returns the cache-level instances of attributes placed
on the specified field in the DAC

GetAttributesReadonly<Field>(object) Returns the item-level instances of attributes placed
on the specified field if such instances exist for the
provided data record or the cache-level instances
otherwise

GetBqlField(string) Gets the type that represents the field with the
provided name in BQL expressions

GetBqlTable(Type) Gets the base DAC type by which the provided DAC
type is bound to the database

GetExtension<Extension>(object) Gets the instance of the DAC extension of the specified
type

GetField(Type) Searches the Fields collection for the name of the
specified type

GetFieldCount() Returns the number of fields and virtual fields which
comprise the Fields collection

GetFieldOrdinal(string) Returns the index of the specified field in the internally
kept fields map

GetFieldOrdinal<Field>() Returns the index of the specified field in the internally
kept fields map

GetItemType() Returns the DAC type of the data records in the cache

GetObjectHashCode(object) Returns the hash code generated from key field values

GetStateExt(object, string) Gets the PXFieldState object of the specified field in
the given data record

 | API Reference | 251

Method Description

GetStateExt<Field>(object) Gets the PXFieldState object of the specified field in
the given data record

GetStatus(object) Returns the status of the provided data record

GetValue(object, int) Returns the value of the specified field in the given
data record without raising any events

GetValue(object, string) Returns the value of the specified field in the given
data record without raising any events

GetValue<Field>(object) Returns the value of the specified field in the given
data record without raising any events

GetValueExt(object, string) Returns the value or the PXFieldState object of the
specified field in the given data record

GetValueExt<Field>(object) Gets either the value or PXFieldState object of the
specified field in the given data record

GetValueOriginal(object, string) Returns the value of the specified field for the data
record as it is stored in the database

GetValueOriginal<Field>(object) Returns the value of the specified field for the data
record as it is stored in the database

GetValuePending(object, string) Returns the value of the field from the provided data
record when the data record's update or insertion is in
process

GetValuePending<Field>(object) Returns the value of the field from the provided data
record when the data record's update or insertion is in
process

HasAttributes(object) Checks if the provided data record has any attributes
attached to its fields

Insert() Initializes a new data record with default values and
inserts it into the cache by invoking the Insert(object)
method

Insert(object) Inserts the provided data record into the cache

Insert(IDictionary) Initializes a new data record using the provided field
values and inserts the data record into the cache

Load() Loads dirty items and other cache state objects from
the session

Locate(object) Searches the cache for a data record that has the
same key fields as the provided data record

Locate(IDictionary) Searches the cache for a data record that has the
same key fields as in the provided dictionary

Normalize() Recalculates internally stored hash codes

ObjectToString(object) Returns a string of key fields and their values in the
{key1=value1, key2=value2} format

ObjectsEqual(object, object) Compares two data records by the key fields

ObjectsEqual<Field1>(object, object) Compares two data records by the field value

 | API Reference | 252

Method Description

ObjectsEqual<Field1, Field2>(object, object) Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3>(object,
object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3,
Field4>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(object, object)

Compares two data records by the values of the
specified fields

ObjectsEqual<Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(object, object)

Compares two data records by the values of the
specified fields

Persist(PXDBOperation) Saves the modifications of a particular type from the
cache to the database

Persist(object, PXDBOperation) Saves the modification of the specified type from the
cache to the database for a particular data record

PersistDeleted(object) Deletes the provided data record from the database by
the key fields

PersistInserted(object) Inserts the provided data record into the database

PersistUpdated(object) Updates the provided data record in the database

Persisted(bool) Completes saving changes to the database by raising
the RowPersisted event for all persisted data records

RaiseCommandPreparing(string, object,
object, PXDBOperation, Type, out)

Raises the CommandPreparing event for the specified
field and data record

RaiseCommandPreparing<Field>(object,
object, PXDBOperation, Type, out)

Raises the CommandPreparing event for the specified
field and data record

RaiseExceptionHandling(string, object,
object, Exception)

Raises the ExceptionHandling event for the specified
field and data record

RaiseExceptionHandling<Field>(object,
object, Exception)

Raises the ExceptionHandling event for the specified
field and data record

RaiseFieldDefaulting(string, object, out) Raises the FieldDefaulting event for the specified
field and data record

RaiseFieldDefaulting<Field>(object, out) Raises the FieldDefaulting event for the specified
field and data record

RaiseFieldSelecting(string, object, ref, bool) Raises the FieldSelecting event for the specified
field and data record

RaiseFieldSelecting<Field>(object, ref, bool) Raises the FieldSelecting event for the specified
field and data record

RaiseFieldUpdated(string, object, object) Raises the FieldUpdated event for the specified field
and data record

 | API Reference | 253

Method Description

RaiseFieldUpdated<Field>(object, object) Raises the FieldUpdated event for the specified field
and data record

RaiseFieldUpdating(string, object, ref) Raises the FieldUpdating event for the specified field
and data record

RaiseFieldUpdating<Field>(object, ref) Raises the FieldUpdating event for the specified field
and data record

RaiseFieldVerifying(string, object, ref) Raises the FieldVerifying event for the specified
field and data record

RaiseFieldVerifying<Field>(object, ref) Raises the FieldVerifying event for the specified
field and data record

RaiseRowDeleted(object) Raises the RowDeleted event for the specified data
record

RaiseRowDeleting(object) Raises the RowDeleting event for the specified data
record

RaiseRowInserted(object) Raises the RowInserted event for the specified data
record

RaiseRowInserting(object) Raises the RowInserting event for the specified data
record

RaiseRowPersisted(object, PXDBOperation,
PXTranStatus, Exception)

Raises the RowPersisted event for the specified data
record

RaiseRowPersisting(object, PXDBOperation) Raises the RowPersisting event for the specified data
record

RaiseRowSelected(object) Raises the RowSelected event for the specified data
record

RaiseRowSelecting(object, PXDataRecord, ref
int, bool)

Raises the RowSelecting event for the specified data
record

RaiseRowUpdated(object, object) Raises the RowUpdated event for the specified data
record

RaiseRowUpdating(object, object) Raises the RowUpdating event for the specified data
record

Remove(object) Completely removes the provided data record from the
cache without raising any events

RestoreCopy(object, object) Copies values of all fields from the second data record
to the first data record

RestoreCopy(Table, Table) Copies values of all fields from the second data record
to the first data record

Select(PXDataRecord, ref int, bool, out bool) Creates a data record from the PXDataRecord object
and places it into the cache with the NotChanged
status if the data record isn't found among the
modified data records in the cache

SetAltered(string, bool) Adds the field to the AlteredFields list or removes it
from this list

 | API Reference | 254

Method Description

SetAltered<Field>(bool) Adds the field to the AlteredFields list or removes it
from this list

SetDefaultExt(object, string) Sets the default value to the field in the provided data
record

SetDefaultExt<Field>(object) Sets the default value to the field in the provided data
record

SetStatus(object, PXEntryStatus) Sets the status to the provided data record

SetValue(object, int, object) Sets the value of the field in the provided data record
without raising events

SetValue(object, string, object) Sets the value of the field in the provided data record
without raising events

SetValue<Field>(object, object) Sets the value of the field in the provided data record
without raising events

SetValueExt(object, string, object) Sets the value of the field in the provided data record

SetValueExt<Field>(object, object) Sets the value of the field in the provided data record

SetValuePending(object, string, object) Sets the value of the field in the provided data record
when the data record's update or insertion is in
process and the field possibly hasn't been updated in
the cache yet

SetValuePending<Field>(object, object) Sets the value of the field in the provided data record
when the data record's update or insertion is in
process and the field possibly hasn't been updated in
the cache yet

ToDictionary(object) Converts the provided data record to the dictionary of
field names and field values

ToString() Returns the string representing the current cache
object

ToXml(object) Returns the XML string representing the provided data
record

Unload() Serializes the cache to the session

Update(object) Updates the provided data record in the cache

Update(IDictionary, IDictionary) Updates the data record in the cache with the provided
values

ValueFromString(string, string) Converts the provided value of the field from a string
to the appropriate type and returns the resulting value

ValueToString(string, object) Converts the provided value of the field to string and
returns the resulting value

Remarks

The system creates and destroys PXCache instances (caches) on each request. If the user or the code
modifies a data record, it is placed into the cache. When request execution is completed, the system
serializes the modified records from the caches to the session. At run time, the cache may also include

 | API Reference | 255

the unchanged data records retrieved during request execution. These data records are discarded once
the request is served.

On the next round trip, the modified data records are loaded from the session to the caches. The cache
merges the data retrieved from the database with the modified data, and the application accesses the
data as if the entire data set has been preserved from the time of previous request.

The cache maintains the modified data until the changes are discarded or saved to the database.

The cache is the issuer of all data-related events, which can be handled by the graph and attributes.

PXCache<Table> Methods

The PXCache<Table> type exposes the following methods.

Clear()

Clears the cache from all data.

Syntax:

public override void Clear()

Examples:

The code below clears the cache of the POReceipt data records.

// Declaration of a data view in a graph
public PXSelect<POReceipt> poreceiptslist;
...
// Clearing the cache of POReceipt data records
poreceiptslist.Cache.Clear();

ClearQueryCache()

Clears the internal cache of database query results.

Syntax:

public override void ClearQueryCache()

CreateCopy(Table)

Initializes a new data record with the field values from the provided data record.

Syntax:

public static Table CreateCopy(Table item)

Parameters:

• item

The data record to copy.

Examples:

The code below creates a copy of the Current data record of a data view.

public PXSelect<APInvoice, ... > Document;
...
APInvoice newdoc = PXCache<APInvoice>.CreateCopy(Document.Current);

 | API Reference | 256

CreateCopy(object)

Creates a clone of the provided data record by initializing a new data record with the field values get
from the provided data record.

Syntax:

public override object CreateCopy(object item)

Parameters:

• item

The data record to copy.

CreateInstance()

Returns a new data record of the DAC type of the cache. The method may be used to initialize a data
record of the type appropriate for the PXCache instance when its DAC type is unknown.

Syntax:

public override object CreateInstance()

Delete(object)

Places the data record into the cache with the Deleted or InsertedDeleted status. The method assigns
the InsertedDeleted status to the data record if it has the Inserted status when the method is
invoked.

The method raises the RowDeleting and RowDeleted events. See Deleting a Data Record for the events
flowchart.

The AllowDelete property does not affect this method.

Syntax:

public override object Delete(object data)

Parameters:

• data

The data record to delete.

Examples:

The code below deletes an APInvoice data record.

APInvoice item = ...
Documents.Cache.Delete(item);

The second line above is equivalent to the following line.

Documents.Delete(item);

Delete(IDictionary, IDictionary)

Initializes the data record with the provided key values and places it into the cache with the Deleted or
InsertedDeleted status. The method assigns the InsertedDeleted status to the data record if it has
the Inserted status when the method is invoked.

The method raises the following events: FieldUpdating, FieldUpdated, RowDeleting, and RowDeleted
events. See Deleting a Data Record for the events flowchart.

 | API Reference | 257

This method is typically used to process deletion initiated from the user interface. If the AllowDelete
property is false, the data record is not marked deleted and the method returns 0. The method returns
1 if the data record is successfully marked deleted.

Syntax:

public override int Delete(IDictionary keys, IDictionary values)

Parameters:

• keys

The values of key fields.

• values

The values of all fields. The parameter is not used in the method.

Extend<Parent>(Parent)

Initializes a data record of the DAC type of the cache from the provided data record of the base DAC
type and inserts the new data record into the cache. Returns the inserted data record.

Syntax:

public override object Extend<Parent>(Parent item)

The DAC type of the cache should derive from the Parent DAC.

Parameters:

• item

The data record of the base DAC type which field values are used to initialize the data record.

Examples:

See the Extend<Parent>(Parent) method of the PXSelectBase<> class.

FromXml(string)

Initializes the data record from the provided XML string.

The data record is represented in the XML by the <Row> element with the type attribute set to the DAC
name. Each field is represented by the <Field> element with the name attribute holding the field name
and the value attribute holding the field value.

Syntax:

public override object FromXml(string xml)

Parameters:

• xml

The XML string to parse.

GetAttributes(string)

Returns the cach-level instances of attributes placed on the specified field and all item-level instances
currently stored in the cache.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributes(string name)

 | API Reference | 258

Parameters:

• name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

GetAttributes(object, string)

Returns the item-level instances of attributes placed on the specified field. If such instances are not
exist for the provided data record, the method creates them by copying all cache-level attributes and
storing them in the internal collection that contains the data record specific attributes. To avoid cloning
cache-level attributes, use the GetAttributesReadonly(object, string) method.

Syntax:

public override List<PXEventSubscriberAttribute>
 GetAttributes(object data, string name)

Parameters:

• data

The data record.

• name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

GetAttributes<Field>()

Returns the cach-level instances of attributes placed on the specified field and all item-level instances
currently stored in the cache. The field is specified as the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributes<Field>()
 where Field : IBqlField

GetAttributes<Field>(object)

Returns the item-level instances of attributes placed on the specified field. If such instances are not
exist for the provided data record, the method creates them by copying all cache-level attributes and
storing them in the internal collection that contains the data record specific attributes. To avoid cloning
cache-level attributes, use the GetAttributesReadonly(object, string) method. The field is specified as
the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributes<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record.

Examples:

foreach (PXEventSubscriberAttribute attr in sender.GetAttributes<Field>(data))
{
 if (attr is PXUIFieldAttribute)
 {

 | API Reference | 259

 // Doing something
 }
}

GetAttributesReadonly(string)

Returns the cache-level instances of attributes placed on the specified field in the DAC.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly(
 string name)

Parameters:

• name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

Remarks:

The system maintains instances of attributes on three different levels. On its instantiation, a cache
object copies appropriate attributes from the global level to the cache level and stores them in an
internal collection. When an attribute needs to be modified for a particular data record, the cache
creates item-level copies of all attributes and stores them associated with the data record.

GetAttributesReadonly(string, bool)

Returns the cache-level instances of attributes placed on the specified field in the DAC.

Using this method, you can prevent expanding the aggregate attributes by setting the second
parameter to false. Other overloads of this method always include both the aggregate attributes and
the attributes that comprise such attributes.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly(
 string name, bool extractEmmbeddedAttr)

Parameters:

• name

The data record.

• extractEmmbeddedAttr

The value that indicates whether the attributes embedded into an aggregate attribute are included
into the list. If true, both the aggregate attribute and the attributes embedded into it are
included in the list. Otherwise, only the aggregate attribute is included.

An aggregate attribute is an attribute that derives from the PXAggregateAttribute class. This
class allows combining multiple different attributes in a single one.

GetAttributesReadonly(object, string)

Returns the item-level attribute instances placed on the specified field, if such instances exist for the
provided data record, or the cache-level instances, otherwise.

Syntax:

public override List<PXEventSubscriberAttribute> GetAttributesReadonly(
 object data, string name)

 | API Reference | 260

Parameters:

• data

The data record.

• name

The name of the field whose attributes are returned. If null, the method returns attributes from
all fields.

Examples:

The code below gets the attributes and places them into a list.

protected virtual void InventoryItem_ValMethod_FieldVerifying(
 PXCache sender, PXFieldVerifyingEventArgs e)
{
 List<PXEventSubscriberAttribute> attrlist =
 sender.GetAttributesReadonly(e.Row, "ValMethod");
 ...
}

GetAttributesReadonly<Field>()

Returns the cache-level instances of attributes placed on the specified field in the DAC. The field is
specified as the type parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributesReadonly<Field>()
 where Field : IBqlField

GetAttributesReadonly<Field>(object)

Returns the item-level instances of attributes placed on the specified field if such instances exist for
the provided data record or the cache-level instances otherwise. The field is specified as the type
parameter.

Syntax:

public List<PXEventSubscriberAttribute> GetAttributesReadonly<Field>(
 object data)
 where Field : IBqlField

Parameters:

• data

The data record.

GetBqlField(string)

Gets the type that represents the field with the provided name in BQL expressions.

The method searches the field by its name in the BqlFields collection.

Syntax:

public Type GetBqlField(string field)

Parameters:

• field

The name of the field.

 | API Reference | 261

GetBqlTable(Type)

Gets the base DAC type by which the provided DAC type is bound to the database.

Syntax:

public static Type GetBqlTable(Type dac)

Parameters:

• dac

The DAC type for which the base DAC type is searched.

GetExtension<Extension>(object)

Gets the instance of the DAC extension of the specified type. The extension type is specified as the type
parameter.

Syntax:

public override Extension GetExtension<Extension>(object item)

Parameters:

• item

The standard data record whose extension is returned.

Examples:

The code below gets an extension data record corresponding to the given instance of the base data
record.

InventoryItem item = cache.Current as InventoryItem;
InventoryItemExtension itemExt =
 cache.GetExtension<InventoryItemExtension>(item);

GetExtension<Extension>(Table)

Gets the instance of the DAC extension of the specified type. The extension type is specified as the type
parameter.

Syntax:

public static Extension GetExtension<Extension>(Table item)
 where Extension : PXCacheExtension<Table>

Parameters:

• item

The standard data record whose extension is returned.

Examples:

The code below gets an extension data record corresponding to the given instance of the base data
record.

InventoryItem item = cache.Current as InventoryItem;
InventoryItemExtension itemExt =
 PXCache<InventoryItem>.GetExtension<InventoryItemExtension>(item);

 | API Reference | 262

GetField(Type)

Searches the Fields collection for the name of the specified type. Returns the field name if the field is
found in the collection or null otherwise.

Syntax:

public string GetField(Type bqlField)

Parameters:

• bqlField

The type declaration of the field in the DAC.

GetFieldCount()

Returns the number of fields and virtual fields which comprise the Fields collection.

Syntax:

public override int GetFieldCount()

GetFieldOrdinal(string)

Returns the index of the specified field in the internally kept fields map.

Syntax:

public override int GetFieldOrdinal(string field)

Parameters:

• field

The name of the field whose index is returned.

GetFieldOrdinal<Field>()

Returns the index of the specified field in the internally kept fields map. The pare

Syntax:

public override int GetFieldOrdinal<Field>()

GetItemType()

Returns the DAC type of the data records in the cache.

Syntax:

public override Type GetItemType()

GetObjectHashCode(object)

Returns the hash code generated from key field values.

Syntax:

public override int GetObjectHashCode(object data)

Parameters:

• data

 | API Reference | 263

The data record.

GetStateExt(object, string)

Gets the PXFieldState object of the specified field in the given data record.

The method raises the FieldSelecting event.

Syntax:

public override object GetStateExt(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The name of the field whose PXFieldState object is created.

GetStateExt<Field>(object)

Gets the PXFieldState object of the specified field in the given data record. The field is specified as the
type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetStateExt<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record.

GetStatus(object)

Returns the status of the provided data record. The PXEntryStatus enumeration defines the possible
status values. For example, the status can indicate whether the data record has been inserted, updated,
or deleted.

Syntax:

public override PXEntryStatus GetStatus(object item)

Parameters:

• item

The data record whose status is requested.

Examples:

The code below shows how a status of a data record can be checked in an event handler.

protected virtual void Vendor_RowSelected(PXCache sender,
 PXRowSelectedEventArgs e)
{
 Vendor vend = e.Row as Vendor;
 if (vend != null && sender.GetStatus(vend) == PXEntryStatus.Notchanged)
 {
 ...

 | API Reference | 264

 }
}

GetValue(object, int)

Returns the value of the specified field in the given data record without raising any events. The field is
specified by its index—see the GetFieldOrdinal(string) method.

Syntax:

public override object GetValue(object data, int ordinal)

Parameters:

• data

The data record.

• ordinal

The index of the field whose value is returned.

GetValue(object, string)

Returns the value of the specified field in the given data record without raising any events.

Syntax:

public override object GetValue(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The name of the field whose value is returned.

Remarks:

To get the field of a data record of a known DAC type, you can use DAC properties. If a type of a data
record is unknown (for example, when it is available as object), you can use the GetValue() methods
to get a value of a field. These methods can also be used to get values of fields defined in extensions
(another way is to get the extension data record through the GetExtension<>() method).

The GetValueExt() methods are used to get the value or the field state object and raise events.

Examples:

The code below iterates over all fields of a specific DAC (including fields defined in extensions) and
checks whether a value is null.

foreach (string field in sender.Fields)
{
 if (sender.GetValue(row, field) == null)
 ...
}

Here, sender is an instance of the PXCache<Table> type and row references an instance of Table
(although the row variable may be of object type).

 | API Reference | 265

GetValue<Field>(object)

Returns the value of the specified field in the given data record without raising any events. The field is
specified as the type parameter.

Syntax:

public object GetValue<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record whose field value is returned.

Examples:

The code below gets the value of one field and assigns it to another field.

protected virtual void APInvoice_VendorLocationID_FieldUpdated(
 PXCache sender, PXFieldUpdatedEventArgs e)
{
 sender.SetValue<APInvoice.payLocationID>(
 e.Row, sender.GetValue<APInvoice.vendorLocationID>(e.Row));
}

GetValueExt(object, string)

Returns the value or the PXFieldState object of the specified field in the given data record. The
PXFieldState object is returned if the field is in the AlteredFields collection.

The method raises the FieldSelecting event.

Syntax:

public override object GetValueExt(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The name of the field whose value or PXFieldState object is returned.

GetValueExt<Field>(object)

Gets either the value or PXFieldState object of the specified field in the given data record. The
PXFieldState object is returned if the field name is in the AlteredFields collection. The field is
specified as the type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetValueExt<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record whose field value or PXFieldState object is returned.

 | API Reference | 266

Examples:

The code below shows how you can get the value of a field if the GetValueExt<>() method returns the
field state object.

object finPeriodID = cache.GetValueExt<APRegister.finPeriodID>(doc);
if (finPeriodID is PXFieldState)
{
 finPeriodID = ((PXFieldState)finPeriodID).Value;
}

GetValueOriginal(object, string)

Returns the value of the specified field for the data record as it is stored in the database.

Syntax:

public override object GetValueOriginal(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The name of the field whose original value is returned.

GetValueOriginal<Field>(object)

Returns the value of the specified field for the data record as it is stored in the database. The field is
specified as the type parameter.

Syntax:

public object GetValueOriginal<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record.

GetValuePending(object, string)

Returns the value of the field from the provided data record when the data record's update or insertion
is in progress.

The method raises the FieldSelecting event.

Syntax:

public override object GetValuePending(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The field name.

 | API Reference | 267

GetValuePending<Field>(object)

Returns the value of the field from the provided data record when the data record's update or insertion
is in progress. The field is specified as the type parameter.

The method raises the FieldSelecting event.

Syntax:

public object GetValuePending<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record.

HasAttributes(object)

Checks if the provided data record has any attributes attached to its fields.

Syntax:

public override bool HasAttributes(object data)

Parameters:

• data

The data record.

Insert()

Initializes a new data record with default values and inserts it into the cache by invoking the
Insert(object) method. Returns the new data record inserted into the cache.

Syntax:

public override object Insert()

Examples:

APInvoice newItem = cache.Insert();

Insert(object)

Inserts the provided data record into the cache. Returns the inserted data record or null if the data
record wasn't inserted.

The method raises the following events: FieldDefaulting, FieldUpdating, FieldVerifying,
FieldUpdated, RowInserting, and RowInserted. See Inserting a Data Record for the events chart.

The method does not check if the data record exists in the database. The AllowInsert property does not
affect this method unlike the Insert(IDictionary) method.

In case of successful insertion, the method marks the data record as Inserted, and it becomes
accessible through the Inserted collection.

Syntax:

public override object Insert(object data)

Parameters:

 | API Reference | 268

• data

The data record to insert into the cache.

Examples:

The code below initializes a new instance of the APInvoice data record and inserts it into the cache.

APInvoice newDoc = new APInvoice();
newDoc.VendorID = Document.Current.VendorID;
Document.Insert(newDoc);

Here Document is a data view that selects APInvoice data records. Invoking the Insert() method on it
is a shortcut for the following code.

Document.Cache.Insert(newDoc);

Insert(IDictionary)

Initializes a new data record using the provided field values and inserts the data record into the cache.
Returns 1 in case of successful insertion, and 0 otherwise.

The method raises the following events: FieldDefaulting, FieldUpdating, FieldVerifying,
FieldUpdated, RowInserting, and RowInserted. See Inserting a Data Record for the events chart.

The method does not check if the data record exists in the database. The values provided in the
dictionary are not readonly and can be updated during execution of the method. The method is typically
used by the system when the values are received from the user interface. If the AllowInsert property
is false, the data record is not inserted and the method returns 0.

In case of successful insertion, the method marks the data record as Inserted, and it becomes
accessible through the Inserted collection.

Syntax:

public override int Insert(IDictionary values)

Parameters:

• values

The dictionary with values to initialize the data record fields. The dictionary keys are field names.

Load()

Loads dirty items and other cache state objects from the session. The application does not typically use
this method.

Syntax:

public override void Load()

Locate(object)

Searches the cache for a data record that has the same key fields as the provided data record. If the
data record is not found in the cache, the method retrieves the data record from the database and
places it into the cache with the NotChanged status. The method returns the located or retrieved data
record.

The AllowSelect property does not affect this method unlike the Locate(IDictionary) method.

Syntax:

public override object Locate(object item)

 | API Reference | 269

Parameters:

• item

The data record to locate in the cache.

Locate(IDictionary)

Searches the cache for a data record that has the same key fields as in the provided dictionary. If the
data record is not found in the cache, the method initializes a new data record with the provided values
and places it into the cache with the NotChanged status.

Returns 1 if a data record is successfully located or placed into the cache, and returns 0 if placing into
the cache fails or the AllowSelect property is false.

Syntax:

public override int Locate(IDictionary keys)

Parameters:

• keys

The dictionary with values to initialize the data record fields. The dictionary keys are field names.

Normalize()

Recalculates internally stored hash codes. The method should be called after a key field is modified in a
data record from the cache.

Syntax:

public override void Normalize()

ObjectToString(object)

Returns a string of key fields and their values in the {key1=value1, key2=value2} format.

Syntax:

public override string ObjectToString(object data)

Parameters:

• data

The data record which key fields are written to a string.

ObjectsEqual(object, object)

Compares two data records by the key fields. Returns true if the values of all key fields in the data
records are equal. Otherwise, returns false.

Syntax:

public override bool ObjectsEqual(object a, object b)

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

 | API Reference | 270

ObjectsEqual<Field1>(object, object)

Compares two data records by the field value.

Syntax:

public bool ObjectsEqual<Field1>(object a, object b)
 where Field1 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

ObjectsEqual<Field1, Field2>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

Examples:

This method and its overloads are often used in the FieldUpdated or RowUpdated event handlers. The
following code can be used in such event handlers for the APInvoice data records.

if (!sender.ObjectsEqual<APInvoice.docDate,
 APInvoice.finPeriodID,
 APInvoice.curyID>(e.Row, e.OldRow))

 | API Reference | 271

 ...

ObjectsEqual<Field1, Field2, Field3, Field4>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3, Field4>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3,
 Field4, Field5>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5, Field6>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3,
 Field4, Field5, Field6>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField

Parameters:

• a

The first data record to compare.

 | API Reference | 272

• b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5, Field6, Field7>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3, Field4,
 Field5, Field6, Field7>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

ObjectsEqual<Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(object, object)

Compares two data records by the values of the specified fields.

Syntax:

public bool ObjectsEqual<Field1, Field2, Field3, Field4,
 Field5, Field6, Field7, Field8>(object a, object b)
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField
 where Field8 : IBqlField

Parameters:

• a

The first data record to compare.

• b

The second data record to compare.

Persist(PXDBOperation)

Saves the modifications of a particular type from the cache to the database. Returns the number of
saved data records.

Using this method, you can update, delete, or insert all data records kept by the cache. You can also
perform different operations at once by passing a combination of PXDBOperation values, such as
PXDBOperation.Insert | PXDBOperation.Update.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

 | API Reference | 273

Syntax:

public override int Persist(PXDBOperation operation)

Parameters:

• operation

The value that indicates the types of database operations to execute, either one of
PXDBOperation.Insert, PXDBOperation.Update, and PXDBOperation.Delete values or their
bitwise "or" (|) combination.

Examples:

The code below modifies a Vendor data record, updates it in the cache, saves changes to update
Vendor data records to the database, and causes raising of the RowPersisted event with indication that
the operation has completed successfully.

vendor.Status = BAccount.status.Inactive;
Caches[typeof(Vendor)].Update(vendor);
Caches[typeof(Vendor)].Persist(PXDBOperation.Update);
Caches[typeof(Vendor)].Persisted(false);

Persist(object, PXDBOperation)

Saves the modification of the specified type from the cache to the database for a particular data record.

Syntax:

public override void Persist(object row, PXDBOperation operation)

Parameters:

• row

The data record to save to the database.

• operation

The database operation to perform for the data record, either one of PXDBOperation.Insert,
PXDBOperation.Update, and PXDBOperation.Delete values or their bitwise "or" (|) combination.

PersistDeleted(object)

Deletes the provided data record from the database by the key fields. Returns true if the data record
has been deleted sucessfully, or false otherwise.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the PXDBInterceptor attribute.

Syntax:

public override bool PersistDeleted(object row)

Parameters:

• row

The data record to deleted from the database.

 | API Reference | 274

PersistInserted(object)

Inserts the provided data record into the database. Returns true if the data record has been inserted
sucessfully, or false otherwise.

The method throws an exception if the data record with such keys exists in the database.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the PXDBInterceptor attribute.

Syntax:

public override bool PersistInserted(object row)

Parameters:

• row

The data record to insert into the database.

PersistUpdated(object)

Updates the provided data record in the database. Returns true if the data record has been updated
sucessfully, or false otherwise.

The method raises the following events: RowPersisting, CommandPreparing, RowPersisted,
ExceptionHandling.

The default behavior can be modified by the PXDBInterceptor attribute.

Syntax:

public override bool PersistUpdated(object row)

Parameters:

• row

The data record to update in the database.

Persisted(bool)

Completes saving changes to the database by raising the RowPersisted event for all persisted data
records.

Syntax:

public override void Persisted(bool isAborted)

Parameters:

• isAborted

The value indicating whether the database operation has been aborted or completed.

Examples:

You need to call this method in the application only when you call the Persist(), PersistInserted(),
PersistUpdated(), or PersistDeleted() method, as the following example shows.

// Opening a transaction and saving changes to the provided
// new data record
using (PXTransactionScope ts = new PXTransactionScope())
{
 cache.PersistInserted(item);
 ts.Complete(this);

 | API Reference | 275

}

// Indicating successful completion of saving changes to the database
cache.Persisted(false);

RaiseCommandPreparing(string, object, object, PXDBOperation, Type, out)

Raises the CommandPreparing event for the specified field and data record.

Syntax:

public bool RaiseCommandPreparing(
 string name, object row, object value, PXDBOperation operation,
 Type table, out PXCommandPreparingEventArgs.FieldDescription description)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• value

The current field value.

• operation

The current database operation.

• table

The type of DAC objects placed in the cache.

• (out) description

The FieldDescription object containing the description of the current field.

RaiseCommandPreparing<Field>(object, object, PXDBOperation, Type, out)

Raises the CommandPreparing event for the specified field and data record.

Syntax:

public bool RaiseCommandPreparing<Field>(
 object row, object value, PXDBOperation operation,
 Type table, out PXCommandPreparingEventArgs.FieldDescription description)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• value

The current field value.

• operation

The current database operation.

• table

The type of DAC objects placed in the cache.

 | API Reference | 276

• (out) description

The FieldDescription object containing the description of the current field.

RaiseExceptionHandling(string, object, object, Exception)

Raises the ExceptionHandling event for the specified field and data record.

Syntax:

public bool RaiseExceptionHandling(string name, object row,
 object newValue, Exception exception)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• newValue

The new value of the current field generated by the operation that causes the exception.

• exception

The exception that causes the event.

RaiseExceptionHandling<Field>(object, object, Exception)

Raises the ExceptionHandling event for the specified field and data record.

Syntax:

public bool RaiseExceptionHandling<Field>(object row, object newValue,
 Exception exception)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• newValue

The new value of the current field generated by the operation that causes the exception.

• exception

The exception that causes the event.

Examples:

A typical use of the method is found in event handlers when the value of a field doesn't pass
validation. If the value is validated in a RowUpdating event handler, you should pass an instance of
PXSetPropertyException with the error message to the method. The code below gives an example for
this case.

INComponent row = e.NewRow as INComponent;

if (row != null && row.Qty != null &&
 row.MinQty != null && row.Qty <= row.MinQty)
{
 sender.RaiseExceptionHandling<INComponent.qty>(
 row, row.Qty, new PXSetPropertyException(

 | API Reference | 277

 "Quantity must be greater or equal to Min. Quantity."));
}

RaiseFieldDefaulting(string, object, out)

Raises the FieldDefaulting event for the specified field and data record.

Syntax:

public bool RaiseFieldDefaulting(string name, object row, out object newValue)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• newValue

The default value for the current field.

RaiseFieldDefaulting<Field>(object, out)

Raises the FieldDefaulting event for the specified field and data record.

Syntax:

public bool RaiseFieldDefaulting<Field>(object row, out object newValue)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• newValue

The default value for the current field.

Examples:

The code below shows how to raise an event.

CashAccount acct = null;

// Get the cache (the other way is to use Cache property of a data view)
PXCache cache = this.Caches[typeof(ARPayment)].Cache;

// Initialize a new ARPayment data record
ARPayment payment = new ARPayment();
payment.CustomerID = aDoc.CustomerID;
payment.CustomerLocationID = aDoc.CustomerLocationID;

// You could execute cache.Insert(payment) to insert the data record
// in the cache and raise the events including FieldDefaulting.
// However, we need to raise FieldDefaulting only on one field.

// Declare a variable for the value
object newValue;

// Raise the FieldDefaulting event
cache.RaiseFieldDefaulting<ARPayment.cashAccountID>(payment, out newValue);

// Convert the object to the data type of the field

 | API Reference | 278

Int32? acctID = newValue as Int32?;

// Use the value to retrieve the CashAccount data record
if (acctID.HasValue)
{
 acct = PXSelect<CashAccount,
 Where<CashAccount.cashAccountID,
 Equal<Required<CashAccount.cashAccountID>>>>.
 Select(this, acctID);
}

RaiseFieldSelecting(string, object, ref, bool)

Raises the FieldSelecting event for the specified field and data record.

Syntax:

public bool RaiseFieldSelecting(string name, object row,
 ref object returnValue,
 bool forceState)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• returnValue

The external presentation of the value of the current field.

• forceState

The value indicating whether the PXFieldState object should be generated.

RaiseFieldSelecting<Field>(object, ref, bool)

Raises the FieldSelecting event for the specified field and data record.

Syntax:

public bool RaiseFieldSelecting<Field>(object row, ref object returnValue,
 bool forceState)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• returnValue

The external presentation of the value of the current field.

• forceState

The value indicating whether the PXFieldState object should be generated.

RaiseFieldUpdated(string, object, object)

Raises the FieldUpdated event for the specified field and data record.

 | API Reference | 279

Syntax:

public void RaiseFieldUpdated(string name, object row, object oldValue)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• oldValue

The value of the current field befor update.

RaiseFieldUpdated<Field>(object, object)

Raises the FieldUpdated event for the specified field and data record.

Syntax:

public void RaiseFieldUpdated<Field>(object row, object oldValue)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• oldValue

The value of the current field befor update.

RaiseFieldUpdating(string, object, ref)

Raises the FieldUpdating event for the specified field and data record.

Syntax:

public bool RaiseFieldUpdating(string name, object row, ref object newValue)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• newValue

The updated value of the current field.

RaiseFieldUpdating<Field>(object, ref)

Raises the FieldUpdating event for the specified field and data record.

Syntax:

public bool RaiseFieldUpdating<Field>(object row, ref object newValue)
 where Field : IBqlField

 | API Reference | 280

Parameters:

• row

The data record for which the event is raised.

• newValue

The updated value of the current field.

RaiseFieldVerifying(string, object, ref)

Raises the FieldVerifying event for the specified field and data record.

Syntax:

public bool RaiseFieldVerifying(string name, object row, ref object newValue)

Parameters:

• name

The name of the field for which the event is raised.

• row

The data record for which the event is raised.

• newValue

The updated value of the current field.

RaiseFieldVerifying<Field>(object, ref)

Raises the FieldVerifying event for the specified field and data record.

Syntax:

public bool RaiseFieldVerifying<Field>(object row, ref object newValue)
 where Field : IBqlField

Parameters:

• row

The data record for which the event is raised.

• newValue

The updated value of the current field.

RaiseRowDeleted(object)

Raises the RowDeleted event for the specified data record.

Syntax:

public void RaiseRowDeleted(object item)

Parameters:

• item

The data record for which the event is raised.

RaiseRowDeleting(object)

Raises the RowDeleting event for the specified data record.

 | API Reference | 281

Syntax:

public bool RaiseRowDeleting(object item)

Parameters:

• item

The data record for which the event is raised.

RaiseRowInserted(object)

Raises the RowInserted event for the specified data record.

Syntax:

public void RaiseRowInserted(object item)

Parameters:

• item

The data record for which the event is raised.

RaiseRowInserting(object)

Raises the RowInserting event for the specified data record.

Syntax:

public bool RaiseRowInserting(object item)

Parameters:

• item

The data record for which the event is raised.

RaiseRowPersisted(object, PXDBOperation, PXTranStatus, Exception)

Raises the RowPersisted event for the specified data record.

Syntax:

public void RaiseRowPersisted(object item, PXDBOperation operation,
 PXTranStatus tranStatus, Exception exception)

Parameters:

• item

The data record for which the event is raised.

• operation

The PXDBOperation value indicating the type of the current database operation.

• tranStatus

The PXTranStatus value indicating the status of the transaction.

• exception

The exception thrown while the database operation was executed.

 | API Reference | 282

RaiseRowPersisting(object, PXDBOperation)

Raises the RowPersisting event for the specified data record.

Syntax:

public bool RaiseRowPersisting(object item, PXDBOperation operation)

Parameters:

• item

The data record for which the event is raised.

• operation

he PXDBOperation value indicating the type of the current database operation.

RaiseRowSelected(object)

Raises the RowSelected event for the specified data record.

Syntax:

public void RaiseRowSelected(object item)

Parameters:

• item

The data record for which the event is raised.

RaiseRowSelecting(object, PXDataRecord, ref int, bool)

Raises the RowSelecting event for the specified data record.

Syntax:

public bool RaiseRowSelecting(object item, PXDataRecord record,
 ref int position, bool isReadOnly)

Parameters:

• item

The data record for which the event is raised.

• record

The PXDataRecord object wrapping the result set row.

• (ref) position

The current index in the list of PXDataRecord columns.

• isReadOnly

The value indicating if the data record is read-only.

RaiseRowUpdated(object, object)

Raises the RowUpdated event for the specified data record.

Syntax:

public void RaiseRowUpdated(object newItem, object oldItem)

Parameters:

 | API Reference | 283

• newItem

The updated version of the data record.

• oldItem

The version of the data record before update.

RaiseRowUpdating(object, object)

Raises the RowUpdating event for the specified data record.

Syntax:

public bool RaiseRowUpdating(object item, object newItem)

Parameters:

• item

The version of the data record before update.

• newItem

The updated version of the data record.

Remove(object)

Completely removes the provided data record from the cache without raising any events.

Syntax:

public override void Remove(object item)

Parameters:

• item

The data record to remove from the cache.

Examples:

The code below locates a data record in the cache and, if the data record has not been changed, silently
removes it from the cache.

// Searching the data record by its key fields in the cache
object cached = sender.Locate(item);

// Checking the status
if (cached != null && (sender.GetStatus(cached) == PXEntryStatus.Held ||
 sender.GetStatus(cached) == PXEntryStatus.Notchanged))
{
 // Removing without events
 sender.Remove(cached);
}

The Held status indicates that a data record has not been changed but needs to the preserved in the
session.

RestoreCopy(object, object)

Copies values of all fields from the second data record to the first data record.

The data records should have the DAC type of the cache, or the method does nothing.

 | API Reference | 284

Syntax:

public override void RestoreCopy(object item, object copy)

Parameters:

• item

The data record whose field values are updated.

• copy

The data record whose field values are copied.

RestoreCopy(Table, Table)

Copies values of all fields from the second data record to the first data record.

Syntax:

public static void RestoreCopy(Table item, Table copy)

Parameters:

• item

The data record whose field values are updated.

• copy

The data record whose field values are copied.

Examples:

The code below modifies an APRegister data record and copies the values of all its fields to an
APInvoice data record.

APRegister doc = ...
APInvoice apdoc = ...
...
// Modifying the doc data record
doc.OpenDoc = true;
doc.ClosedFinPeriodID = null;
...
// Copying all fields of doc to apdoc (APInvoince derives from APRegister)
PXCache<APRegister>.RestoreCopy(apdoc, doc);

Select(PXDataRecord, ref int, bool, out bool)

Creates a data record from the PXDataRecord object and places it into the cache with the NotChanged
status if the data record isn't found among the modified data records in the cache.

If isReadOnly is false then:

• If the cache already contains the data record with the same keys and the NotChanged status, the
method returns this data record updated to the state of PXDataRecord.

• If the cache contains the same data record with the Updated or Inserted status, the method
returns this data record.

In other cases and when isReadonly is true, the method returns the data record created from the
PXDataRecord object.

If the AllowSelect property is false, the methods returns a new empty data record and the logic
described above is not executed.

The method raises the RowSelecting event.

 | API Reference | 285

Syntax:

public override object Select(PXDataRecord record,
 ref int position,
 bool isReadOnly,
 out bool wasUpdated)

Parameters:

• record

The PXDataRecord object to convert to the DAC type of the cache.

• (ref) position

The index of the first field to read in the list of columns comprising the PXDataRecord object.

• isReadOnly

The value indicating if the data record with the same key fields should be located in the cache and
updated.

• (out) bool

The value indicating whether the data record with the same keys existed in the cache among the
modified data records.

SetAltered(string, bool)

Adds the field to the AlteredFields list or removes it from this list.

Syntax:

public virtual void SetAltered(string field, bool isAltered)

Parameters:

• field

The field name.

• isAltered

The value indicating whether the field is added or removed.

SetAltered<Field>(bool)

Adds the field to the AlteredFields list or removes it from this list. The field is specified in the type
parameter.

Syntax:

public virtual void SetAltered<Field>(bool isAltered)
 where Field : IBqlField

Parameters:

• isAltered

The value indicating whether the field is added or removed.

Examples:

Items.Cache.SetAltered<FlatPriceItem.inventoryID>(true);

 | API Reference | 286

SetDefaultExt(object, string)

Sets the default value to the field in the provided data record.

The method raises FieldDefaulting, FieldUpdating, FieldVerifying, and FieldUpdated.

Syntax:

public override void SetDefaultExt(object data, string fieldName)

Parameters:

• data

The data record.

• fieldName

The name of the field to set.

SetDefaultExt<Field>(object)

Sets the default value to the field in the provided data record. The field is specified as the type
parameter.

The method raises FieldDefaulting, FieldUpdating, FieldVerifying, and FieldUpdated.

Syntax:

public void SetDefaultExt<Field>(object data)
 where Field : IBqlField

Parameters:

• data

The data record.

SetStatus(object, PXEntryStatus)

Sets the status to the provided data record. The PXEntryStatus enumeration defines the possible status
values.

Syntax:

public override void SetStatus(object item, PXEntryStatus status)

Parameters:

• item

The data record to set status to.

• status

The new status.

Examples:

The code below checks the status of a data record and sets the status to Updated if the status is
Notchanged.

if (Transactions.Cache.GetStatus(tran) == PXEntryStatus.Notchanged)
{
 Transactions.Cache.SetStatus(tran, PXEntryStatus.Updated);
}

 | API Reference | 287

SetValue(object, int, object)

Sets the value of the field in the provided data record without raising events. The field is specified by its
index in the field map.

To set the value, raising the field-related events, use the SetValueExt(object, string, object) method.

Syntax:

public override void SetValue(object data, int ordinal, object value)

Parameters:

• data

The data record.

• ordinal

The index of the field in the internally stored field map. To get the index of a specific field, use the
GetFieldOrdinal(string) method.

• value

The value to set to the field.

SetValue(object, string, object)

Sets the value of the field in the provided data record without raising events.

To set the value, raising the field-related events, use the SetValueExt(object, string, object) method.

Syntax:

public override void SetValue(object data, string fieldName, object value)

Parameters:

• data

The data record.

• fieldName

The name of the field that is set to the value.

• value

The value to set to the field.

SetValue<Field>(object, object)

Sets the value of the field in the provided data record without raising events. The field is specified in the
type parameter.

To set the value, raising the field-related events, use the SetValueExt<Field>(object, object) method.

Syntax:

public void SetValue<Field>(object data, object value)
 where Field : IBqlField

Parameters:

• data

The data record

• value

 | API Reference | 288

The value to set to the field.

SetValueExt(object, string, object)

Sets the value of the field in the provided data record.

The method raises the FieldUpdating, FieldVerifying, and FieldUpdated events. To set the value to
the field without raising events, use the SetValue(object, string, object) method.

Syntax:

public override void SetValueExt(object data, string fieldName, object value)

Parameters:

• data

The data record.

• fieldName

The name of the field that is set to the value.

• value

The value to set to the field.

SetValueExt<Field>(object, object)

Sets the value of the field in the provided data record. The field is specified in the type parameter.

The method raises the FieldUpdating, FieldVerifying, and FieldUpdated events. To set the value to
the field without raising events, use the SetValue<Field>(object, object) method.

Syntax:

public void SetValueExt<Field>(object data, object value)
 where Field : IBqlField

Parameters:

• data

The data record.

• value

The value to set to the field.

Examples:

The code below checks the value of one field of the APInvoice data record and sets another field to this
value with raising of events.

APInvoice doc = e.Row as APInvoice;
if (doc != null && doc.CuryDocBal != null && doc.CuryDocBal != 0)
 sender.SetValueExt<APInvoice.curyOrigDocAmt>(doc, doc.CuryDocBal);

SetValuePending(object, string, object)

Sets the value of the field in the provided data record when the data record's update or insertion is in
process and the field possibly hasn't been updated in the cache yet. The field is specified in the type
parameter.

The method raises the FieldUpdating event.

 | API Reference | 289

Syntax:

public override void SetValuePending(object data, string fieldName, object value)

Parameters:

• data

The data record.

• fieldName

The name of the field that is set to the value.

• value

The value to set to the field.

SetValuePending<Field>(object, object)

Sets the value of the field in the provided data record when the data record's update or insertion is in
process and the field possibly hasn't been updated in the cache yet.

The method raises the FieldUpdating event.

Syntax:

public void SetValuePending<Field>(object data, object value)
 where Field : IBqlField

Parameters:

• data

The data record.

• value

The value to set to the field.

ToDictionary(object)

Converts the provided data record to the dictionary of field names and field values. Returns the
resulting dictionary object.

The method raises the FieldSelecting event for each field.

Syntax:

public override Dictionary<string, object> ToDictionary(object data)

Parameters:

• data

The data record to convert to a dictionary.

ToString()

Returns the string representing the current cache object.

Syntax:

public override string ToString()

 | API Reference | 290

ToXml(object)

Returns the XML string representing the provided data record.

The data record is represented in the XML by the <Row> element with the type attribute set to the DAC
name. Each field is represented by the <Field> element with the name attribute holding the field name
and the value attribute holding the field value.

To initialize a data record from the XML string returned by this method, use the FromXml(string)
method.

Syntax:

public override string ToXml(object data)

Parameters:

• data

The data record to convert to XML.

Unload()

Serializes the cache to the session.

Syntax:

public override void Unload()

Update(object)

Updates the provided data record in the cache.

If the data record does not exist in the cache, the method tries to retrieve it from the database. If the
data record exists in the cache or database, it gets the Updated status. If the data record does not exist
in the database, the method inserts a new data record into the cache with the Inserted status.

The method raises the following events: FieldUpdating, FieldVerifying, FieldUpdated,
RowUpdating, and RowUpdated. See Updating a Data Record for the events flowchart. If the data record
does not exist in the database, the method also causes the events of the Insert(object) method.

The AllowUpdate property does not affect the method unlike the Update(IDictionary, IDictionary)
method.

Syntax:

public override object Update(object data)

Parameters:

• data

The data record to update in the cache.

Examples:

The code below modifies an APRegister data record and places it in the cache with the Updated status
or updates it in the cache if the data record is already there.

// Declaring a data view in a graph
public PXSelect<APRegister> APDocument;
...

APRegister apdoc = ...
// Modifying the data record
apdoc.Voided = true;
apdoc.OpenDoc = false;

 | API Reference | 291

apdoc.CuryDocBal = 0m;
apdoc.DocBal = 0m;

// Updating the data record in the cache
APDocument.Cache.Update(apdoc);

Update(IDictionary, IDictionary)

Updates the data record in the cache with the provided values.

The method initalizes a data record with the provided key fields. If the data record with such keys does
not exist in the cache, the method tries to retrieve it from the database. If the data record exists in the
cache or database, it gets the Updated status. If the data record does not exist in the database, the
method inserts a new data record into the cache with the Inserted status.

The method raises the following events: FieldUpdating, FieldVerifying, FieldUpdated,
RowUpdating, and RowUpdated. See Updating a Data Record for the events flowchart. If the data record
does not exist in the database, the method also causes the events of the Insert(object) method.

If the AllowUpdate property is false, the data record is not updated and the methods returns 0. The
method returns 1 if the data record is successfully updated or inserted.

Syntax:

public override int Update(IDictionary keys, IDictionary values)

Parameters:

• keys

The values of the key fields of the data record to update.

• values

The new values with which the data record fields are updated.

ValueFromString(string, string)

Converts the provided value of the field from a string to the appropriate type and returns the resulting
value. No events are raised.

Syntax:

public override object ValueFromString(string fieldName, string val)

Parameters:

• fieldName

The name of the field.

• val

The string representation of the field value.

ValueToString(string, object)

Converts the provided value of the field to string and returns the resulting value. No events are raised.

Syntax:

public override string ValueToString(string fieldName, object val)

Parameters:

• fieldName

 | API Reference | 292

The name of the field.

• val

The field value.

PXSelectBase<Table> Class
The base type for classes that define BQL statements, such as PXSelect<> class and its variants and
the PXProcessing<> class and its successors.

Inheritance Hierarchy

PXSelectBase

Syntax

public abstract class PXSelectBase<Table> : PXSelectBase
 where Table : class, IBqlTable, new()

The PXSelectBase<Table> type exposes the following members.

Properties

• public virtual Table Current

Gets or sets the Current property of the cache that corresponds to the DAC specified in the type
parameter.

Fields

• public PXView View

The PXView object that is created to execute the BQL statement.

Methods

Method Description

Ask(string, string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons, bool) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons,
MessageIcon)

Displays the dialog window with single or multiple
choices for the user

Ask(string, string, string, MessageButtons,
bool)

Displays the dialog window with single or multiple
choices for the user

Ask(string, string, string, MessageButtons,
MessageIcon)

Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons,
MessageIcon, bool)

Displays the dialog window with single or multiple
choices for the user

 | API Reference | 293

Method Description

Ask(string, string, string, MessageButtons,
MessageIcon, bool)

Displays the dialog window with single or multiple
choices for the user

AskExt() Displays the dialog window configured by the
PXSmartPanel control

AskExt(string) Displays the dialog window configured by the
PXSmartPanel control

AskExt(bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(PXView.InitializePanel) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, PXView.InitializePanel) Displays the dialog window configured by the
PXSmartPanel control

AskExt(PXView.InitializePanel, bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, PXView.InitializePanel, bool) Displays the dialog window configured by the
PXSmartPanel control

ClearDialog() Clears the dialog information saved by the graph on
last invocation of the Ask() method

Delete(Table) Deletes the data record by invoking the Delete(object)
method on the cache

Extend<Parent>(Parent) Initializes a data record of the derived DAC from the
provided data record of the base DAC and inserts the
new data record into the cache

GetItemType() Returns the type of the DAC provided as the type
parameter of PXSelectBase<> class

GetValueExt<Field>(Table) Gets the value of the specified field for the given data
record

Insert() Inserts a new data record into the cache by invoking
the Insert() method on the cache

Insert(Table) Inserts the provided data record into the cache by
invoking the Insert(object) method on the cache

Join<join>() Appends a joining clause to the BQL statement

Locate(Table) Searches the cache for the data record that has
the same key fields as the provided data record, by
invoking the Locate(object) method on the cache

OrderByNew<newOrderBy>() Replaces the OrderBy clause if the BQL statement
has one, otherwise the new OrderBy clause is simply
attached to the BQL statement

Search<Field0>(object, params object[]) Searches for a data record by the value of specified
field in the data set that corresponds to the BQL
statement

 | API Reference | 294

Method Description

Search<Field0, Field1>(object, object,
params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2>(object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3>(object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3,
Field4>(object, object, object, object, object,
params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5>(object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6>(object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(object, object, object,
object, object, object, object, object, params
object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(object, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8, Field9>(object,
object, object, object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

SearchAll<Sort>(object[], params object[]) Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchWindowed<Sort>(object[], int, int,
params object[])

Retrieves the specified number of contiguous data
records starting from the given position in the filtered
data set

Select(params object[]) Executes the BQL statement and retrieves all matching
data records

SelectSingle(params object[]) Retrieves the top data record of the data set that
corresponds to the BQL statement

SelectWindowed(int, int, params object[]) Retrieves the specified number of data records starting
from the given position

SetValueExt<Field>(Table, object) Sets the value of the specified field in the given data
record

 | API Reference | 295

Method Description

Update(Table) Updates the data record in the cache by invoking the
Update(object) method on the cache

WhereAnd<TWhere>() Appends a filtering expression to the BQL statement
via the logical "and"

WhereNew<newWhere>() Replaces the filtering expression in the BQL statement

WhereNot() Adds logical "not" to the whole Where clause of the
BQL statement, reversing the condition to the opposite

WhereOr<TWhere>() Appends a filtering expression to the BQL statement
via the logical "or"

Examples

The code below defines a data view, extends its Where conditional expression, and executes the data
view.

// Definition of a data view
PXSelectBase<ARDocumentResult> sel = new PXSelectReadOnly2<ARDocumentResult,
 LeftJoin<ARInvoice, On<ARInvoice.docType, Equal<ARDocumentResult.docType>,
 And<ARInvoice.refNbr, Equal<ARDocumentResult.refNbr>>>,
 Where<ARRegister.customerID, Equal<Current<ARDocumentFilter.customerID>>>>
 (this);

ARDocumentFilter header = Filter.Current;

// Appending a condition if BranchID is specified in the filter
if (header.BranchID != null)
{
 sel.WhereAnd<Where<ARRegister.branchID,
 Equal<Current<ARDocumentFilter.branchID>>>>();
}

// Appending a condition if DocType is specified in the filter
if (header.DocType != null)
{
 sel.WhereAnd<Where<ARRegister.docType,
 Equal<Current<ARDocumentFilter.docType>>>>();
}

// Execution of the data view and iteration through the result set
foreach (PXResult<ARDocumentResult, ARInvoice> reg in sel.Select())
{
 ARDocumentResult res = reg;
 ARInvoice invoice = reg;
 ...
}

PXSelectBase<Table> Methods

The PXSelectBase<Table> type exposes the following methods.

Ask(string, string, MessageButtons)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
 MessageButtons buttons)

 | API Reference | 296

Parameters:

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, string, string, MessageButtons)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
 string message, MessageButtons buttons)

Parameters:

• key

The identifier of the panel to display.

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, string, MessageButtons, bool)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
 MessageButtons buttons, bool refreshRequired)

Parameters:

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• refreshRequired

 | API Reference | 297

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

Ask(string, string, MessageButtons, MessageIcon)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string header, string message,
 MessageButtons buttons, MessageIcon icon)

Parameters:

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• icon

The value from the MessageIcon enumeration that indicate which icon to display beside the
message in the dialog window.

Ask(string, string, string, MessageButtons, bool)

Displays the dialog window with single or multiple choices for the user. Returns the WebDialogResult
value that indicates which button was clicked.

This method and its overloads provide the interface for the corresponding methods of the PXView class.

Syntax:

public WebDialogResult Ask(string key, string header,
 string message, MessageButtons buttons,
 bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

 | API Reference | 298

Remarks:

The method can be used to display the panel configured by the PXSmartPanel control. In this case, the
key parameter is set to the Key property of the control, refreshRequired is typically set to true, and
other parameters are set to null. The more common way to display a panel is to call the AskExt(key)
method.

Note that the method is executed asynchronously. When the method invocation is reached for the first
time, execution of the enclosing method stops, and a request is send to the client to display the dialog.
When the user clicks one of the buttons, the webpage sends a request to the server, and the system
starts execution of the method that invoked Ask() one more time. This time the Ask() method returns
the value that indicates the user's choice, and code execution continues.

Examples:

The code below defines an event handler that asks for confirmation to continue deletion of a data
record.

public PXSelect<INComponent> Components;

protected void INComponent_RowDeleting(
 PXCache sender, PXRowDeletingEventArgs e)
{
 if (Components.Ask("Deleting Revenue Component",
 "Are you sure?",
 MessageButtons.YesNo) != WebDialogResult.Yes)
 e.Cancel = true;
}

Ask(string, string, string, MessageButtons, MessageIcon)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
 string message, MessageButtons buttons,
 MessageIcon icon)

Parameters:

• key

The identifier of the panel to display.

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• icon

The value from the MessageIcon enumeration that indicate which icon to display beside the
message in the dialog window.

Ask(string, string, MessageButtons, MessageIcon, bool)

Displays the dialog window with single or multiple choices for the user.

 | API Reference | 299

Syntax:

public WebDialogResult Ask(string header, string message,
 MessageButtons buttons, MessageIcon icon,
 bool refreshRequired)

Parameters:

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• icon

The value from the MessageIcon enumeration that indicate which icon to display beside the
message in the dialog window.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

Ask(string, string, string, MessageButtons, MessageIcon, bool)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string header,
 string message, MessageButtons buttons,
 MessageIcon icon, bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• header

The string displayed as the title of the dialog window.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• icon

The value from the MessageIcon enumeration that indicate which icon to display beside the
message in the dialog window.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

 | API Reference | 300

AskExt()

Displays the dialog window configured by the PXSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement. The method requests repainting of the panel.

Syntax:

public WebDialogResult AskExt()

AskExt(string)

Displays the dialog window configured by the PXSmartPanel control. The method requests repainting of
the panel.

Syntax:

public WebDialogResult AskExt(string key)

Parameters:

• key

The identifier of the panel to display.

AskExt(bool)

Displays the dialog window configured by the PXSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement.

Syntax:

public WebDialogResult AskExt(bool refreshRequired)

Parameters:

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(PXView.InitializePanel)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(PXView.InitializePanel initializeHandler)

Parameters:

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(string, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key, bool refreshRequired)

Parameters:

• key

 | API Reference | 301

The identifier of the panel to display.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, PXView.InitializePanel)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key,
 PXView.InitializePanel initializeHandler)

Parameters:

• key

The identifier of the panel to display.

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(PXView.InitializePanel, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(PXView.InitializePanel initializeHandler,
 bool refreshRequired)

Parameters:

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, PXView.InitializePanel, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key,
 PXView.InitializePanel initializeHandler,
 bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

• refreshRequired

 | API Reference | 302

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

ClearDialog()

Clears the dialog information saved by the graph on last invocation of the Ask() method.

Syntax:

public void ClearDialog()

Delete(Table)

Deletes the data record by invoking the Delete(object) method on the cache. Returns the data record
marked as deleted.

Syntax:

public virtual Table Delete(Table item)

Parameters:

• item

The data record to delete.

Extend<Parent>(Parent)

Initializes a data record of the derived DAC from the provided data record of the base DAC and inserts
the new data record into the cache. Returns the inserted data record.

The method relies on the Extend<Parent>(Parent) method called on the cache.

Syntax:

public virtual Table Extend<Parent>(Parent item)
 where Parent : class, IBqlTable, new()

Table must derive from Parent. The current cache object should be of PXCache<Table> type.

Parameters:

• item

The instance of the base DAC.

Examples:

Suppose that the B DAC derives from the A DAC, as follows.

[Serializable]
public class A : IBqlTable { ... }

[Serializable]
public class B : A { ... }

The following data views can be declared in a graph.

PXSelect<A> BaseRecords;
PXSelect Records;

The code above will result in initialization of two caches, of PXCache<A> and PXCache types. The
following code initializes a data record of derived type and inserts it into the cache.

A baseRec = BaseRecords.Insert();

 | API Reference | 303

B rec = Records.Extend(baseRec);

GetItemType()

Returns the type of the DAC provided as the type parameter of PXSelectBase<> class. For BQL
statements that are derived from PXSelectBase<>, it is the first mentioned DAC.

Syntax:

public Type GetItemType()

GetValueExt<Field>(Table)

Gets the value of the specified field for the given data record. The method relies on the
GetValueExt<Field>(Table, object) method of the cache, but unlike the cache's method always returns
a value, not a PXFieldState object.

Syntax:

public virtual object GetValueExt<Field>(Table row)
 where Field : IBqlField

Parameters:

• row

The data record whose field value is returned.

Insert()

Inserts a new data record into the cache by invoking the Insert() method on the cache. Returns the
inserted data record or null-if the insertion fails.

Syntax:

public virtual Table Insert()

Insert(Table)

Inserts the provided data record into the cache by invoking the Insert(object) method on the cache.
Returns the inserted data record or null-if the insertion fails.

Syntax:

public virtual Table Insert(Table item)

Parameters:

• item

The data record to insert.

Join<join>()

Appends a joining clause to the BQL statement.

Syntax:

public virtual void Join<join>()
 where join : IBqlJoin, new()

Examples:

 | API Reference | 304

The code below appends the LeftJoin clause to the BQL statement.

PXSelectBase<GLTran> select = new PXSelect<GLTran>(this);

select.Join<LeftJoin<AP.APTran,
 On<AP.APTran.refNbr, Equal<GLTran.refNbr>,
 And<AP.APTran.lineNbr, Equal<GLTran.tranLineNbr>>>>>();

Locate(Table)

Searches the cache for the data record that has the same key fields as the provided data record, by
invoking the Locate(object) method on the cache. Returns the data record if it is found in the cache or
null otherwise.

Syntax:

public virtual Table Locate(Table item)

Parameters:

• item

The data record that is searched in the cache by the values of its key fields.

OrderByNew<newOrderBy>()

Replaces the OrderBy clause if the BQL statement has one, otherwise the new OrderBy clause is simply
attached to the BQL statement.

Syntax:

public virtual void OrderByNew<newOrderBy>()
 where newOrderBy : IBqlOrderBy, new()

Examples:

The code below initializes a data view as a local variable and adds different ordering expression
depending on the value of a variable.

// Initialization of a data view
PXSelectBase<INLotSerialStatus> cmd =
 new PXSelect<INLotSerialStatus, ...>(this);

// Adding a different ordering expression depending on
// a variable's value
switch (lotSerIssueMethod)
{
 case INLotSerIssueMethod.FIFO:
 cmd.OrderByNew<
 OrderBy<Asc<INLocation.pickPriority,
 Asc<INLotSerialStatus.receiptDate,
 Asc<INLotSerialStatus.lotSerialNbr>>>>>();
 break;
 case INLotSerIssueMethod.LIFO:
 cmd.OrderByNew<
 OrderBy<Asc<INLocation.pickPriority,
 Desc<INLotSerialStatus.receiptDate,
 Asc<INLotSerialStatus.lotSerialNbr>>>>>();
 break;
 ...
}

 | API Reference | 305

Search<Field0>(object, params object[])

Searches for a data record by the value of specified field in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified field and
retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0>(
 object field0, params object[] arguments)
 where Field0 : IBqlField

Parameters:

• field0

The value of Field0 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below finds the data record with the given reference numbe among the possible results of the
data view.

// Defining the data view in a graph
public PXSelect<ARInvoice,
 Where<ARInvoice.docType, Equal<Optional<ARInvoice.docType>>>> Document;
...
// Search a data record with the given value of the RefNbr field
Document.Search<ARInvoice.refNbr>(ardoc.RefNbr, ardoc.DocType);

// The Current property is now pointing to the data record found
// by Search<>(...)
Document.Current.InstallmentCntr = Convert.ToInt16(installments.Count);
...

Note that the Search<>(...) method has two parameters here. The first one is the value of the RefNbr
field to search by, while the second one is the value to replace the Optional parameter in the BQL
command.

Search<Field0, Field1>(object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1>(
 object field0, object field1, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField

Parameters:

• field0, field1

The values of Field0 and Field1 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

 | API Reference | 306

Search<Field0, Field1, Field2>(object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2>(
 object field0, object field1, object field2, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField

Parameters:

• field0 - field2

The values of Field0-Field2 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3>(object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2, Field3>(
 object field0, object field1, object field2,
 object field3, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField

Parameters:

• field0 - field3

The values of Field0-Field3 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4>(object, object, object, object, object, params
object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4>(
 object field0, object field1, object field2, object field3,
 object field4, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField

 | API Reference | 307

 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField

Parameters:

• field0 - field4

The values of Field0-Field4 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5>(object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4, Field5>(
 object field0, object field1, object field2, object field3,
 object field4, object field5, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField

Parameters:

• field0 - field5

The values of Field0-Field5 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6>(object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2, Field3,
 Field4, Field5, Field6>(
 object field0, object field1, object field2, object field3,
 object field4, object field5, object field6, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField

 | API Reference | 308

Parameters:

• field0 - field6

The values of Field0-Field6 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7>(object, object, object,
object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4, Field5,
 Field6, Field7>(
 object field0, object field1, object field2, object field3,
 object field4, object field5, object field6, object field7,
 params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField

Parameters:

• field0 - field7

The values of Field0-Field7 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(object, object,
object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4, Field5,
 Field6, Field7, Field8>(
 object field0, object field1, object field2, object field3,
 object field4, object field5, object field6, object field7,
 object field8, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField

 | API Reference | 309

 where Field6 : IBqlField
 where Field7 : IBqlField
 where Field8 : IBqlField

Parameters:

• field0 - field8

The values of Field0-Field8 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8, Field9>(object,
object, object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public virtual PXResultset<Table> Search<Field0, Field1, Field2, Field3,
 Field4, Field5, Field6, Field7,
 Field8, Field9>(
 object field0, object field1, object field2, object field3,
 object field4, object field5, object field6, object field7,
 object field8, object field9, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField
 where Field8 : IBqlField
 where Field9 : IBqlField

Parameters:

• field0 - field9

The values of Field0-Field9 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Sort>(object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and retrieves all data records from the resulting data set.

Though ordering may seem superfluous here, it is needed for better performance of the selection from
the database.

Syntax:

public virtual PXResultset<Table> SearchAll<Sort>(
 object[] searchValues, params object[] arguments)
 where Sort : IBqlSortColumn

 | API Reference | 310

Parameters:

• searchValues

The values of fields referenced in Sort by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below searches the data view for all data records whose TranClass field has the G value.

// Data view definition in a graph
public PXSelect<GLTran,
 Where<GLTran.module, Equal<Current<Batch.module>>,
 And<GLTran.batchNbr, Equal<Current<Batch.batchNbr>>>>> Trans;
...
// Code in some method
foreach(GLTran tran in
 Trans.SearchAll<Asc<GLTran.tranClass>>(new object [] {"G"}))
 ...

SearchWindowed<Sort>(object[], int, int, params object[])

Retrieves the specified number of contiguous data records starting from the given position in the
filtered data set. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and requests the limited numer of data records.

Syntax:

public virtual PXResultset<Table> SearchWindowed<Sort>(
 object[] searchValues, int startRow, int totalRows,
 params object[] arguments)
 where Sort : IBqlSortColumn

Parameters:

• searchValues

The values of fields referenced in Sort by which the data set is filtered and sorted.

• startRow

The 0-based index of the first data record to retrieve.

• totalRows

The number of data records to retrieve.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below retrieves the first five data records whose TranClass field has the G value from the
data view.

// Data view definition in a graph
public PXSelect<GLTran,
 Where<GLTran.module, Equal<Current<Batch.module>>,
 And<GLTran.batchNbr, Equal<Current<Batch.batchNbr>>>>> Trans;
...
// Code in some method
PXResultset<GLTran> res =

 | API Reference | 311

 Trans.SearchWindowed<Asc<GLTran.tranClass>>(new object [] {"G"}, 0, 5);

Select(params object[])

Executes the BQL statement and retrieves all matching data records.

Syntax:

public virtual PXResultset<Table> Select(params object[] arguments)

Parameters:

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectSingle(params object[])

Retrieves the top data record of the data set that corresponds to the BQL statement.

Syntax:

public virtual Table SelectSingle(params object[] arguments)

Parameters:

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed(int, int, params object[])

Retrieves the specified number of data records starting from the given position.

Syntax:

public virtual PXResultset<Table> SelectWindowed(int startRow, int totalRows,
 params object[] arguments)

Parameters:

• startRow

The 0-based index of the first data record to retrieve.

• totalRows

The number of data records to retrieve.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below retrieves the first data record from the data set that corresponds to the BQL statement.

// Initializing the data view
PXSelectBase<FinPeriod> select = new PXSelect<FinPeriod,
 Where<FinPeriod.finYear, Equal<Required<FinPeriod.finYear>>>,
 OrderBy<Asc<FinPeriod.periodNbr>>>(sender.Graph);

// Executing the data view

 | API Reference | 312

FinPeriod fp = select.SelectWindowed(0, 1, DateTime.Now.Year);

In the third parameter, the method provides the value for the Requried parameter.

SetValueExt<Field>(Table, object)

Sets the value of the specified field in the given data record. The method relies on the
SetValueExt<Field>(Table, object) method of the cache.

Syntax:

public virtual void SetValueExt<Field>(Table row, object value)
 where Field : IBqlField

Parameters:

• row

The data record whose field value is set.

• value

The value to set to the field.

Update(Table)

Updates the data record in the cache by invoking the Update(object) method on the cache. Returns the
updated data record.

Syntax:

public virtual Table Update(Table item)

Parameters:

• item

The updated version of the data record.

WhereAnd<TWhere>()

Appends a filtering expression to the BQL statement via the logical "and". The additional filtering
expression is provided in the type parameter.

Syntax:

public void WhereAnd<TWhere>()
 where TWhere : IBqlWhere, new()

Examples:

The code below appends additional comparison to the BQL statement when the corresponding field in
the filter is set to a value.

// Initializing the data view
PXSelectBase<APDocumentResult> sel = new PXSelect<APDocumentResult,
 Where<APRegister.vendorID, Equal<Current<APDocumentFilter.vendorID>>>,
 OrderBy<Desc<APDocumentResult.docDate>>>>(this);

// Checking whether a filter object has a value in the BranchID field
if (Filter.Current.BranchID != null)
{
 // Extending the Where clause with additional condition
 sel.WhereAnd<Where<APRegister.branchID,
 Equal<Current<APDocumentFilter.branchID>>>>();
}

 | API Reference | 313

WhereNew<newWhere>()

Replaces the filtering expression in the BQL statement. The new filtering expression is provided in the
type parameter.

Syntax:

public void WhereNew<newWhere>()
 where newWhere : IBqlWhere, new()

Examples:

The code below replaces the Where clause in a data view

// Defining the data view in a graph
public PXSelect<ARInvoice,
 Where<ARInvoice.docType, Equal<Current<ARInvoice.docType>>,
 And2<Where<ARInvoice.origModule, Equal<BatchModule.moduleAR>,
 Or<ARInvoice.released, Equal<True>>>>>> Document;
...
// Replacing the Where clause
Document.WhereNew<
 Where<ARInvoice.docType, Equal<Required<ARInvoice.docType>>>>();

// Getting an ARInvoice data record
ARInvoice ardoc = (ARInvoice)resultsetRecord;

// Executing the modified data view
Document.Select(ardoc.DocType);

WhereNot()

Adds logical "not" to the whole Where clause of the BQL statement, reversing the condition to the
opposite.

Syntax:

public void WhereNot()

WhereOr<TWhere>()

Appends a filtering expression to the BQL statement via the logical "or". The additional filtering
expression is provided in the type parameter.

Syntax:

public void WhereOr<TWhere>()
 where TWhere : IBqlWhere, new()

WebDialogResult Enumeration

Defines values that indicate which button the user cliked in the dialog opened by the Ask() method.

Members

• None

None of the buttons was clicked

• OK

The user clicked OK

• Cancel

The user clicked Cancel

 | API Reference | 314

• Abort

The user clicked Abort

• Retry

The user clicked Retry

• Ignore

The user clicked Ignore

• Yes

The user clicked Yes

• No

The user clicked No

MessageButtons Enumeration

Defines possible sets of standard buttons that can be displayed in a dialog window created by the Ask()
method.

Members

• OK

Only the OK button is displayed.

• OKCancel

The OK and Cancel buttons are displayed.

• AbortRetryIgnore

The Abort, Retry, and Ignore buttons are displayed.

• YesNoCancel

The Yes, No, and Cancel buttons are displayed.

• YesNo

The Yes and No buttons are displayed.

• RetryCancel

The Retry and Cancel buttons are displayed.

• None

No buttons are displayed.

MessageIcon Enumeration

Defines possible icons that can be displayed beside the message in the dialog window opened by the
Ask() method.

Members

• None

No icon is displayed.

• Error

The error sign is displayed.

• Question

 | API Reference | 315

The question mark sign is displayed.

• Warning

The warning sign is displayed.

• Information

The information sign is displayed.

PXSelect<Table> Class

Defines a data view for retrieving a particular data set from the database and provides the interface to
the cache for inserting, updating, and deleting the data records.

See Remarks for more details and Examples for examples of usage.

Inheritance Hierarchy

PXSelectBase<Table>

Syntax

public class PXSelect<Table> : PXSelectBase<Table>
 where Table : class, IBqlTable, new()

There are a number of other types derived from PXSelectBase<Table> that are used in the same way
and have exactly the same set of methods as PXSelect<Table> has, and only allow building more
complex BQL expressions.

The PXSelect type exposes the following members.

Constructors

Constructor Description

PXSelect(PXGraph) Initializes a new instance of a data view bound to the
specified graph.

PXSelect(PXGraph, Delegate) Initializes a new instance of a data view that is bound
to the specified graph and uses the provided method
to retrieve data.

Methods

Method Description

Clear(PXGraph) Clears the results of BQL statement execution stored in
the provided graph

GetCommand() Returns the BqlCommand object representing the BLQ
statement

Search<Field0>(PXGraph, object, params
object[])

Searches for a data record by the value of specified
field in the data set that corresponds to the BQL
statement

Search<Field0, Field1>(PXGraph, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

 | API Reference | 316

Method Description

Search<Field0, Field1, Field2>(PXGraph,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2,
Field3>(PXGraph, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3,
Field4>(PXGraph, object, object, object,
object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5>(PXGraph, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6>(PXGraph, object, object,
object, object, object, object, object, params
object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6, Field7>(PXGraph, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3, Field4,
Field5, Field6, Field7, Field8>(PXGraph,
object, object, object, object, object, object,
object, object, object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

Search<Field0, Field1, Field2, Field3,
Field4, Field5, Field6, Field7, Field8,
Field9>(PXGraph, object, object, object,
object, object, object, object, object, object,
object, params object[])

Searches for a data record by the values of specified
fields in the data set that corresponds to the BQL
statement

SearchAll<Sort>(PXGraph, object[], params
object[])

Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchAll<Resultset, Sort>(PXGraph,
object[], params object[])

Searches the data set that corresponds to the BQL
statement for all data records whose fields have the
specified values

SearchWindowed<Resultset, Sort>(PXGraph,
object[], int, int, params object[])

Searches the data set that corresponds to the BQL
statement for the data records whose fields have the
specified values

Select(PXGraph, params object[]) Executes the BQL statement and retrieves all matching
data records

Select<Resultset>(PXGraph, params
object[])

Executes the BQL statement and retrieves all matching
data records

SelectMultiBound(PXGraph, object[], params
object[])

Executes the BQL statement with the specified values
to substitute current object and retrieves all matching
data records

 | API Reference | 317

Method Description

SelectWindowed(PXGraph, int, int, params
object[])

Retrieves the specified number of data records starting
from the given position

SelectWindowed<Resultset>(PXGraph, int,
int, params object[])

Retrieves the specified number of data records starting
from the given position

StoreCached(PXGraph, PXCommandKey,
List<object>)

Stores in the caches the results of BQL statement
execution

Remarks

A PXSelect<Table> object wraps the Select<Table> object, which represents the BQL command, and
the PXView object, which executes this BQL command. The PXSelect<Table> object also holds the
reference of the cache of the Table data records and the graph.

The PXSelect<Table> type provides interfaces to both the PXView object and the cache. So you
can execute the underlying BQL command and invoke cache methods through the methods of the
PXSelect<Table>.

Examples

The code below shows the declaration of a data view in a graph and execution of this data view.

public class VendorClassMaint : PXGraph<VendorClassMaint>
{
 public PXSelect<Vendor,
 Where<Vendor.vendorClassID, Equal<Current<VendorClass.vendorClassID>>>>
 Vendors;
 ...
 public void SomeMethod()
 {
 // Data view execution
 foreach (Vendor vend in Vendors.Select())
 ...
 }
}

Note that the data view is not initialized. The graph initializes it automatically.

Suppose the following data view is defined in a graph. This data view cannot be used as the data
member of a webpage control, because the BQL expression includes the Required parameter.

public PXSelect<ARPayment,
 Where<ARPayment.refNbr, Equal<Required<ARPayment.refNbr>>>> arPayment;

The code below executes this data view, selects the top data record, and initializes a new data record
with values from the retrieved data record.

// Execute the data view
ARPayment rec = arPayment.SelectSingle(refNbrValue);

// Create a new data record
ARPayment payment = new ARPayment();
payment.CustomerID = rec.CustomerID;

// Insert the new data record into the cache of ARPayment data records
arPayment.Insert(payment);

See Executing Statements for more examples of BQL statements execution.

PXSelect<Table> Constructors

The PXSelect<Table> type exposes the following constructors.

 | API Reference | 318

PXSelect(PXGraph)

Initializes a new instance of a data view bound to the specified graph.

Syntax:

public PXSelect(PXGraph graph)

Parameters:

• graph

The graph with which the data view is associated.

PXSelect(PXGraph, Delegate)

Initializes a new instance of a data view that is bound to the specified graph and uses the provided
method to retrieve data.

Syntax:

public PXSelect(PXGraph graph, Delegate handler)

Parameters:

• graph

The graph with which the data view is associated.

• handler

The delegate of the method that is used to retrieve the data from the database (or other source).
This method is invoked when one of the Select() methods is called.

Examples

The code below shows declaration of a data view in a graph. The data view is not initialized explicitly.
The graph automatically initializes the data view.

public class MyGraph : PXGraph<MyGraph>
{
 public PXSelect<MyDAC> Records;
 ...
}

The code below shows declaration of a data view that have the optional method.

public class MyGraph : PXGraph<MyGraph>
{
 public PXSelect<MyDAC> Records;
 protected IEnumerable records()
 {
 ...
 }
 ...
}

The code below shows explicit initialization of a data view in code in a graph.

PXSelectBase<MyDAC> records = new PXSelect<MyDAC,
 Where<MyDAC.field1, IsNotNull>>(this);

PXSelect<Table> Methods

The PXSelect<Table> type exposes the following methods.

 | API Reference | 319

Clear(PXGraph)

Clears the results of BQL statement execution stored in the provided graph.

Syntax:

public static void Clear(PXGraph graph)

Parameters:

• graph

The graph where the data is cleared.

Examples:

The code below clears the query cache to load the records directly from the database (the data records
are still merged with the modifications stored in the PXCache object).

// Clearing the query cache
PXSelect<CRMergeCriteria,
 Where<CRMergeCriteria.mergeID, Equal<Required<CRMerge.mergeID>>>>.
 Clear(this);

// Selecting data records directly from the database (not from the query
// cache) and merging with the PXCache<> object
foreach (CRMergeCriteria item in
 PXSelect<CRMergeCriteria,
 Where<CRMergeCriteria.mergeID, Equal<Required<CRMerge.mergeID>>>>.
 Select(this, document.MergeID))
{
 Criteria.Cache.Delete(item);
}

GetCommand()

Returns the BqlCommand object representing the BLQ statement.

Syntax:

public static BqlCommand GetCommand()

Search<Field0>(PXGraph, object, params object[])

Searches for a data record by the value of specified field in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified field and
retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0>(
 PXGraph graph, object field0, params object[] arguments)
 where Field0 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0

The value of Field0 by which the data set is filtered and sorted.

• arguments

 | API Reference | 320

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1>(PXGraph, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1>(
 PXGraph graph, object field0, object field1, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field1

The values of Field0 and Field1 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Examples:

The code below checks whether a duplicate of the APInvoice data record exists by searching by the key
fields.

APInvoice duplicate = PXSelect<APInvoice>.
 Search<APInvoice.docType, APInvoice.refNbr>(
 this, invoice.DocType, invoice.OrigRefNbr);

// If the data record exists, throw an exception
if (duplicate != null)
 throw new PXException(ErrorMessages.RecordExists);

Search<Field0, Field1, Field2>(PXGraph, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2>(
 PXGraph graph, object field0, object field1,
 object field2,params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField

Parameters:

• graph

 | API Reference | 321

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field2

The values of Field0-Field2 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3>(PXGraph, object, object, object, object, params
object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2, Field3>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field3

The values of Field0-Field3 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4>(PXGraph, object, object, object, object, object,
params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, object field4, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField

Parameters:

 | API Reference | 322

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field4

The values of Field0-Field4 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5>(PXGraph, object, object, object, object,
object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4, Field5>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, object field4, object field5, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field5

The values of Field0-Field5 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6>(PXGraph, object, object, object,
object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2, Field3,
 Field4, Field5, Field6>(
 PXGraph graph, object field0, object field1, object field2, object field3,
 object field4, object field5, object field6, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField

 | API Reference | 323

 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field6

The values of Field0-Field6 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7>(PXGraph, object, object,
object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2, Field3,
 Field4, Field5, Field6, Field7>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, object field4, object field5, object field6,
 object field7, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field7

The values of Field0-Field7 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8>(PXGraph, object,
object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

 | API Reference | 324

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2,
 Field3, Field4, Field5,
 Field6, Field7, Field8>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, object field4, object field5, object field6,
 object field7, object field8, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField
 where Field8 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field8

The values of Field0-Field8 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Search<Field0, Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8, Field9>(PXGraph,
object, object, object, object, object, object, object, object, object, object, params object[])

Searches for a data record by the values of specified fields in the data set that corresponds to the BQL
statement. The method extends the BQL statement with filtering and ordering by the specified fields
and retrieves the top data record.

Syntax:

public static PXResultset<Table> Search<Field0, Field1, Field2, Field3,
 Field4, Field5, Field6, Field7,
 Field8, Field9>(
 PXGraph graph, object field0, object field1, object field2,
 object field3, object field4, object field5, object field6,
 object field7, object field8, object field9, params object[] arguments)
 where Field0 : IBqlField
 where Field1 : IBqlField
 where Field2 : IBqlField
 where Field3 : IBqlField
 where Field4 : IBqlField
 where Field5 : IBqlField
 where Field6 : IBqlField
 where Field7 : IBqlField
 where Field8 : IBqlField
 where Field9 : IBqlField

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• field0 - field9

 | API Reference | 325

The values of Field0-Field9 by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Sort>(PXGraph, object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values. The fields are specified in the type parameter. The method extends the BQL statement
with filtering and ordering by the fields and retrieves all data records from the resulting data set.

Syntax:

public static PXResultset<Table> SearchAll<Sort>(PXGraph graph,
 object[] searchValues,
 params object[] pars)
 where Sort : IBqlSortColumn

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• searchValues

The values of fields referenced in Sort by which the data set is filtered and sorted.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchAll<Resultset, Sort>(PXGraph, object[], params object[])

Searches the data set that corresponds to the BQL statement for all data records whose fields have the
specified values.

The fields are specified in the Sort type parameter. The method extends the BQL statement with
filtering and ordering by the fields and retrieves all data records from the resulting data set. A specific
PXResultset<> type can be specified in the Resultset type parameter.

Syntax:

public static Resultset SearchAll<Resultset, Sort>(PXGraph graph,
 object[] searchValues,
 params object[] pars)
 where Resultset : PXResultset<Table>, new()
 where Sort : IBqlSortColumn

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• searchValues

The values of fields referenced in Sort by which the data set is filtered and sorted.

• arguments

 | API Reference | 326

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SearchWindowed<Resultset, Sort>(PXGraph, object[], int, int, params object[])

Searches the data set that corresponds to the BQL statement for the data records whose fields have the
specified values. Retrieves the specified number of such data records starting from the given position.

The fields are specified in the Sort type parameter. The method extends the BQL statement with
filtering and ordering by the fields and retrieves all data records from the resulting data set. A specific
PXResultset<> type can be specified in the Resultset type parameter.

Syntax:

public static Resultset SearchWindowed<Resultset, Sort>(
 PXGraph graph, object[] searchValues,
 int startRow, int totalRows, params object[] pars)
 where Resultset : PXResultset<Table>, new()
 where Sort : IBqlSortColumn

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• searchValues

The values of fields referenced in Sort by which the data set is filtered and sorted.

• startRow

The 0-based index of the first data record to retrieve.

• totalRows

The number of data records to retrieve.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

Select(PXGraph, params object[])

Executes the BQL statement and retrieves all matching data records.

Syntax:

public static PXResultset<Table> Select(PXGraph graph,
 params object[] pars)

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

 | API Reference | 327

Select<Resultset>(PXGraph, params object[])

Executes the BQL statement and retrieves all matching data records. A specific PXResultset<>
type can be specified in the type parameter. To wrap the retrieved data records, the non-generic
Select() method uses the PXResultset<Table> type, where Table is the first DAC specified in the
BQL statement.

Syntax:

public static Resultset Select<Resultset>(PXGraph graph, params object[] pars)
 where Resultset : PXResultset<Table>, new()

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectMultiBound(PXGraph, object[], params object[])

Executes the BQL statement with the specified values to substitute current object and retrieves all
matching data records.

Syntax:

public static PXResultset<Table> SelectMultiBound(
 PXGraph graph, object[] currents, params object[] pars)

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• currents

The objects to be used instead of the data records referenced by the Current property of the
caches.

• pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed(PXGraph, int, int, params object[])

Retrieves the specified number of data records starting from the given position.

Syntax:

public static PXResultset<Table> SelectWindowed(
 PXGraph graph, int startRow, int totalRows, params object[] pars)

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

 | API Reference | 328

• startRow

The 0-based index of the first data record to retrieve.

• totalRows

The number of data records to retrieve.

• arguments

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

SelectWindowed<Resultset>(PXGraph, int, int, params object[])

Retrieves the specified number of data records starting from the given position. A specific
PXResultset<> type can be specified in the type parameter.

Syntax:

public static Resultset SelectWindowed<Resultset>(
 PXGraph graph, int startRow, int totalRows, params object[] pars)
 where Resultset : PXResultset<Table>, new()

Parameters:

• graph

The graph that is used to cache the retrieved data record and merge them with the modified data
records.

• startRow

The 0-based index of the first data record to retrieve.

• totalRows

The number of data records to retrieve.

• pars

The values to substitute BQL parameters, such as Optional, Required, and Argument, in the BQL
statement.

StoreCached(PXGraph, PXCommandKey, List<object>)

Stores in the caches the results of BQL statement execution.

Syntax:

public static void StoreCached(PXGraph graph, PXCommandKey queryKey,
 List<object> records)

Parameters:

• graph

The graph object whose caches are used to store the data records.

• queryKey

• records

PXProcessing<Table> Class

Defines a special data view used on processing webpages, which are intended for mass processing of
data records.

 | API Reference | 329

The PXProcessing<Table> type is used to define the data view in a graph bound to a processing
webpage. A data view of this type includes definitions of two actions, Process and ProcessAll, which
are added to the graph and are used to invoke the processing. You should set the processing method by
invoking one of the SetProcessDelegate(...) methods in the constructor of the graph.

Inheritance Hierarchy

PXSelectBase<Table>

Syntax

public class PXProcessing<Table> : PXSelectBase<Table>, IPXProcessing,
 IPXProcessingWithCustomDelegate
 where Table : class, IBqlTable, new(),

The PXProcessing<Table> type exposes the following members.

Constructors

Constructor Description

PXProcessing(PXGraph) Initializes a new instance of a data view bound to the
specified graph.

PXProcessing(PXGraph, Delegate) Initializes a new instance of a data view that is bound
to the specified graph and uses the provided method
to retrieve data.

Properties

• public virtual Delegate CustomViewDelegate

Gets or sets the delegate of the method that retrieves the data (the optional method of the data
view).

Delegates

The PXProcessing<Table> type defines the following delegates, which may be passed to
SetProcessDelegate(...) methods.

• public delegate void ProcessListDelegate(List<Table> list);

The delegate of the method for processing a list of data records.

• public delegate void ProcessItemDelegate(Table item);

The delegate of the method for processing a single data record.

• public delegate void ProcessItemDelegate<Graph>(Graph graph, Table item)
where Graph : PXGraph, new();

The delegate of the method for processing a single data record. The delegate allows you to
receive the same instance of the provided graph type to each invocation of the processing method
during the processing operation.

• public delegate void FinallyProcesselegate<Graph>(Graph graph) where
Graph : PXGraph, new();

The delegate of the method that is executed after all data records are processed. In the
parameter, the method receives the graph that was passed to each invocation of the data record
processing method during the processing operation.

 | API Reference | 330

Methods

Method Description

GetProcessDelegate() Returns the delegate of the processing method, which
is set by one of the SetProcessDelegate() methods

Join<join>() Appends the join clause to the underlying BQL
command

OrderByNew<newOrderBy>() Replaces the sorting expression in the underlying BQL
command

SetAutoPersist(bool) Sets the value that indicates whether the changes
in the graph should be automatically saved in the
database before the data records are processed

SetCurrentItem(Table) Sets the current data record to process

SetError(string) Sets the provided string as the error message of the
processing operation

SetError(Exception) Sets the provided exception as the error of the
processing operation

SetError(int, string) Sets the error message on the data record with the
specified index

SetError(int, Exception) Sets the provided exception as the error on the data
record with the specified index

SetInfo(string) Sets the information message for the processing
operation

SetInfo(Exception) Sets the provided exception as the information-level
error for the processing operation

SetInfo(int, string) Attaches the provided information message to the data
record with the specified index

SetInfo(int, Exception) Attaches the provided exception as the information-
level error to the data record with the specified index

SetProcessAllCaption(string) Sets the display name of the button that processes all
data records selected by the data view

SetProcessAllEnabled(bool) Enables or disables the button that processes all data
records selected by the data view

SetProcessAllTooltip(string) Sets the tooltip for the button that processes all data
records selected by the data view

SetProcessAllVisible(bool) Displays or hides the button that processes all data
records selected by the data view

SetProcessCaption(string) Sets the display name of the button that processes the
selected data records

SetProcessDelegate(ProcessListDelegate) Sets the method that is invoked to process multiple
data records

SetProcessDelegate(ProcessItemDelegate) Sets the method that is invoked to process each data
record

 | API Reference | 331

Method Description

SetProcessDelegate<Graph>
(ProcessItemDelegate<Graph>)

Sets the method that is invoked to process each data
record

SetProcessDelegate<Graph>
(ProcessItemDelegate<Graph>,
FinallyProcesselegate<Graph>)

Sets the method that is invoked to process each data
record and the method that is invoked after all data
records are processed

SetProcessEnabled(bool) Enables or disables the button that processes the
selected data records

SetProcessTooltip(string) Sets the tooltip for the button that processes the
selected data records

SetProcessVisible(bool) Displays or hides the button that processes the
selected data records

SetProcessed() Sets the information message confirming that a data
record has been processed successfully

SetSelected<Field>() Sets the DAC field by which the user can mark data
records that should be processed

SetWarning(string) Sets the warning message for the processing operation

SetWarning(Exception) Sets the provided exceptiona as the warning-level
error of the processing operation

SetWarning(int, string) Sets the warning message on the data record with the
specified index

SetWarning(int, Exception) Attaches the provided exception as the warning-level
error to the data record with the specified index

The following classes derive from PXProcessing<Table>. These classes expose exactly the same
members as PXProcessing<Table> and serve only for specifying more complex BQL expressions.

PXProcessing<Table, Where> Class

Selects data records from one table filtered by the expression set in Where.

Syntax:

public class PXProcessing<Table, Where> : PXProcessing<Table>
 where Table : class, IBqlTable, new()
 where Where : IBqlWhere, new()

PXProcessing<Table, Where, OrderBy> Class

Selects data records from one table filtered by the expression set in Where and ordered by the fields
specified in OrderBy.

Syntax:

public class PXProcessing<Table, Where, OrderBy> : PXProcessing<Table, Where>
 where Table : class, IBqlTable, new()
 where Where : IBqlWhere, new()
 where OrderBy : IBqlOrderBy, new()

PXProcessingJoin<Table, Join> Class

Selects data records from multiple tables linked by the Join clause.

 | API Reference | 332

Syntax:

public class PXProcessingJoin<Table, Join> : PXProcessing<Table>
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()

PXProcessingJoin<Table, Join, Where> Class

Selects data records from multiple tables linked by the Join clause and filtered according to the
expression set in Where.

Syntax:

public class PXProcessingJoin<Table, Join, Where> : PXProcessingJoin<Table, Join>
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()
 where Where : IBqlWhere, new()

PXProcessingJoin<Table, Join, Where, OrderBy> Class

Selects data records from multiple tables linked by the Join clause, filtered according to the expression
set in Where, and ordered by the fields specified in OrderBy.

Syntax:

public class PXProcessingJoin<Table, Join, Where, OrderBy> : PXProcessingJoin<Table,
 Join, Where>
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()
 where Where : IBqlWhere, new()
 where OrderBy : IBqlOrderBy, new()

PXFilteredProcessing<Table, FilterTable> Class

Selects data records from one table and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable> : PXProcessing<Table>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()

PXFilteredProcessing<Table, FilterTable, Where> Class

Selects data records from one table filtered by the expression set in Where and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable, Where> :
 PXFilteredProcessing<Table, FilterTable>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Where : IBqlWhere, new()

PXFilteredProcessing<Table, FilterTable, Where, OrderBy> Class

Selects data records from one table filtered by the expression set in Where and ordered by the fields
specified in OrderBy and applies the user filter.

Syntax:

public class PXFilteredProcessing<Table, FilterTable, Where, OrderBy> :
 PXFilteredProcessing<Table, FilterTable, Where>

 | API Reference | 333

 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Where : IBqlWhere, new()
 where OrderBy : IBqlOrderBy, new()

PXFilteredProcessingJoin<Table, FilterTable, Join> Class

Selects data records from multiple tables linked by the Join clause and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join> :
 PXFilteredProcessing<Table, FilterTable>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()

PXFilteredProcessingJoin<Table, FilterTable, Join, Where> Class

Selects data records from multiple tables linked by the Join clause and filtered according to the
expression set in Where and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join, Where> :
 PXFilteredProcessingJoin<Table, FilterTable, Join>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()
 where Where : IBqlWhere, new()

PXFilteredProcessingJoin<Table, FilterTable, Join, Where, OrderBy> Class

Selects data records from multiple tables linked by the Join clause, filtered according to the expression
set in Where, and ordered by the fields specified in OrderBy and applies the user filter.

Syntax:

public class PXFilteredProcessingJoin<Table, FilterTable, Join, Where, OrderBy> :
 PXFilteredProcessingJoin<Table, FilterTable, Join>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()
 where Where : IBqlWhere, new()
 where OrderBy : IBqlOrderBy, new()

PXFilteredProcessingJoinGroupBy<Table, FilterTable, Join, Where, Aggregate> Class

Selects aggregated data records from multiple tables linked by the Join clause, filtered according to the
expression set in Where, and ordered by the fields specified in OrderBy and applies the user filter.

Syntax:

public class PXFilteredProcessingJoinGroupBy<Table, FilterTable, Join, Where,
 Aggregate> : PXFilteredProcessingJoin<Table, FilterTable, Join>
 where FilterTable : class, IBqlTable, new()
 where Table : class, IBqlTable, new()
 where Join : IBqlJoin, new()
 where Where : IBqlWhere, new()
 where Aggregate : IBqlAggregate, new()

 | API Reference | 334

Examples

The code below shows definition of the graph that contains the processing data view.

public class ARPaymentsProcessing : PXGraph<ARPaymentsProcessing>
{
 // Definition of the data view to process
 public PXProcessing<ARPaymentInfo> ARDocumentList;

 // The constructor of the graph
 public ARPaymentsAutoProcessing()
 {
 // Specifying the field to mark data records for processing
 ARDocumentList.SetSelected<ARPaymentInfo.selected>();
 // Setting the processing method
 ARDocumentList.SetProcessDelegate(Process);
 }

 // The processing method (must be static)
 public static void Process(List<ARPaymentInfo> products)
 {
 ...
 }
 ...
}

PXProcessing<Table> Constructors

The PXProcessing<Table> type exposes the following constructors.

PXProcessing(PXGraph)

Initializes a new instance of a data view bound to the specified graph.

Syntax:

public PXProcessing(PXGraph graph) : this(graph, null)

Parameters:

• graph

The graph with which the data view is associated.

PXProcessing(PXGraph, Delegate)

Initializes a new instance of a data view that is bound to the specified graph and uses the provided
method to retrieve data.

Syntax:

public PXProcessing(PXGraph graph, Delegate handler)

Parameters:

• graph

The graph with which the data view is associated.

• handler

The delegate of the method that is used to retrieve the data from the database (or other source).

PXProcessing<Table> Methods

The PXProcessing<Table> type exposes the following methods.

 | API Reference | 335

GetProcessDelegate()

Returns the delegate of the processing method, which is set by one of the SetProcessDelegate()
methods.

Syntax:

public Delegate GetProcessDelegate()

Join<join>()

Appends the join clause to the underlying BQL command.

Syntax:

public override void Join<join>()

OrderByNew<newOrderBy>()

Replaces the sorting expression in the underlying BQL command.

Syntax:

public override void OrderByNew<newOrderBy>()

SetAutoPersist(bool)

Sets the value that indicates whether the changes in the graph should be automatically saved in the
database before the data records are processed. By default, the changes are not saved automatically.

Syntax:

public virtual void SetAutoPersist(bool autoPersist)

Parameters:

• autoPersist

The value indicating whether to save the changes.

SetCurrentItem(Table)

Sets the current data record to process.

Syntax:

public static void SetCurrentItem(Table currentItem)

Parameters:

• currentItem

The data record to be set as the current.

SetError(string)

Sets the provided string as the error message of the processing operation.

Syntax:

public static bool SetError(string message)

Parameters:

 | API Reference | 336

• message

The error message.

SetError(Exception)

Sets the provided exception as the error of the processing operation.

Syntax:

public static bool SetError(Exception e)

Parameters:

• e

The exception containing information about the error.

SetError(int, string)

Sets the error message on the data record with the specified index.

Syntax:

public static bool SetError(int index, string message)

Parameters:

• index

The index of the data record marked with error.

• message

The error message.

SetError(int, Exception)

Sets the provided exception as the error on the data record with the specified index.

Syntax:

public static bool SetError(int index, Exception e)

Parameters:

• index

The index of the data record marked with error.

• e

The exception containing information about the error.

SetInfo(string)

Sets the information message for the processing operation.

Syntax:

public static bool SetInfo(string message)

Parameters:

• message

The information message.

 | API Reference | 337

SetInfo(Exception)

Sets the provided exception as the information-level error for the processing operation.

Syntax:

public static bool SetInfo(Exception e)

Parameters:

• e

The exception containing information.

SetInfo(int, string)

Attaches the provided information message to the data record with the specified index.

Syntax:

public static bool SetInfo(int index, string message)

Parameters:

• index

The index of the data record to which the message is attached.

• message

The information message.

SetInfo(int, Exception)

Attaches the provided exception as the information-level error to the data record with the specified
index.

Syntax:

public static bool SetInfo(int index, Exception e)

Parameters:

• index

The index of the data record that is marked with the exception.

• e

The exception containing information.

SetProcessAllCaption(string)

Sets the display name of the button that processes all data records selected by the data view.

Syntax:

public virtual void SetProcessAllCaption(string caption)

Parameters:

• caption

The string used as the display name.

 | API Reference | 338

SetProcessAllEnabled(bool)

Enables or disables the button that processes all data records selected by the data view.

Syntax:

public virtual void SetProcessAllEnabled(bool enabled)

Parameters:

• enabled

The value indicating whether the button is enalbed.

SetProcessAllTooltip(string)

Sets the tooltip for the button that processes all data records selected by the data view.

Syntax:

public virtual void SetProcessAllTooltip(string tooltip)

Parameters:

• tooltip

The string used as the tooltip.

SetProcessAllVisible(bool)

Displays or hides the button that processes all data records selected by the data view.

Syntax:

public virtual void SetProcessAllVisible(bool visible)

Parameters:

• visible

The value indicating whether the button is visible.

SetProcessCaption(string)

Sets the display name of the button that processes the selected data records.

Syntax:

public virtual void SetProcessCaption(string caption)

Parameters:

• caption

The string used as the display name.

SetProcessDelegate(ProcessListDelegate)

Sets the method that is invoked to process multiple data records.

The method receives the list of the data records to process in the parameter. Depending on the buttion
the user clicked to start processing, the data records are either the data records selected by the user in
the grid or all data records selected by the data view.

 | API Reference | 339

Syntax:

public virtual void SetProcessDelegate(ProcessListDelegate handler)

Parameters:

• handler

The delegate of the processing method.

Examples:

The code below sets the processing method for a processing data view in a graph.

// Definition of the processing data view
public PXProcessingJoin<BalancedAPDocument, ... > APDocumentList;
...

// The constructor of the graph
public APDocumentRelease()
{
 ...
 // Setting the delegate of a processing method and defining the
 // processing method in place
 APDocumentList.SetProcessDelegate(
 delegate(List<BalancedAPDocument> list)
 {
 List<APRegister> newlist = new List<APRegister>(list.Count);
 foreach (BalancedAPDocument doc in list)
 {
 newlist.Add(doc);
 }
 ReleaseDoc(newlist, true);
 }
);
}

// Definition of the method that does actual processing
public static void ReleaseDoc(List<APRegister> list, bool isMassProcess)
{
 ...
}

SetProcessDelegate(ProcessItemDelegate)

Sets the method that is invoked to process each data record.

The method receives the data records to process in the parameter. Depending on the buttion the user
clicked to start processing, the method is invoked for each data record selected by the user in the grid,
or for each data record selected by the data view.

Syntax:

public virtual void SetProcessDelegate(ProcessItemDelegate handler)

Parameters:

• handler

The delegate of the processing method.

SetProcessDelegate<Graph>(ProcessItemDelegate<Graph>)

Sets the method that is invoked to process each data record.

 | API Reference | 340

The method should have two parameters, the graph and the data record. When the user initiates
processing, the data view initializes the instance of the specified graph type and passes it to the
processing method while it is invoked for each data record.

Syntax:

public void SetProcessDelegate<Graph>(ProcessItemDelegate<Graph> handler)
 where Graph : PXGraph, new()

Parameters:

• handler

The delegate of the processing method.

Examples:

The code below sets the processing method, which will process each data record, for a processing data
view in a graph.

// Definition of the processing data view
public PXFilteredProcessing<ARPaymentInfo> ARDocumentList;
...
ARDocumentList.SetProcessDelegate<ARPaymentCCProcessing>(
 delegate(ARPaymentCCProcessing aGraph,ARPaymentInfo doc)
 {
 ProcessPayment(aGraph, doc);
 }
);

The ProcessPayment(...) should be the static method of the current graph.

SetProcessDelegate<Graph>(ProcessItemDelegate<Graph>, FinallyProcesselegate<Graph>)

Sets the method that is invoked to process each data record and the method that is invoked after all
data records are processed.

The processing method should have two parameters, the graph and the data record. When the user
initiates processing, the data view initializes the instance of the specified graph type and passes it to
the processing method while it is invoked for each data record.

The second method has the only parameter, the graph. This method is invoked once when all data
record are processed. The parameter of the method is set to the graph that was passed to the
processing method for each data record.

Syntax:

public virtual void SetProcessDelegate<Graph>(
 ProcessItemDelegate<Graph> handler,
 FinallyProcesselegate<Graph> handlerFinally)
 where Graph : PXGraph, new()

Parameters:

• handler

The delegate of the processing method.

• handlerFinally

The delegate of the method invoked when all data records are processed.

SetProcessEnabled(bool)

Enables or disables the button that processes the selected data records.

 | API Reference | 341

Syntax:

public virtual void SetProcessEnabled(bool enabled)

Parameters:

• enabled

The value indicating whether the button is enabled.

SetProcessTooltip(string)

Sets the tooltip for the button that processes the selected data records.

Syntax:

public virtual void SetProcessTooltip(string tooltip)

Parameters:

• tooltip

The string used as the tooltip.

SetProcessVisible(bool)

Displays or hides the button that processes the selected data records.

Syntax:

public virtual void SetProcessVisible(bool visible)

Parameters:

• visible

The value indicating whether the button is visible.

SetProcessed()

Sets the information message confirming that a data record has been processed successfully

Syntax:

public static bool SetProcessed()

SetSelected<Field>()

Sets the DAC field by which the user can mark data records that should be processed. The method
enables this field and disabled all other fields.

Syntax:

public virtual void SetSelected<Field>()
 where Field : IBqlField

SetWarning(string)

Sets the warning message for the processing operation.

Syntax:

public static bool SetWarning(string message)

 | API Reference | 342

Parameters:

• message

The warning message.

SetWarning(Exception)

Sets the provided exceptiona as the warning-level error of the processing operation.

Syntax:

public static bool SetWarning(Exception e)

Parameters:

• e

The exception containing warning information.

SetWarning(int, string)

Sets the warning message on the data record with the specified index.

Syntax:

public static bool SetWarning(int index, string message)

Parameters:

• index

The index of the data record to which the message is attached.

• message

The warning message.

SetWarning(int, Exception)

Attaches the provided exception as the warning-level error to the data record with the specified index.

Syntax:

public static bool SetWarning(int index, Exception e)

Parameters:

• index

The index of the data record to which the exception is attached.

• e

The exception containing warning information.

PXGraph Class
The base type that defines the common interface of business logic controllers (graphs), which you
should derive from either PXGraph<TGraph> or PXGraph<TGraph, TPrimary>.

Each webpage references a graph (through the PXDatasource control). An instance of this graph is
created and destroyed on each user's request, while the modified data records are preserved between
requests in the session.

 | API Reference | 343

Syntax

[System.Security.Permissions.ReflectionPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[System.Security.Permissions.SecurityPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[DebuggerTypeProxy(typeof(PXGraph.PXDebugView))]
public class PXGraph: IXmlSerializable

The PXGraph type exposes the following members.

Constructors

The PXGraph constructor is not called directly. To initialize a new instance of the PXGraph or PXGraph<>
class, use the CreateInstance<>() method.

Classes that derive from PXGraph<> (graphs) can define their own constructors without parameters to
perform layout configuration or configure background processing operations.

Properties

• public AccessInfo Accessinfo

Get an instance of the AccessInfo DAC, which contains some application settings of the current
user, such as the branch ID, user ID and name, webpage ID, and other settings. The fields of
this DAC can be referenced in BQL statements through the Current parameter. For example,
Current<AccessInfo.branchID>.

• public object UID

Gets or sets the uniquer identifier that is used for setting up the processing operations.

• public CultureInfo Culture

Gets or sets the culture information.

• public byte[] TimeStamp

Gets or sets the value of the global timestamp.

• public virtual bool IsDirty

Gets the value that indicates whether there are modified data records not saved to the database
in the caches related to the graph data views. If the IsDirty property of at least one cache object
is true, the IsDirty property of the graph is also true.

The following properties provide access to the collections of event handlers defined in the graph or
added at run time:

• public RowSelectingEvents RowSelecting

Gets the instance of RowSelectingEvents type that represents the collection of RowSelecting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowSelectedEvents RowSelected

Gets the instance of RowSelectedEvents type that represents the collection of RowSelected event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowInsertingEvents RowInserting

 | API Reference | 344

Gets the instance of RowInsertingEvents type that represents the collection of RowInserting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowInsertedEvents RowInserted

Gets the instance of RowInsertedEvents type that represents the collection of RowInserted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowUpdatingEvents RowUpdating

Gets the instance of RowUpdatingEvents type that represents the collection of RowUpdating event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowUpdatedEvents RowUpdated

Gets the instance of RowUpdatedEvents type that represents the collection of RowUpdated event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowDeletingEvents RowDeleting

Gets the instance of RowDeletingEvents type that represents the collection of RowDeleting event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowDeletedEvents RowDeleted

Gets the instance of RowDeletedEvents type that represents the collection of RowDeleted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public RowPersistingEvents RowPersisting

Gets the instance of RowPersistingEvents type that represents the collection of RowPersisting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

• public RowPersistedEvents RowPersisted

Gets the instance of RowPersistedEvents type that represents the collection of RowPersisted event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public CommandPreparingEvents CommandPreparing

Gets the instance of CommandPreparingEvents type that represents the collection of
CommandPreparing event handlers related to the graph. The collection initially contains the event
handlers defined in the graph, but it can be modified at run time.

• public FieldDefaultingEvents FieldDefaulting

Gets the instance of FieldDefaultingEvents type that represents the collection of FieldDefaulting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

• public FieldUpdatingEvents FieldUpdating

Gets the instance of FieldUpdatingEvents type that represents the collection of FieldUpdating
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

• public FieldVerifyingEvents FieldVerifying

 | API Reference | 345

Gets the instance of FieldVerifyingEvents type that represents the collection of FieldVerifying
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

• public FieldUpdatedEvents FieldUpdated

Gets the instance of FieldUpdatedEvents type that represents the collection of FieldUpdated event
handlers related to the graph. The collection initially contains the event handlers defined in the
graph, but it can be modified at run time.

• public FieldSelectingEvents FieldSelecting

Gets the instance of FieldSelectingEvents type that represents the collection of FieldSelecting
event handlers related to the graph. The collection initially contains the event handlers defined in
the graph, but it can be modified at run time.

• public ExceptionHandlingEvents ExceptionHandling

Gets the instance of ExceptionHandlingEvents type that represents the collection of
ExceptionHandling event handlers related to the graph. The collection initially contains the event
handlers defined in the graph, but it can be modified at run time.

Methods

Method Description

AllowDelete(string) Returns the value indicating if the cache related to the
data view allows deleting data records through the
user interface

AllowInsert(string) Returns the value indicating if the cache related to the
data view allows inserting data records through the
user interface

AllowSelect(string) Returns the value indicating if the cache related to the
data view allows selecting data records through the
user interface

AllowUpdate(string) Returns the value indicating if the cache related to the
data view allows updating data records through the
user interface

Clear() Clears the graph state stored in the session by clearing
the data from each cache

Clear(PXClearOption) Clears a part of the graph state according to the
provided option

CreateInstance(Type) Initializes a new graph instance of the specified type
and extension types if the customization exists

CreateInstance<Graph>() Initializes a new graph instance of the specified type
and extension types if the customization exists

ExecuteDelete(string, IDictionary,
IDictionary, params object[])

Deletes the data record from the cache related to the
data view by invoking the Delete(IDictionary) method
on the cache

ExecuteInsert(string, IDictionary, params
object[])

Inserts a new data record into the cache related to the
data view by invoking the Insert(IDictionary) method
on the cache

 | API Reference | 346

Method Description

ExecuteSelect(string, object[], object[],
string[], bool[], PXFilterRow[], ref int, int, ref
int)

Executes the specified data view and returns the data
records the data view selects

ExecuteUpdate(string, IDictionary,
IDictionary, params object[])

Updates a data record in the cache related to the data
view by invoking the Update(IDictionary) method on
the cache

GetAttributes(string, string) Gets all instances of attributes placed on the specified
field from the cache related to the data view

GetExtension<Extension>() Returns the instance of the graph extension of the
specified type

GetFieldNames(string) Returns the names of all fields from all DACs
referenced by the BQL command of the data view

GetItemType(string) Returns the type of the first DAC referenced by the
data view

GetKeyNames(string) Returns the names of the keys fields of the cache
related to the data view

GetParameterNames(string) Returns the names of parameters of the data view by
invoking the GetParameterNames(string) method on
the data view

GetSortColumns(string) Returns pairs of the names of the fields by which the
data view result will be sorted and values indicating if
the sort by the field is descending

GetStateExt(string, object, string) Gets the value as the PXFieldState object of the
specified field in the data record

GetStatus(string) Returns the status of the Current data record of the
cache related to the data view

GetUpdatable(string) Returns the value indicating if the data view is read-
only

GetValue(string, object, string) Gets the value of the specified field in the data record
without raising any events

GetValueExt(string, object, string) Gets the value or the PXFieldState object of the
specified field in the data record

GetViewNames() Retrieves the names of all data views defined in the
graph

HasException() Returns the value indicating if any updatable cache has
an exception

Load() Loads the state of the graph and caches from the
session

Persist() Saves the modified data records kept in the caches to
the database

Persist(Type, PXDBOperation) Saves the modifications of a particular type from the
specified cache to the database

 | API Reference | 347

Method Description

ProviderDelete(Type, params
PXDataFieldRestrict[])

Performs a database delete operation

ProviderDelete<Table>(params
PXDataFieldRestrict[])

Performs a database delete operation

ProviderEnsure(Type, PXDataFieldAssign[],
PXDataField[])

ProviderExecute(string, params
PXSPParameter[])

Executes a database stored procedure

ProviderInsert(Type, params
PXDataFieldAssign[])

Performs a database insert operation

ProviderInsert<Table>(params
PXDataFieldAssign[])

Performs a database delete operation

ProviderSelect(BqlCommand, int, params
PXDataValue[])

Selects the specified amount of top records from the
database table

ProviderSelectMulti(Type, params
PXDataField[])

Selects multiple records from the database table

ProviderSelectMulti<Table>(params
PXDataField[])

Selects multiple records from the database table

ProviderSelectSingle(Type, params
PXDataField[])

Selects a single record from the database table

ProviderSelectSingle<Table>(params
PXDataField[])

Selects a single record from the database table

ProviderUpdate(Type, params
PXDataFieldParam[])

Performs a database update operation

ProviderUpdate<Table>(params
PXDataFieldParam[])

Performs a database update operation

SelectTimeStamp() Retrieves the timestamp value from the database and
stores this value in the TimeStamp property of the
graph

SetValue(string, object, string, object) Sets the value of the field by field name in the data
record without raising any events

SetValueExt(string, object, string, object) Sets the value of the specified field in the data record

Unload() Stores the graph state and the modified data records
from all caches to the user session

UpdateRights(string) Returns a value that indicates if updating of the cache
related to the data view is allowed

Fields

• public PXCacheCollection Caches

The dictionary that maps DACs to the related cache objects. An access to the indexer [] of this
collection implicitly adds an element to the dictionary if the appropriate element does not exist.

• public readonly PXActionCollection Actions

 | API Reference | 348

The collection of actions defined in the graph.

• public PXViewCollection Views

The collection of data views defined in the graph.

• public readonly Dictionary<PXView, string> ViewNames

The dictionary that allows getting the name of the data view by the corresponding PXView object.

• public PXTypedViewCollection TypedViews

The collection of PXView objects indexed by the first DACs referenced by the corresponding BQL
commands.

• public static InstanceCreatedEvents InstanceCreated

The instance of InstanceCreatedEvents type representing the collection of InstanceCreated event
handlers.

Nested Classes

The PXGraph type includes definitions of a number of nested classes, which all represent collections
of graph event handlers of specific types. The methods of these classes can be used to modify the
collections at run time, adding and removing event handlers. Note that, depending on the type of
event, new event handlers are added to either the start or the end of the collection. Also, the collections
do not include event handlers that are defined in attributes, because attribute event handlers are
maintained by caches.

PXGraph Methods

The PXGraph type exposes the following methods.

AllowDelete(string)

Returns the value indicating if the cache related to the data view allows deleting data records through
the user interface. This flag does not affect the ability to delete a data record through code.

Syntax:

public virtual bool AllowDelete(string viewName)

Parameters:

• viewName

The name of the data view.

AllowInsert(string)

Returns the value indicating if the cache related to the data view allows inserting data records through
the user interface. This flag does not affect the ability to insert a data record through code.

Syntax:

public virtual bool AllowInsert(string viewName)

Parameters:

• viewName

The name of the data view.

 | API Reference | 349

AllowSelect(string)

Returns the value indicating if the cache related to the data view allows selecting data records through
the user interface. This flag does not affect the ability to select data records through code.

Syntax:

public virtual bool AllowSelect(string viewName)

Parameters:

• viewName

The name of the data view.

AllowUpdate(string)

Returns the value indicating if the cache related to the data view allows updating data records through
the user interface. This flag does not affect the ability to update a data record through code.

Syntax:

public virtual bool AllowUpdate(string viewName)

Parameters:

• viewName

The name of the data view.

Clear()

Clears the graph state stored in the session by clearing the data from each cache.

Syntax:

public virtual void Clear()

Clear(PXClearOption)

Clears a part of the graph state according to the provided option.

Syntax:

public virtual void Clear(PXClearOption option)

Parameters:

• option

The value of PXClearOption type that specifies which data to clear.

CreateInstance(Type)

Initializes a new graph instance of the specified type and extension types if the customization exists.
This method provides a preferred way of initializing a graph.

Syntax:

public static PXGraph CreateInstance(Type graphType)

Parameters:

• graphType

 | API Reference | 350

A type derived from PXGraph.

CreateInstance<Graph>()

Initializes a new graph instance of the specified type and extension types if the customization exists.
This method provides a preferred way of initializing a graph. The graph type is specified in the type
parameter.

Syntax:

public static Graph CreateInstance<Graph>()
 where Graph : PXGraph, new()

Examples:

The code below initializes an instance of the JournalEntry graph.

JournalEntry graph = PXGraph.CreateInstance<JournalEntry>();

ExecuteDelete(string, IDictionary, IDictionary, params object[])

Deletes the data record from the cache related to the data view by invoking the Delete(IDictionary)
method on the cache. Returns 1 in case of successful deletion and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int ExecuteDelete(string viewName, IDictionary keys, IDictionary
 values, params object[] parameters)

Parameters:

• viewName

The name of the data view.

• keys

The keys that identify the data record.

• values

The values of the data record fields.

ExecuteInsert(string, IDictionary, params object[])

Inserts a new data record into the cache related to the data view by invoking the Insert(IDictionary)
method on the cache. Returns 1 in case of successful insertion and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int ExecuteInsert(string viewName, IDictionary values, params
 object[] parameters)

Parameters:

• viewName

The name of the data view.

• values

The values to populates the data record fields .

 | API Reference | 351

ExecuteSelect(string, object[], object[], string[], bool[], PXFilterRow[], ref int, int, ref int)

Executes the specified data view and returns the data records the data view selects.

The method raises the RowSelected event for each retrieved data record and sets the Current property
of the cache to the last data record retrieved.

The method is used by the user interface. The application code does not typically need to use this
method and selects the data directly through the data views.

Syntax:

public virtual IEnumerable ExecuteSelect(
 string viewName, object[] parameters,
 object[] searches, string[] sortcolumns,
 bool[] descendings, PXFilterRow[] filters,
 ref int startRow, int maximumRows, ref int totalRows)

Parameters:

• viewName

The name of the data view.

• parameters

Parameters for the BQL command.

• searches

The values by which the data is filtered.

• sortcolumns

The fields by which the if sorted and filtered (the filtering values are provided in the searches
parameter)

• (ref) startRow

The index of the data record to start retreiving with (after filtering by the searches parameter).

• maximumRows

The maximum number of data records to retrieve.

• (ref) totalRows

The total amount of data records in the resultset.

ExecuteUpdate(string, IDictionary, IDictionary, params object[])

Updates a data record in the cache related to the data view by invoking the Update(IDictionary) method
on the cache. Returns 1 in case of successful update and 0 otherwise.

The method is used by the user interface.

Syntax:

public virtual int ExecuteUpdate(string viewName, IDictionary keys, IDictionary
 values, params object[] parameters)

Parameters:

• viewName

The name of the data view.

• keys

The keys that identify the data record.

 | API Reference | 352

• values

The new values of the data record fields.

GetAttributes(string, string)

Gets all instances of attributes placed on the specified field from the cache related to the data view. The
method relies on the GetAttributes(string) method of the cache.

Syntax:

public PXEventSubscriberAttribute[] GetAttributes(string viewName, string name)

Parameters:

• viewName

The name of the data view.

• name

The name of the field whose attributes are returned. If null, the attributes from all fields are
returned.

GetExtension<Extension>()

Returns the instance of the graph extension of the specified type. The type of the extension is specified
in the type parameter.

Syntax:

public virtual Extension GetExtension<Extension>()
 where Extension : PXGraphExtension

Examples:

An extension of a graph is a class that derives from the PXGraphExtension<> type. The example below
shows the definition of an extension on the InventoryItemMaint graph.

public class InventoryItemMaintExtension :
 PXGraphExtension<InventoryItemMaint>
{
 public void SomeMethod()
 {
 // The Base variable references the instance of InventoryItemMaint
 InventoryItemMaintExtension ext =
 Base.GetExtension<InventoryItemMaintExtension>();
 ...
 }
}

GetFieldNames(string)

Returns the names of all fields from all DACs referenced by the BQL command of the data view.

Syntax:

public string[] GetFieldNames(string viewName)

Parameters:

• viewName

The name of the data view.

 | API Reference | 353

GetItemType(string)

Returns the type of the first DAC referenced by the data view.

Syntax:

public Type GetItemType(string viewName)

Parameters:

• viewName

The name of the data view.

GetKeyNames(string)

Returns the names of the keys fields of the cache related to the data view.

Syntax:

public string[] GetKeyNames(string viewName)

Parameters:

• viewName

The name of the data view.

GetParameterNames(string)

Returns the names of parameters of the data view by invoking the GetParameterNames(string) method
on the data view.

Syntax:

public string[] GetParameterNames(string viewName)

Parameters:

• viewName

The name of the data view.

GetSortColumns(string)

Returns pairs of the names of the fields by which the data view result will be sorted and values
indicating if the sort by the field is descending.

Syntax:

public virtual KeyValuePair<string, bool>[] GetSortColumns(string viewName)

Parameters:

• viewName

The name of the data view.

GetStateExt(string, object, string)

Gets the value as the PXFieldState object of the specified field in the data record. The method relies
on the GetStateExt(object, string) method of the cache.

 | API Reference | 354

Syntax:

public virtual object GetStateExt(string viewName, object data, string fieldName)

Parameters:

• viewName

The name of the data view.

• data

The data record from the cache related to the data view.

• fieldName

The name of the field whose state is returned.

GetStatus(string)

Returns the status of the Current data record of the cache related to the data view. If the Current
property of the cache is null, the method returns the Notchanged status.

Syntax:

public PXEntryStatus GetStatus(string viewName)

Parameters:

• viewName

The name of the data view.

GetUpdatable(string)

Returns the value indicating if the data view is read-only.

Syntax:

public virtual bool GetUpdatable(string viewName)

Parameters:

• viewName

The name of the data view.

GetValue(string, object, string)

Gets the value of the specified field in the data record without raising any events. The method relies on
the GetValue(object, string) method of the cache related to the data view.

Syntax:

public virtual object GetValue(string viewName, object data, string fieldName)

Parameters:

• viewName

The name of the data view.

• data

The data record from the cache related to the data view.

• fieldName

 | API Reference | 355

The name of the field whose value is returned.

GetValueExt(string, object, string)

Gets the value or the PXFieldState object of the specified field in the data record. The method relies
on the GetValueExt(object, string) method of the cache related to the data view.

Syntax:

public virtual object GetValueExt(string viewName, object data, string fieldName)

Parameters:

• viewName

The name of the data view.

• data

The data record from the cache related to the data view.

• fieldName

The name of the field whose value or state is returned.

GetViewNames()

Retrieves the names of all data views defined in the graph.

Syntax:

public virtual IEnumerable<string> GetViewNames()

HasException()

Returns the value indicating if any updatable cache has an exception.

Syntax:

public bool HasException()

Load()

Loads the state of the graph and caches from the session.

The state is stored in the session through the Unload() method.

Syntax:

public virtual void Load()

Persist()

Saves the modified data records kept in the caches to the database.

All data records are saved within a single transaction context. The method takes into account only the
caches from Views.Caches collection.

The method saves the data records in the following order:

1. Data records with the Inserted status from all caches.

2. Data records with the Updated status from all caches.

3. Data records with the Deleted status from all caches.

 | API Reference | 356

Syntax:

public virtual void Persist()

Remarks:

The application does not typically saves the changes through this method directly. The preferred way
of saving the changes to the database is to executed Actions.PressSave() on the graph. The
PressSave() method of the Actions collection is invokes the Persist() method on the graph and
performs additional procedures.

Persist(Type, PXDBOperation)

Saves the modifications of a particular type from the specified cache to the database. The method relise
on the Persist(PXDBOperation) method of the cache.

Syntax:

public virtual int Persist(Type cacheType, PXDBOperation operation)

Parameters:

• cacheType

The DAC type of the cache whose changes are saved.

ProviderDelete(Type, params PXDataFieldRestrict[])

Performs a database delete operation.

Syntax:

public virtual bool ProviderDelete(Type table, params PXDataFieldRestrict[] pars)

Parameters:

• table

The DAC representing the table whose records are deleted.

• pars

The parameters.

ProviderDelete<Table>(params PXDataFieldRestrict[])

Performs a database delete operation. The table is specified as the DAC through the type parameter.

Syntax:

public virtual bool ProviderDelete<Table>(params PXDataFieldRestrict[] pars)
 where Table : IBqlTable

Parameters:

• pars

The parameters.

ProviderEnsure(Type, PXDataFieldAssign[], PXDataField[])

Syntax:

public virtual bool ProviderEnsure(Type table, PXDataFieldAssign[] values,

 | API Reference | 357

 PXDataField[] pars)

Parameters:

• table

The DAC representing the table.

• values

The values.

• pars

The parameters.

ProviderExecute(string, params PXSPParameter[])

Executes a database stored procedure.

Syntax:

public virtual object[] ProviderExecute(string procedureName,
 params PXSPParameter[] pars)

Parameters:

• procedureName

The name of the stored procedure to execute.

• pars

The parameters.

ProviderInsert(Type, params PXDataFieldAssign[])

Performs a database insert operation.

Syntax:

public virtual bool ProviderInsert(Type table, params PXDataFieldAssign[] pars)

Parameters:

• table

The DAC representing the table to which the data records are inserted.

• pars

The parameters.

ProviderInsert<Table>(params PXDataFieldAssign[])

Performs a database delete operation. The table is specified as the DAC through the type parameter.

Syntax:

public virtual bool ProviderInsert<Table>(params PXDataFieldAssign[] pars)
 where Table : IBqlTable

Parameters:

• pars

The parameters.

 | API Reference | 358

ProviderSelect(BqlCommand, int, params PXDataValue[])

Selects the specified amount of top records from the database table.

Syntax:

public virtual IEnumerable<PXDataRecord> ProviderSelect(
 BqlCommand command, int topCount, params PXDataValue[] pars)

Parameters:

• command

The BQL command defining the select query to execute.

• topCount

The number of the data record to retreive from the top of the data set.

• pars

The parameters.

ProviderSelectMulti(Type, params PXDataField[])

Selects multiple records from the database table.

Syntax:

public virtual IEnumerable<PXDataRecord> ProviderSelectMulti(
 Type table, params PXDataField[] pars)

Parameters:

• table

The DAC representing the table from which the data records are selected.

• pars

The parameters.

ProviderSelectMulti<Table>(params PXDataField[])

Selects multiple records from the database table. The table is specified as the DAC through the type
parameter.

Syntax:

public virtual IEnumerable<PXDataRecord> ProviderSelectMulti<Table>(
 params PXDataField[] pars)
 where Table : IBqlTable

Parameters:

• pars

The parameters.

ProviderSelectSingle(Type, params PXDataField[])

Selects a single record from the database table.

Syntax:

public virtual PXDataRecord ProviderSelectSingle(Type table,
 params PXDataField[] pars)

 | API Reference | 359

Parameters:

• table

The DAC representing the table from which the data record is selected.

• pars

The parameters.

ProviderSelectSingle<Table>(params PXDataField[])

Selects a single record from the database table. The table is specified as the DAC through the type
parameter.

Syntax:

public virtual PXDataRecord ProviderSelectSingle<Table>(params PXDataField[] pars)
 where Table : IBqlTable

Parameters:

• pars

The parameters.

ProviderUpdate(Type, params PXDataFieldParam[])

Performs a database update operation.

Syntax:

public virtual bool ProviderUpdate(Type table, params PXDataFieldParam[] pars)

Parameters:

• table

The DAC representing the table from where the data records are updated.

• pars

The parameters.

ProviderUpdate<Table>(params PXDataFieldParam[])

Performs a database update operation. The table is specified as the DAC through the type parameter.

Syntax:

public virtual bool ProviderUpdate<Table>(params PXDataFieldParam[] pars)
 where Table : IBqlTable

Parameters:

• pars

The parameters.

SelectTimeStamp()

Retrieves the timestamp value from the database and stores this value in the TimeStamp property of
the graph.

 | API Reference | 360

Syntax:

public virtual void SelectTimeStamp()

SetValue(string, object, string, object)

Sets the value of the field by field name in the data record without raising any events. The method
relies on the SetValue(object, string, object) method of the cache related to the data view.

Syntax:

public virtual void SetValue(string viewName, object data,
 string fieldName, object value)

Parameters:

• viewName

The name of the data view.

• data

The data record to update.

• fieldName

The name of the field to update.

• value

The new value for the field.

SetValueExt(string, object, string, object)

Sets the value of the specified field in the data record. The method relies on the SetValueExt(object,
string, object) method of the cache related to the data view.

Syntax:

public virtual void SetValueExt(string viewName, object data,
 string fieldName, object value)

Parameters:

• viewName

The name of the data view.

• data

The data record to update as an instance of the DAC or IDictionary of field names and field
values.

• fieldName

The name of the field to update.

• value

The new value for the field.

Unload()

Stores the graph state and the modified data records from all caches to the user session.

 | API Reference | 361

Syntax:

public virtual void Unload()

Remarks:

The instance of the graph is destroyed at the end of the each callback. To preserve user data not saved
in the database between callbacks, the caches of modified data record are serialized to the session
using this method.

UpdateRights(string)

Returns a value that indicates if updating of the cache related to the data view is allowed.

Syntax:

public virtual bool UpdateRights(string viewName)

Parameters:

• viewName

The name of the data view.

PXClearOption Enumeration

Defines possible options of clearing the graph data through the Clear(PXClearOption) method.

Members

• PreserveData

Data records are preserved.

• PreserveTimeStamp

The timestamp is preserved.

• PreserveQueries

The query cache is preserved.

• ClearAll

Everything is removed.

• ClearQueriesOnly

Only the query cache is cleared.

PXGraph Nested Classes

The PXGraph type exposes the following nested classes.

InstanceCreatedEvents Class

Represents the colection of InstanceCreated event handlers, which are invoked when a new instance
of the graph is initialized.

Syntax:

public sealed class InstanceCreatedEvents
 where TGraph : PXGraph

Methods:

• public void AddHandler<TGraph>(InstanceCreatedDelegate<TGraph> del)

 | API Reference | 362

Adds the provided handler to the collection for the specified graph type.

• public void RemoveHandler<TGraph>(InstanceCreatedDelegate<TGraph> del)

Removes the provided handler from the collection for the specified graph type.

RowSelectingEvents Class

Represents the collections of RowSelecting event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class RowSelectingEvents

Constructors:

• public RowSelectingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowSelecting handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowSelecting handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowSelecting handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowSelecting handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowSelecting handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowSelecting handler)

Removes the event handler from the collection related to the specified DAC.

RowSelectedEvents Class

Represents the collection of RowSelected event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowSelectedEvents

Constructors:

• public RowSelectedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowSelected handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowSelected handler)

 | API Reference | 363

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowSelected handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowSelected handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowSelected handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowSelected handler)

Removes the event handler from the collection related to the specified DAC.

RowInsertingEvents Class

Represents the collection of RowInserting event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class RowInsertingEvents

Constructors:

• public RowInsertingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowInserting handler)

Adds the event handler to the beginning of the collection for the primary DAC of the data view.

• public void RemoveHandler(string view, PXRowInserting handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowInserting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowInserting handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowInserting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowInserting handler)

Removes the event handler from the collection related to the specified DAC.

RowInsertedEvents Class

Represents the collection of RowInserted event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowInsertedEvents

Constructors:

 | API Reference | 364

• public RowInsertedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowInserted handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowInserted handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowInserted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowInserted handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowInserted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowInserted handler)

Removes the event handler from the collection related to the specified DAC.

RowUpdatingEvents Class

Represents the collection of RowUpdating event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowUpdatingEvents

Constructors:

• public RowUpdatingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowUpdating handler)

Adds the event handler to the beginning of the collection for the primary DAC of the data view.

• public void RemoveHandler(string view, PXRowUpdating handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowUpdating handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowUpdating handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowUpdating handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowUpdating handler)

Removes the event handler from the collection related to the specified DAC.

 | API Reference | 365

RowUpdatedEvents Class

Represents the collection of RowUpdated event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowUpdatedEvents

Constructors:

• public RowUpdatedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowUpdated handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowUpdated handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowUpdated handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowUpdated handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowUpdated handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowUpdated handler)

Removes the event handler from the collection related to the specified DAC.

RowDeletingEvents Class

Represents the collection of RowDeleting event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowDeletingEvents

Constructors:

• public RowDeletingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowDeleting handler)

Adds the event handler to the beginning of the collection for the primary DAC of the data view.

• public void RemoveHandler(string view, PXRowDeleting handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowDeleting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowDeleting handler)

 | API Reference | 366

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowDeleting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowDeleting handler)

Removes the event handler from the collection related to the specified DAC.

RowDeletedEvents Class

Represents the collection of RowDeleted event handlers declared as methods in the graph or added at
run time.

Syntax:

public sealed class RowDeletedEvents

Constructors:

• public RowDeletedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowDeleted handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowDeleted handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowDeleted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowDeleted handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowDeleted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowDeleted handler)

Removes the event handler from the collection related to the specified DAC.

RowPersistingEvents Class

Represents the collection of RowPersisting event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class RowPersistingEvents

Constructors:

• public RowPersistingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowPersisting handler)

 | API Reference | 367

Adds the event handler to the beginning of the collection for the primary DAC of the data view.

• public void RemoveHandler(string view, PXRowPersisting handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowPersisting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowPersisting handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowPersisting handler)

Adds the event handler to the beginning of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowPersisting handler)

Removes the event handler from the collection related to the specified DAC.

RowPersistedEvents Class

Represents the collection of RowPersisted event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class RowPersistedEvents

Constructors:

• public RowPersistedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, PXRowPersisted handler)

Adds the event handler to the end of the collection for the primary DAC of the specified data view.

• public void RemoveHandler(string view, PXRowPersisted handler)

Removes the event handler from the collection related to the primary DAC of the data view.

• public void AddHandler<Type>(PXRowPersisted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler<Type>(PXRowPersisted handler)

Removes the event handler from the collection related to the specified DAC.

• public void AddHandler(Type type, PXRowPersisted handler)

Adds the event handler to the end of the collection for the specified DAC.

• public void RemoveHandler(Type type, PXRowPersisted handler)

Removes the event handler from the collection related to the specified DAC.

CommandPreparingEvents Class

Represents the collection of CommandPreparing event handlers declared as methods in the graph or
added at run time.

 | API Reference | 368

Syntax:

public sealed class CommandPreparingEvents

Constructors:

• public CommandPreparingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXCommandPreparing
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

• public void RemoveHandler(string view, string field, PXCommandPreparing
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXCommandPreparing handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXCommandPreparing handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXCommandPreparing
handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXCommandPreparing
handler)

Removes the event handler from the collection related to the specified DAC field.

FieldDefaultingEvents Class

Represents the collection of FieldDefaulting event handlers declared as methods in the graph or
added at run time.

Syntax:

public sealed class FieldDefaultingEvents

Constructors:

• public FieldDefaultingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXFieldDefaulting
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

• public void RemoveHandler(string view, string field, PXFieldDefaulting
handler)

 | API Reference | 369

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXFieldDefaulting handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXFieldDefaulting handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXFieldDefaulting
handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXFieldDefaulting
handler)

Removes the event handler from the collection related to the specified DAC field.

FieldUpdatingEvents Class

Represents the collection of FieldUpdating event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class FieldUpdatingEvents

Constructors:

• public FieldUpdatingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXFieldUpdating
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

• public void RemoveHandler(string view, string field, PXFieldUpdating
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXFieldUpdating handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXFieldUpdating handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXFieldUpdating handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXFieldUpdating
handler)

Removes the event handler from the collection related to the specified DAC field.

 | API Reference | 370

FieldUpdatedEvents Class

Represents the collection of FieldUpdated event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class FieldUpdatedEvents

Constructors:

• public FieldUpdatedEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXFieldUpdated
handler)

Adds the event handler to the end of the collection for the specified field defined in the primary
DAC of the data view.

• public void RemoveHandler(string view, string field, PXFieldUpdated
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXFieldUpdated handler)

Adds the event handler to the end of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXFieldUpdated handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXFieldUpdated handler)

Adds the event handler to the end of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXFieldUpdated
handler)

Removes the event handler from the collection related to the specified DAC field.

FieldSelectingEvents Class

Represents the collection of FieldSelecting event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class FieldSelectingEvents

Constructors:

• public FieldSelectingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXFieldSelecting
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

 | API Reference | 371

• public void RemoveHandler(string view, string field, PXFieldSelecting
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXFieldSelecting handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXFieldSelecting handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXFieldSelecting
handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXFieldSelecting
handler)

Removes the event handler from the collection related to the specified DAC field.

ExceptionHandlingEvents Class

Represents the collection of ExceptionHandling event handlers declared as methods in the graph or
added at run time.

Syntax:

public sealed class ExceptionHandlingEvents

Constructors:

• public ExceptionHandlingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXExceptionHandling
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

• public void RemoveHandler(string view, string field, PXExceptionHandling
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXExceptionHandling handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXExceptionHandling handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXExceptionHandling
handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXExceptionHandling
handler)

 | API Reference | 372

Removes the event handler from the collection related to the specified DAC field.

FieldVerifyingEvents Class

Represents the collection of FieldVerifying event handlers declared as methods in the graph or added
at run time.

Syntax:

public sealed class FieldVerifyingEvents

Constructors:

• public FieldVerifyingEvents(PXGraph graph)

Initializes an instance and binds it to the provided graph.

Methods:

• public void AddHandler(string view, string field, PXFieldVerifying
handler)

Adds the event handler to the beginning of the collection for the specified field defined in the
primary DAC of the data view.

• public void RemoveHandler(string view, string field, PXFieldVerifying
handler)

Removes the event handler from the collection related to the specified field defined in the primary
DAC of the data view.

• public void AddHandler<Field>(PXFieldVerifying handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler<Field>(PXFieldVerifying handler)

Removes the event handler from the collection related to the specified DAC field.

• public void AddHandler(Type type, string field, PXFieldVerifying
handler)

Adds the event handler to the beginning of the collection for the specified DAC field.

• public void RemoveHandler(Type type, string field, PXFieldVerifying
handler)

Removes the event handler from the collection related to the specified DAC field.

PXGraph<TGraph> Class

The type that is used to derive business logic controllers (graphs) in the application.

This type extends the PXGraph type with the ability to automatically initialize data views, actions, and
event handlers that are defined as members in the current graph or in its base graphs.

Inheritance Hierarchy

PXGraph

Syntax

[System.Security.Permissions.ReflectionPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[System.Security.Permissions.SecurityPermission(

 | API Reference | 373

 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
public class PXGraph<TGraph> : PXGraph
 where TGraph : PXGraph

Remarks

In a graph, you can define the following members:

• Data views as objects of the PXSelect<> type or its variant. The type of a data view is the BQL
expression which can be executed by invoking the Select() or Search() methods.

• Actions as objects of the PXAction type and paired by the implementation method.

• Event handlers.

For a data view you can also define the optional method that will be executed by the Select() method to
retrieve the data instead of the standard logic of retreiving the data.

Data views and actions must be declared as public. When you declare data views and actions, you do
not initialize them. The graph initializes them automatically. The PXView objects initialized by the data
views are available through the Views collection of the graph. The actions are available through the
Actions collection of the graph.

Event handlers and methods can be declared as public, protected, or internal. The protected
virtual is the recommended modifier. Event handlers of particular type are available through the
corresponding collections.

You can derive a graph from the PXGraph<TGraph, TPrimary> type to add pre-defined actions to the
graph.

Examples

The code below declares a graph.

public class ARDocumentEnq : PXGraph<ARDocumentEnq>
{
}

The type parameter is set to the graph itself.

The code below declares a graph with a data view, an action, and an event handler.

public class ARDocumentEnq : PXGraph<ARDocumentEnq>
{
 // The data view declaration
 public PXSelectOrderBy<ARDocumentResult,
 OrderBy<Desc<ARDocumentResult.docDate>>> Documents;

 // The action declaration
 public PXAction<ARDocumentFilter> previousPeriod;
 [PXUIField(DisplayName = "Prev")]
 [PXPreviousButton]
 public virtual IEnumerable PreviousPeriod(PXAdapter adapter)
 {
 ...
 }

 // The event handler declaration
 public virtual void ARDocumentFilter_RowSelected(
 PXCache cache, PXRowSelectedEventArgs e)
 {
 ...
 }
}

 | API Reference | 374

PXGraph<TGraph, TPrimary> Class

The same as PXGraph<TGraph> but appends the following standard actions for the provided DAC:
Save, Insert, Edit, Delete, Cancel, Prev, Next, First, Last. The DAC is specified in the second type
parameter.

See Remarks for more details.

Inheritance Hierarchy

PXGraph

Syntax

[System.Security.Permissions.ReflectionPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[System.Security.Permissions.SecurityPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
public class PXGraph<TGraph, TPrimary> : PXGraph
 where TGraph : PXGraph
 where TPrimary : class, IBqlTable, new()

The PXGraph<TGraph, TPrimary> type exposes the following members.

Fields

• public PXSave<TPrimary> Save

The action that saves changes stored in the caches to the database. The code of an application
graph typically saves changes through this action as well. To invoke it from code, use the
PressSave() method of the Actions property.

• public PXCancel<TPrimary> Cancel

The action that discard changes to the data from the caches.

• public PXInsert<TPrimary> Insert

The action that inserts a new data record into the primary cache.

• public PXCopyPasteAction<TPrimary> CopyPaste

The action that is represented on the user interface by an expandable menu that includes Copy
and Paste items.

• public PXDelete<TPrimary> Delete

The action that deletes the Current data record of the primary cache.

• public PXFirst<TPrimary> First

The action that navigates to the first data record in the primary data view. The data record is set
to the Current property of the primary cache.

• public PXPrevious<TPrimary> Previous

The action that navigates to the previous data record in the primary data view. The data record is
set to the Current property of the primary cache.

• public PXNext<TPrimary> Next

The action that navigates to the next data record in the primary data view. The data record is set
to the Current property of the primary cache.

 | API Reference | 375

• public PXLast<TPrimary> Last

The action that navigates to the last data record in the primary data view. The data record is set
to the Current property of the primary cache.

Examples

The code below declares a graph that includes a pre-defined set of actions for the Contact DAC.

public class ContactMaint : PXGraph<ContactMaint, Contact>
{
 ...
}

If a webpage is bound to this graph, the webpage toolbar will include the action buttons, which may be
used to save, insert, delete, and navigate to Contact data records selected by the primary data view
(the data view defined first).

PXView Class
A controller that executes the BQL command and implements interfaces for sorting, searching, merging
data with the cached changes, and caching the result set.

Syntax

[System.Security.Permissions.ReflectionPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
[System.Security.Permissions.SecurityPermission(
 System.Security.Permissions.SecurityAction.Assert,
 Unrestricted = true)]
public class PXView

The PXView type exposes the following members.

Constructors

Constructor Description

PXView(PXGraph, bool, BqlCommand) Initializes an instance for executing the BQL command.

PXView(PXGraph, bool, BqlCommand,
Delegate)

Initializes an instance for executing the BQL command
using the provided method to retrieve data.

Properties

• public virtual PXGraph Graph

Gets or sets the parent business object.

• public virtual bool IsReadOnly

Gets or sets the value that indicates whether placing retrieved data records into the cache and
merging them with the cache are allowed.

• public Delegate BqlDelegate

Gets the delegate representing the method (called optional method in this reference) which is
invoked by the Select(...) method to retrieve the data. If this method is provided to the PXView
object, the Select(...) method doesn't retrieve data from the database and returns the result
returned by the optional method.

• public virtual PXCache Cache

 | API Reference | 376

Gets the cache corresponding to the first DAC mentioned in the BQL command.

• public virtual BqlCommand BqlSelect

Gets the underlying BQL command. If the current PXView object is associated with a variant of
PXSelect<> object, the BQL command type has the the same type parameters as the type of this
object, so it represents the same SQL query.

• public virtual Type BqlTarget

Gets the class that defines the optional method of a data view. Typically, this class is the graph
that defines both the data view and its optional method. The optional method is the method
represented by BqlDelegate. When a data view is defined as a member of a graph.

• public WebDialogResult Answer

Gets or sets the value indicating user's choice in the dialog window displayed through one of the
Ask() methods.

The following static properties can be used in the optional method of the data view. The properties
return the parameters passed to the currently executed Select(...) method.

• public static string[] SortColumns

Gets the names of the fields passed to the Select(...) method to filter and sort the data set.

• public static bool[] Descendings

Gets the values passed to the Select(...) method to indicate whether ordering by the sort
columns should be descending or ascending.

• public static object[] Searches

Gets the values passed to the Select(...) method to filter the data set by them.

• public static PXGraph CurrentGraph

Gets the graph within which the Select(...) method was invoked.

• public static PXFilterRowCollection Filters

Gets the filtering conditions originated on the user interface and passed to the Select(...)
method.

• public static object[] Currents

Gets the current data records passed to the Select(...) method to process the Current and
Optional parameters.

• public static object[] Parameters

Gets the values passed to the Select(...) method to process such parameters as Required,
Optional, and Argument, and pre-processed by the Select(...) method.

• public static int StartRow

Gets or sets the value passed to the Select(...) method as the index of the first data record to
retrieve.

• public static int MaximumRows

Gets the value passed to the Select(...) method as the number of data records to retrieve.

• public static bool ReverseOrder

Gets the value indicating whether a negative value was passed as the index of the first data
record to retrieve.

 | API Reference | 377

Methods

Method Description

AppendTail(object, List<object>, params
object[])

Selects the data records joined with the provided data
record by the underlying BQL command

Ask(string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons) Displays the dialog window with single or multiple
choices for the user

Ask(string, MessageButtons, bool) Displays the dialog window with single or multiple
choices for the user

Ask(string, string, MessageButtons, bool) Displays the dialog window with single or multiple
choices for the user

AskExt() Displays the dialog window configured by the
PXSmartPanel control

AskExt(string) Displays the dialog window configured by the
PXSmartPanel control

AskExt(bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(InitializePanel) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, InitializePanel) Displays the dialog window configured by the
PXSmartPanel control

AskExt(InitializePanel, bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(string, InitializePanel, bool) Displays the dialog window configured by the
PXSmartPanel control

AskExt(PXGraph, string, string,
InitializePanel)

Displays the dialog window configured by the
PXSmartPanel control

Clear() Clears the results of BQL statement execution

ClearDialog() Clears the dialog information saved by the graph on
last invocation of the Ask() method

DetachCache() Initialize a new cache for storing the results of BQL
statement execution

EnumParameters() Returns the information on the fields referenced
by BQL parameters and parameters of the optional
method, if it is defined for the data view

FieldGetValue(PXCache, object, Type, string) Gets the value of the specified field in the data record
from the cache

Filter(IEnumerable)

 | API Reference | 378

Method Description

GetAnswer(string) Returns the result of the dialog window that was
opened through one of the Ask() methods and saved
in the PXView object

GetItemType() Returns the DAC type of the primary cache; that is,
the first DAC referenced in the BQL command

GetItemTypes() Returns all DAC types referenced in the BQL command

GetParameterNames() Returns the names of the fields referenced by BQL
parameters and the names of parameters of the
optional method, if it is defined

GetSortColumns() Returns pairs of the names of the fields by which the
data view result will be sorted and values indicating if
the sort by the field is descending

Join(Type) Appends the provided join clause to the BQL command

Join<join>() Appends the provided join clause to the BQL command

OrderByNew(Type) Replaces the sorting expression with the new sorting
expression

OrderByNew<newOrderBy>() Replaces the sorting expression with the new sorting
expression

PrepareParameters(object[], object[]) Prepares parameters, formats input values, gets
default values for the hidden and not supplied
parameters

RequestRefresh() Raises the RequestRefresh event defined within the
PXView object

Select(object[], object[], object[], string[],
bool[], PXFilterRow[], ref int, int, ref int)

Executes the BQL command and returns the result set

SelectMulti(params object[]) Retrieves the whole data set corresponding to the BQL
command

SelectMultiBound(object[], params object[]) Retrieves the whole data set corresponding to the BQL
command

SelectSingle(params object[]) Retrieves the top data record from the data set
corresponding to the BQL command

SelectSingleBound(object[], params object[]) Retrieves the top data record from the data set
corresponding to the BQL command

SetAnswer(string, WebDialogResult) Saves the result of the dialog window

SetAnswer(PXGraph, string, string,
WebDialogResult)

Saves the result of the dialog window

Sort(IEnumerable) Sort the provided collection of PXResult<> instances
by the conditions currenlty stored in the PXView
context

ToString() Returns the string with the SQL query corresponding to
the underlying BQL command

 | API Reference | 379

Method Description

WhereAnd(Type) Appends a filtering expression to the underlying BQL
command via the logical "and"

WhereAnd<TWhere>() Appends a filtering expression to the underlying BQL
command via the logical "and"

WhereNew(Type) Replaces the filtering expression in the BQL statement

WhereNew<newWhere>() Replaces the filtering expression in the BQL statement

WhereNot() Adds logical "not" to the whole Where clause of the
BQL statement, reversing the condition to the opposite

WhereOr(Type) Appends a filtering expression to the BQL statement
via the logical "or"

WhereOr<TWhere>() Appends a filtering expression to the BQL statement
via the logical "or"

PXView Constructors

The PXView type exposes the following constructors.

PXView(PXGraph, bool, BqlCommand)

Initializes an instance for executing the BQL command.

Syntax:

public PXView(PXGraph graph, bool isReadOnly, BqlCommand select)

Parameters:

• graph

The graph with which the instance is associated.

• isReadOnly

The value that indicates if updating the cache and merging data with the cache are allowed.

• select

The BQL command as an instance of the type derived from the BqlCommand class.

PXView(PXGraph, bool, BqlCommand, Delegate)

Initializes an instance for executing the BQL command using the provided method to retrieve data.

Syntax:

public PXView(PXGraph graph, bool isReadOnly, BqlCommand select, Delegate handler) :
 this(graph, isReadOnly, select)

Parameters:

• graph

The graph with which the instance is associated.

• isReadOnly

The value that indicates if updating the cache and merging data with the cache are allowed.

• select

 | API Reference | 380

The BQL command as an instance of the type derived from the BqlCommand class.

• handler

Either PXPrepareDelegate or PXSelectDelegate.

PXView Methods

The PXView type exposes the following methods.

AppendTail(object, List<object>, params object[])

Selects the data records joined with the provided data record by the underlying BQL command.

Syntax:

public virtual void AppendTail(object item, List<object> list,
 params object[] parameters)

Parameters:

• item

First data item.

• parameters

Parameters.

Returns:

The first item plus joined rows.

Ask(string, MessageButtons)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string message, MessageButtons buttons)

Parameters:

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, string, MessageButtons)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string message,
 MessageButtons buttons)

Parameters:

• key

The identifier of the panel to display.

• message

 | API Reference | 381

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

Ask(string, MessageButtons, bool)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string message, MessageButtons buttons,
 bool refreshRequired)

Parameters:

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

Ask(string, string, MessageButtons, bool)

Displays the dialog window with single or multiple choices for the user.

Syntax:

public WebDialogResult Ask(string key, string message,
 MessageButtons buttons, bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• message

The string displayed as the message inside the dialog window.

• buttons

The value from the MessageButtons enumeration that indicates which set of buttons to display in
the dialog window.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt()

Displays the dialog window configured by the PXSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement. The method requests repainting of the panel.

 | API Reference | 382

Syntax:

public WebDialogResult AskExt()

AskExt(string)

Displays the dialog window configured by the PXSmartPanel control. The method requests repainting of
the panel.

Syntax:

public WebDialogResult AskExt(string key)

Parameters:

• key

The identifier of the panel to display.

AskExt(bool)

Displays the dialog window configured by the PXSmartPanel control. As a key, the method uses the
name of the variable that holds the BQL statement.

Syntax:

public WebDialogResult AskExt(bool refreshRequired)

Parameters:

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(InitializePanel)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(InitializePanel initializeHandler)

Parameters:

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(string, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key, bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• refreshRequired

 | API Reference | 383

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, InitializePanel)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key, InitializePanel initializeHandler)

Parameters:

• key

The identifier of the panel to display.

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

AskExt(InitializePanel, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(InitializePanel initializeHandler,
 bool refreshRequired)

Parameters:

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

AskExt(string, InitializePanel, bool)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public WebDialogResult AskExt(string key,
 InitializePanel initializeHandler,
 bool refreshRequired)

Parameters:

• key

The identifier of the panel to display.

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

• refreshRequired

The value that indicates whether the dialog should be repainted or displayed as it was cached. If
true, the dialog is repainted.

 | API Reference | 384

AskExt(PXGraph, string, string, InitializePanel)

Displays the dialog window configured by the PXSmartPanel control.

Syntax:

public static WebDialogResult AskExt(PXGraph graph, string viewName,
 string key,
 InitializePanel initializeHandler)

Parameters:

• graph

The graph where the data view is defined.

• viewName

The name of the data view with which the dialog is associated.

• key

The identifier of the panel to display.

• initializeHandler

The delegate of the method that is called before the dialog is displayed.

Clear()

Clears the results of BQL statement execution.

Syntax:

public virtual void Clear()

ClearDialog()

Clears the dialog information saved by the graph on last invocation of the Ask() method.

Syntax:

public void ClearDialog()

DetachCache()

Initialize a new cache for storing the results of BQL statement execution.

Syntax:

public void DetachCache()

EnumParameters()

Returns the information on the fields referenced by BQL parameters and parameters of the optional
method, if it is defined for the data view.

Syntax:

public virtual List<PXViewParameter> EnumParameters()

FieldGetValue(PXCache, object, Type, string)

Gets the value of the specified field in the data record from the cache.

 | API Reference | 385

The method may raise the FieldDefaulting and FieldUpdating events.

Syntax:

public static object FieldGetValue(PXCache sender, object data,
 Type sourceType, string sourceField)

Parameters:

• sender

The cache object.

• data

The data record.

• sourceType

The DAC of the data record. The cache of this DAC type is obtained through the cache object
provided in the parameter.

• sourceField

The name of the field which value is returned.

Filter(IEnumerable)

Syntax:

public static IEnumerable Filter(IEnumerable list)

Parameters:

• list

GetAnswer(string)

Returns the result of the dialog window that was opened through one of the Ask() methods and saved
in the PXView object.

Syntax:

public WebDialogResult GetAnswer(string key)

Parameters:

• key

The identifier of the dialog window that was provided to the Ask() method or the name of the
data view.

GetItemType()

Returns the DAC type of the primary cache; that is, the first DAC referenced in the BQL command.

Syntax:

public virtual Type GetItemType()

GetItemTypes()

Returns all DAC types referenced in the BQL command.

 | API Reference | 386

Syntax:

public virtual Type[] GetItemTypes()

GetParameterNames()

Returns the names of the fields referenced by BQL parameters and the names of parameters of the
optional method, if it is defined.

Syntax:

public virtual string[] GetParameterNames()

GetSortColumns()

Returns pairs of the names of the fields by which the data view result will be sorted and values
indicating if the sort by the field is descending.

Syntax:

public virtual KeyValuePair<string, bool>[] GetSortColumns()

Join(Type)

Appends the provided join clause to the BQL command.

Syntax:

public void Join(Type join)

Parameters:

• join

The join clause as a type derived from IBqlJoin.

Join<join>()

Appends the provided join clause to the BQL command. The join clause is specified in the type
parameter.

Syntax:

public void Join<join>()
 where join : IBqlJoin, new()

OrderByNew(Type)

Replaces the sorting expression with the new sorting expression.

Syntax:

public void OrderByNew(Type newOrderBy)

Parameters:

• newOrderBy

The sorting expression as a type derived from IBqlOrderBy, such as OrderBy<>.

 | API Reference | 387

OrderByNew<newOrderBy>()

Replaces the sorting expression with the new sorting expression. The sorting expressio is specified in
the type parameter.

Syntax:

public void OrderByNew<newOrderBy>()
 where newOrderBy : IBqlOrderBy, new()

PrepareParameters(object[], object[])

Prepares parameters, formats input values, gets default values for the hidden and not supplied
parameters. The method returns the values that will replace the parameters including and the
parameters of the custom selection method if it is defined.

Syntax:

public virtual object[] PrepareParameters(object[] currents, object[] parameters)

Parameters:

• currents

The objects to use as current data records when processing Current and Optional parameters.

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

RequestRefresh()

Raises the RequestRefresh event defined within the PXView object.

Syntax:

public void RequestRefresh()

Select(object[], object[], object[], string[], bool[], PXFilterRow[], ref int, int, ref int)

Executes the BQL command and returns the result set.

This method is the main procedure for retrieving data. All other select methods eventually invoke these
methods with appropriate parameters. The method can be used to retrieve all data records from the
data set, the top data record, or the limited amount of data records starting from the specific position.
You can also provide the list of current data records, the fields to additionally sort and filter the data
set, and the parameters.

The method stores the values of parameters in the context, so that the optional method, if it is defined,
of the data view can access them through the static properties of PXView.

Syntax:

public virtual List<object> Select(
 object[] currents, object[] parameters,
 object[] searches, string[] sortcolumns,
 bool[] descendings, PXFilterRow[] filters,
 ref int startRow, int maximumRows, ref int totalRows)

Parameters:

• currents

The objects to use as current data records to process Current and Optional parameters.

 | API Reference | 388

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

• searches

The values of the fields by which the data set is filtered and sorted.

• sortcolumns

The fields by which the data set is filtered and sorted.

• descendings

The list values indicating whether ordering by the sort columns should be descending or
ascending.

• filters

The filters.

• (ref) startRow

The 0-based index of the first data record to retrieve.

• maximumRows

The number of data records to retrieve.

• (ref) totalRows

The total amount of data records in the data set defined by the BQL command.

SelectMulti(params object[])

Retrieves the whole data set corresponding to the BQL command.

Syntax:

public virtual List<object> SelectMulti(params object[] parameters)

Parameters:

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

SelectMultiBound(object[], params object[])

Retrieves the whole data set corresponding to the BQL command.

Syntax:

public virtual List<object> SelectMultiBound(object[] currents,
 params object[] parameters)

Parameters:

• currents

The objects to use as current data records when processing Current and Optional parameters.

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

SelectSingle(params object[])

Retrieves the top data record from the data set corresponding to the BQL command.

 | API Reference | 389

Syntax:

public virtual object SelectSingle(params object[] parameters)

Parameters:

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

SelectSingleBound(object[], params object[])

Retrieves the top data record from the data set corresponding to the BQL command.

Syntax:

public virtual object SelectSingleBound(object[] currents,
 params object[] parameters)

Parameters:

• currents

The objects to use as current data records when processing Current and Optional parameters.

• parameters

The explicit values for such parameters as Required, Optional, and Argument.

Returns:

The resultset.

SetAnswer(string, WebDialogResult)

Saves the result of the dialog window.

Syntax:

public void SetAnswer(string key, WebDialogResult answer)

Parameters:

• key

The identifier of the dialog window.

• answer

The result value.

SetAnswer(PXGraph, string, string, WebDialogResult)

Saves the result of the dialog window.

Syntax:

public static void SetAnswer(PXGraph graph, string viewName,
 string key, WebDialogResult answer)

Parameters:

• graph

The graph with which the data view is associated.

• viewName

 | API Reference | 390

The name of the data view with which the dialog window is associated.

• key

The identifier of the dialog window.

• answer

The result value.

Sort(IEnumerable)

Sort the provided collection of PXResult<> instances by the conditions currenlty stored in the PXView
context. This context exists only during execution of the Select(...) method. The Sort(IEnumerable)
method may be called in the optional method of the data view to sort by the conditions that were
provided to the Select(...) method, which invoked the optional method.

Syntax:

public static IEnumerable Sort(IEnumerable list)

Parameters:

• list

The collection of PXResult<> instances to sort.

ToString()

Returns the string with the SQL query corresponding to the underlying BQL command.

Syntax:

public override string ToString()

WhereAnd(Type)

Appends a filtering expression to the underlying BQL command via the logical "and". The additional
filtering expression is provided in the type parameter.

Syntax:

public void WhereAnd(Type where)

Parameters:

• where

The additional filtering expression as the type derived from IBqlWhere.

WhereAnd<TWhere>()

Appends a filtering expression to the underlying BQL command via the logical "and". The additional
filtering expression is provided in the type parameter.

Syntax:

public void WhereAnd<TWhere>()
 where TWhere : IBqlWhere, new()

WhereNew(Type)

Replaces the filtering expression in the BQL statement.

 | API Reference | 391

Syntax:

public void WhereNew(Type newWhere)

Parameters:

• newWhere

The new filtering expression as the type derived from IBqlWhere.

WhereNew<newWhere>()

Replaces the filtering expression in the BQL statement. The new filtering expression is provided in the
type parameter.

Syntax:

public void WhereNew<newWhere>()
 where newWhere : IBqlWhere, new()

WhereNot()

Adds logical "not" to the whole Where clause of the BQL statement, reversing the condition to the
opposite.

Syntax:

public void WhereNot()

WhereOr(Type)

Appends a filtering expression to the BQL statement via the logical "or".

Syntax:

public void WhereOr(Type where)

Parameters:

• where

The additional filtering expression as the type derived from IBqlWhere.

WhereOr<TWhere>()

Appends a filtering expression to the BQL statement via the logical "or". The additional filtering
expression is provided in the type parameter.

Syntax:

public void WhereOr<TWhere>()
 where TWhere : IBqlWhere, new()

Attributes
Acumatica Framework attributes are used to add common business logic to the application components.
This reference describes the attributes defined in the PX.Data namespace.

Attributes implement business logic by subscribing to events. Each attribute class directly or indirectly
derives from the PXEventSubscriberAttribute class. Besides, an attribute class derives from
the interfaces that correspond to the event handlers it implements. For example, the PXDefault

 | API Reference | 392

attributes derives from the IPXFieldDefaultingSubscriber, IPXRowPersistingSubscriber,
and IPXFieldSelectingSubscriber interfaces, which means that it implements its logic in the
FieldDefaulting, RowSelecting, and FieldSelecting event handler methods.

Most attributes are added to data access class (DAC) field declarations. There are also attributes that
are placed on a DAC declaration, view declarations in a business logic controller (BLC), and the BLC
declaration itself.

Categories of Attributes

The attributes are split into a number of categories according to their usage or function.

• Bound Field Data Types

• Unbound Field Data Types

• UI Field Configuration

• Default Values

• Complex Input Controls

• Referential Integrity and Calculations

• Audit Fields

• Data Projection

• Adhoc SQL for Fields

• Access Control

• Notes

• Report Optimization

• Attributes on DACs

• Attributes on Actions

• Attributes on Data Views

• Miscellaneous

Mandatory Attributes

For each field defined in a DAC, you must specify the following attributes:

• A data type attribute – either a bound field data type attribute that binds the field to a database
column of a particular data type, or an unbound field data type attribute that indicates that the
field is unbound.

• The PXUIField attribute – mandatory for all fields that are displayed in the user interface.

The example below demonstrates a declaration of a DAC field bound to a database column and
displayed in the user interface.

// The data access class for the POReceiptFilter database table
[Serializable]
public partial class POReceiptFilter : IBqlTable
{
 ...
 // The type declaration of a DAC field
 public abstract class receiptType : PX.Data.IBqlField
 {
 }
 // The value declaration of a DAC field - put attributes
 // before this declaration

 | API Reference | 393

 [PXDBString(2, IsFixed = true)]
 [PXUIField(DisplayName = "Type", Enabled = false)]
 public virtual String ReceiptType { get; set; }
 ...
}

A declaration of the method that implements an action in a business logic controller must be preceded
with the PXButton attribute or one of its successors.

How to Use Attributes

To apply the attribute logic to an entity, you should place the attribute on the entity declaration. At run
time, you can call the static methods of a particular attribute to adjust attribute's behavior.

An attribute may be placed on a declaration of a class or a class member, with or without parameters.
Which paremeters are possible for an attribute depend on the constructor parameters and the
properties defined in the attribute. The parameters of the selected constructor go first without names,
named property settings follow them, as shown in the example below.

[PXDefault(false, PersistingCheck = PXPersistingCheck.Nothing)]
public virtual Boolean? Released { get; set; }

Here, the PXDefault attribute is created using the constructor that takes the only parameter of the
boolean type (set to false). Additionally, the PersistingCheck property is specified.

You should call static methods defined in the attribute class to change the properties at run time. The
static methods can affect a single attribute instance or multiple attribute instances related to a specific
data record or all data records in a particular cache object. The following example shows an invocation
of a static method.

PXUIFieldAttribute.SetVisible<APInvoice.curyID>(cache, doc, true);

When calling such a method, you typically specify the cache object, a data record related to this cache
object, and the DAC field. The method will affect the attribute instance created for this field for the
specified data record. If you pass null as the data record, the method will affect attribute instances
related to all data records in the specified cache object.

Bound Field Data Types
The following attributes bind a data access class field to the database column of a specific type.

Attribute C# data
type

Database data
type

Comment

PXDBBool bool? bit Boolean value

PXDBByte byte? tinyint 1-byte integer value

PXDBDate DateTime? datetime or
smalldatetime

Date and time

PXDBTime DateTime? smalldatetime Time without date

PXDBDateAndTime DateTime? datetime or
smalldatetime

Date and time values represented by
separate input controls in the user
interface

PXDBDecimal decimal? decimal 16-byte floating point numeric value
with a specific precision

PXDBDecimalString decimal? decimal A decimal value with a value selected by
a user from the list of predefined values

 | API Reference | 394

Attribute C# data
type

Database data
type

Comment

PXDBDouble double? float 8-byte floating point value

PXDBFloat float? real 4-byte floating point value

PXDBGuid Guid? uniqueidentifier 16-byte unique value

PXDBIdentity int? int 4-byte auto-incremented integer value

PXDBLongIdentity int64? bigint 8-byte auto-incremented integer value

PXDBShort short? smallint 2-byte integer value

PXDBInt int? int 4-byte integer value

PXDBLong int64? bigint 8-byte integer value

PXDBString string char, varchar,
nchar, or
nvarchar

Common string

PXDBEmail string nvarchar Email address

PXDBLocalString string char, varchar,
nchar, or
nvarchar

Localized string

PXDBCryptString string Encrypted string

PXDB3DesCryphString string Specially encrypted string

PXDBText string nvarchar or
varchar

Text

PXDBTimeSpan int? int Date and time value represented by
minutes passed from 01/01/1900

PXDBTimeSpanLong int? int Duration in time as the number of
minutes

PXDBTimestamp byte[] timestamp 8-byte automatically generated, unique
binary numbers within a database

PXDBBinary byte[] Arbitrary array of bytes

PXDBVariant byte[] variant Variant data type

Note that there are some other attributes that bind a DAC field to database columns, used in special
cases. These attributes are covered in other sections of this reference.

PXDBField Attribute

The base class for attributes that map DAC fields to database columns.The attribute should not be used
directly.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowSelectingSubscriber

 | API Reference | 395

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXDBFieldAttribute))]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXDBFieldAttribute : PXEventSubscriberAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual string DatabaseFieldName

Gets or sets the name of the database column that is represented by the field. By default, equals
the field name.

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field. Key fields must uniquely
identify a data record. The key fields defined in the DAC should not necessarily be the same as
the keys in the database.

• public virtual bool IsImmutable

Gets or sets the values that indicates that the field is immutable.

• public virtual Type BqlField

Returns null on get. Sets the BQL field representing the field in BQL queries.

PXDBBool Attribute

Maps a DAC field of bool? type to the database column of bit type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBBoolAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,

 | API Reference | 396

 IPXFieldSelectingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBBool()]
[PXDefault(false)]
public virtual Boolean? Scheduled { get; set; }

PXDBByte Attribute

Maps a DAC field of byte? type to the database column of tinyint type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBByteAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

 | API Reference | 397

PXDBDate Attribute

Maps a DAC field of DateTime? type to the database column of datetime or smalldatetime type,
depending on the UseSmallDateTime flag.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBDateAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public string InputMask

Gets or sets the format string that defines how a field value inputted by a user should be
formatted. The property takes the same values as DisplayMask.

• public string DisplayMask

Gets or sets the format string that defines how a field value is displayed in the input control. If the
property is set to a one-character string, the corresponding standard date and time format string
is used. If the property value is longer, it is treated as a custom date and time format string. A
particular pattern depends on the culture set by the application.

• public string MinValue

Gets or sets the minimum value for the field.

• public string MaxValue

Gets or sets the maximum value for the field.

• public virtual bool PreserveTime

Gets or sets the value that indicates whether the time part of a field value is preserved. If false,
the time part is removed.

• public bool UseSmallDateTime

Gets or sets the value that indicates the database column data type: true means smalldatetime,
false means datetime. By default, true.

• public virtual bool UseTimeZone

http://msdn.microsoft.com/en-us/library/az4se3k1%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

 | API Reference | 398

Gets or sets the value that indicates whether the attribute should convert the time to UTC, using
the local time zone. If true, the time is converted. By default, true.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The attribute defines a field represented by a single input control in the user interface.

Examples

The attribute below binds the field to the database column and sets the minimum and maximum values
for a field value.

[PXDBDate(MaxValue = "06/06/2079", MinValue = "01/01/1900")]
public virtual DateTime? OrderDate { get; set; }

The attribute below binds the field to the database column and sets the input and display masks. A field
value will be displayed using the long date pattern. That is, for en-US culture the 6/15/2009 1:45:30
PM value will be converted to Monday, June 15, 2009.

[PXDBDate(InputMask = "d", DisplayMask = "d")]
public virtual DateTime? StartDate { get; set; }

PXDBTime Attribute

Maps a DAC field of DateTime? type to the database column of smalldatetime type. The field value
holds only time without date.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBTimeAttribute : PXDBDateAttribute

Properties

• public override bool PreserveTime

Gets the value that indicates whether the time part of a field value is preserved. Since the
constructor sets this value to true, this property always returns true.

Constructors

• public PXDBTimeAttribute()

Initializes an instance of the attribute with default parameters.

 | API Reference | 399

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The field values keep only time without date. On the user interface, the field is represented by a control
allowing a user to enter only a time value.

The attribute inherits properties of the PXDBDate attribute.

Examples

The code below binds the SunStartTime DAC field to the database column with the same name and
sets the default value for the field.

[PXDBTime(DisplayMask = "t", UseTimeZone = false)]
[PXDefault(TypeCode.DateTime, "01/01/2008 09:00:00")]
public virtual DateTime? SunStartTime { ... }

Note the setting of the DisplayMask property inherited from the PXDBDate attribute.

PXDBDateAndTime Attribute

Maps a DAC field of DateTime? type to the database column of datetime or smalldatetime type.
Defines the DAC field that is represented in the UI by two input controls: one for date, the other for
time.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute

Syntax

public class PXDBDateAndTimeAttribute : PXDBDateAttribute

Properties

• public virtual bool WithoutDisplayNames

Gets or sets the value that indicates whether the display names of the input controls for date and
time are appended with (Date) and (Time), respectively.

• public string DisplayNameDate

Gets or sets the display name for the input control that represents date.

• public string DisplayNameTime

Gets or sets the display name for the input control that represents time.

Constructors

Constructor Description

PXDBDateAndTimeAttribute() Initializes a new instance of the attribute with default
parameters.

 | API Reference | 400

Static Methods

Method Description

SetDateDisplayName(PXCache, object, string,
string)

Sets the display name of the input control that
represents the date part of the field value

SetDateDisplayName<Field>(PXCache,
object, string)

Sets the display name of the input control that
represents the date part of the field value

SetDateEnabled(PXCache, object, string,
bool)

Enables or disables the input control that represents
the date part of the field value

SetDateEnabled<Field>(PXCache, object,
bool)

Enables or disables the input control that represents
the date part of the field value

SetDateVisible(PXCache, object, string, bool) Makes visible or hides the input control that represents
the data part of the field value

SetDateVisible<Field>(PXCache, object, bool) Makes visible or hides the input control that represents
the data part of the field value

SetTimeDisplayName(PXCache, object,
string, string)

Sets the display name of the input control that
represents the time part of the field value

SetTimeDisplayName<Field>(PXCache,
object, string)

Sets the display name of the input control that
represents the time part of the field value

SetTimeEnabled(PXCache, object, string,
bool)

Enables or disables the input control that represents
the time part of the field value

SetTimeEnabled<Field>(PXCache, object,
bool)

Enables or disables the input control that represents
the time part of the field value

SetTimeVisible(PXCache, object, string, bool) Makes visible or hides the input control that represents
the time part of the field value

SetTimeVisible<Field>(PXCache, object,
bool)

Makes visible or hides the input control that represents
the data part of the field value

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Unlike the PXDBDate attribute, this attribute defines the field that is represented in the UI by two input
controls to specify date and time values separately.

Examples

[PXDBDateAndTime]
[PXUIField(DisplayName = "Start Time")]
public virtual DateTime? StartDate { get; set; }

PXDBDateAndTime Attribute Constructors

The PXDBDateAndTime attribute exposes the following constructors.

PXDBDateAndTimeAttribute()

Initializes a new instance of the attribute with default parameters.

 | API Reference | 401

Syntax:

public PXDBDateAndTimeAttribute()

PXDBDateAndTime Attribute Methods

The PXDBDateAndTime attribute exposes the following static methods.

SetDateDisplayName(PXCache, object, string, string)

Sets the display name of the input control that represents the date part of the field value.

Syntax:

public static void SetDateDisplayName(PXCache cache, object data,
 string name, string displayName)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• displayName

The string to set as the display name.

SetDateDisplayName<Field>(PXCache, object, string)

Sets the display name of the input control that represents the date part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetDateDisplayName<Field>(PXCache cache, object data,
 string displayName)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• displayName

The string to set as the display name.

SetDateEnabled(PXCache, object, string, bool)

Enables or disables the input control that represents the date part of the field value.

 | API Reference | 402

Syntax:

public static void SetDateEnabled(PXCache cache, object data,
 string name, bool isEnabled)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isEnabled

The value indicating whether the input control is enabled.

SetDateEnabled<Field>(PXCache, object, bool)

Enables or disables the input control that represents the date part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetDateEnabled<Field>(PXCache cache, object data,
 bool isEnabled)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value indicating whether the input control is enabled.

SetDateVisible(PXCache, object, string, bool)

Makes visible or hides the input control that represents the data part of the field value.

Syntax:

public static void SetDateVisible(PXCache cache, object data,
 string name, bool isVisible)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

 | API Reference | 403

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isVisible

The value indicating whether the input control is visible on the user interface.

SetDateVisible<Field>(PXCache, object, bool)

Makes visible or hides the input control that represents the data part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetDateVisible<Field>(PXCache cache, object data,
 bool isVisible)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isVisible

The value indicating whether the input control is visible on the user interface.

SetTimeDisplayName(PXCache, object, string, string)

Sets the display name of the input control that represents the time part of the field value.

Syntax:

public static void SetTimeDisplayName(PXCache cache, object data,
 string name, string displayName)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• displayName

The string to set as the display name.

 | API Reference | 404

SetTimeDisplayName<Field>(PXCache, object, string)

Sets the display name of the input control that represents the time part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetTimeDisplayName<Field>(PXCache cache, object data,
 string displayName)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• displayName

The string to set as the display name.

SetTimeEnabled(PXCache, object, string, bool)

Enables or disables the input control that represents the time part of the field value.

Syntax:

public static void SetTimeEnabled(PXCache cache, object data,
 string name, bool isEnabled)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isEnabled

The value indicating whether the input control is enabled.

SetTimeEnabled<Field>(PXCache, object, bool)

Enables or disables the input control that represents the time part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetTimeEnabled<Field>(PXCache cache, object data,
 bool isEnabled)
 where Field : IBqlField

Parameters:

• cache

 | API Reference | 405

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value indicating whether the input control is enabled.

SetTimeVisible(PXCache, object, string, bool)

Makes visible or hides the input control that represents the time part of the field value.

Syntax:

public static void SetTimeVisible(PXCache cache, object data,
 string name, bool isVisible)

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isVisible

The value indicating whether the input control is visible on the user interface.

SetTimeVisible<Field>(PXCache, object, bool)

Makes visible or hides the input control that represents the data part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetTimeVisible<Field>(PXCache cache, object data,
 bool isVisible)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDBDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isVisible

The value indicating whether the input control is visible on the user interface.

PXDBDecimal Attribute

Maps a DAC field of decimal? type to the database column of decimal type.

 | API Reference | 406

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBDecimalAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public double MinValue

Gets or sets the minimum value for the field.

• public double MaxValue

Gets or sets the minimum value for the field.

Constructors

Constructor Description

PXDBDecimalAttribute() Initializes a new instance with the default precision,
which equals 2

PXDBDecimalAttribute(int) Initializes a new instance with the given precision

PXDBDecimalAttribute(Type) Initializes a new instance with the precision calculated
at runtime using a BQL query

Static Methods

Method Description

EnsurePrecision(PXCache) Retrieves the precision value if it is set by a BQL query
specified in the constructor, and sets its to all attribute
instances in the cache object

SetPrecision(PXCache, string, int?) Sets the precision in the attribute intance that marks
the field with the specified name in all data records in
the cache object

 | API Reference | 407

Method Description

SetPrecision(PXCache, object, string, int?) Sets the precision in the attribute intance that marks
the field with the specified name in a particular data
record

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

A minimum value, maximum value, and precision can be specified. The precision can be calculated at
runtime using BQL. The default precision is 2.

Examples

Declaration of a DAC field with a specific precision:

[PXDBDecimal(6, MinValue = 0, MaxValue = 100)]
public virtual decimal? Price { get; set; }

Declaration of a DAC field with a precision calculated at runtime:

[PXDBDecimal(typeof(
 Search<Currency.decimalPlaces,
 Where<Currency.curyID, Equal<Current<POCreateFilter.vendorID>>>>
))]
public virtual decimal? OrderTotal { get; set; }

The BQL query in this example will search for the Currency data record that satisfies the specified
Where condition. The field precision will be set to the DecimalPlaces value from this data record.

PXDBDecimal Attribute Constructors

The PXDBDecimal attribute exposes the following constructors.

PXDBDecimalAttribute()

Initializes a new instance with the default precision, which equals 2.

Syntax:

public PXDBDecimalAttribute()

PXDBDecimalAttribute(int)

Initializes a new instance with the given precision.

Syntax:

public PXDBDecimalAttribute(int precision)

PXDBDecimalAttribute(Type)

Initializes a new instance with the precision calculated at runtime using a BQL query.

Syntax:

public PXDBDecimalAttribute(Type type)

Parameters:

• type

 | API Reference | 408

A BQL query based on a class derived from IBqlSearch or IBqlField. For example, the
parameter can be set to typeof(Search<...>), or typeof(Table.field).

PXDBDecimal Attribute Methods

The PXDBDecimal attribute exposes the following static methods.

EnsurePrecision(PXCache)

Retrieves the precision value if it is set by a BQL query specified in the constructor, and sets its to all
attribute instances in the cache object.

Syntax:

public static void EnsurePrecision(PXCache cache)

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

SetPrecision(PXCache, string, int?)

Sets the precision in the attribute intance that marks the field with the specified name in all data
records in the cache object.

Syntax:

public static void SetPrecision(PXCache cache, string name, int? precision)

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

• name

The name of the field that is be marked with the attribute.

• precision

The new precision value.

SetPrecision(PXCache, object, string, int?)

Sets the precision in the attribute intance that marks the field with the specified name in a particular
data record.

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int?
 precision)

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

• data

The data record the method is applied to.

• name

 | API Reference | 409

The name of the field that is be marked with the attribute.

• precision

The new precision value.

PXDBDecimalString Attribute

Maps a DAC field of decimal? type to the database column of decimal type. The mapped DAC field can
be represented in the UI by a dropdown list using the PXDecimalList attribute.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDecimalAttribute

Syntax

public class PXDBDecimalStringAttribute : PXDBDecimalAttribute

Constructors

Constructor Description

PXDBDecimalStringAttribute() Initializes a new instance with the default precision,
which equals 2

PXDBDecimalStringAttribute(int) Initializes a new instance with the given decimal value
precision

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

In the UI, the field can be represented by a dropdown list with specific values. The UI control is
configured using the PXDecimalList attribute.

Examples

// A mapping of the DAC field to the database column
[PXDBDecimalString(1)]
// UI control configuration.
// The first list configures values asigned to the field,
// the second one configures displayed labels.
[PXDecimalList(new string[] { "0.1", "0.5", "1.0", "10", "100" },
 new string[] { "0.1", "0.5", "1.0", "10", "100" })]
[PXDefault(TypeCode.Decimal, "0.1")]
[PXUIField(DisplayName = "Invoice Amount Precision")]
public virtual decimal? InvoicePrecision { get; set; }

PXDBDecimalString Attribute Constructors

The PXDBDecimalString attribute exposes the following constructors.

PXDBDecimalStringAttribute()

Initializes a new instance with the default precision, which equals 2.

 | API Reference | 410

Syntax:

public PXDBDecimalStringAttribute() : base()

PXDBDecimalStringAttribute(int)

Initializes a new instance with the given decimal value precision.

Syntax:

public PXDBDecimalStringAttribute(int precision) : base(precision)

PXDBDouble Attribute

Maps a DAC field of double? type to the 8-bytes floating point column in the database.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBDoubleAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public double MinValue

Gets or sets the minimum value for the field.

• public double MaxValue

Gets or sets the maximum value for the field.

Constructors

Constructor Description

PXDBDoubleAttribute() Initializes a new instance of the attribute with default
parameters

PXDBDoubleAttribute(int) Initializes a new instance of the attribute with the
given precision

 | API Reference | 411

Static Methods

Method Description

SetPrecision(PXCache, string, int)

SetPrecision(PXCache, object, string, int)

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

PXDBDouble Attribute Constructors

The PXDBDouble attribute exposes the following constructors.

PXDBDoubleAttribute()

Initializes a new instance of the attribute with default parameters.

Syntax:

public PXDBDoubleAttribute()

PXDBDoubleAttribute(int)

Initializes a new instance of the attribute with the given precision. The precision is the number of digits
after the comma. If a user enters a value with greater number of fractional digits, the value will be
rounded.

Syntax:

public PXDBDoubleAttribute(int precision)

Parameters:

• precision

The value to use as the precision.

PXDBDouble Attribute Methods

The PXDBDouble attribute exposes the following static methods.

SetPrecision(PXCache, string, int)

Syntax:

public static void SetPrecision(PXCache cache, string name, int
 precision)

SetPrecision(PXCache, object, string, int)

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int
 precision)

PXDBFloat Attribute

Maps a DAC field of float? type to the 4-bytes floating point column in the database.

 | API Reference | 412

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBFloatAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public float MinValue

Gets or sets the minimum value for the field.

• public float MaxValue

Gets or sets the maximum value for the field.

Constructors

Constructor Description

PXDBFloatAttribute() Initializes a new instance with default parameters

PXDBFloatAttribute(int) Initializes a new instance with the given precision

Static Methods

Method Description

SetPrecision(PXCache, string, int)

SetPrecision(PXCache, object, string, int)

PXDBFloat Attribute Constructors

The PXDBFloat attribute exposes the following constructors.

PXDBFloatAttribute()

Initializes a new instance with default parameters.

 | API Reference | 413

Syntax:

public PXDBFloatAttribute()

PXDBFloatAttribute(int)

Initializes a new instance of the attribute with the given precision. The precision is the number of digits
after the comma. If a user enters a value with greater number of fractional digits, the value will be
rounded.

Syntax:

public PXDBFloatAttribute(int precision)

Parameters:

• precision

The value to use as the precision.

PXDBFloat Attribute Methods

The PXDBFloat attribute exposes the following static methods.

SetPrecision(PXCache, string, int)

Syntax:

public static void SetPrecision(PXCache cache, string name, int precision)

SetPrecision(PXCache, object, string, int)

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int
 precision)

PXDBGuid Attribute

Map a DAC field of Guid? type to the database column of uniqueidentifier type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXFieldDefaultingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |

 | API Reference | 414

 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBGuidAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXFieldDefaultingSubscriber

Constructors

Constructor Description

PXDBGuidAttribute() Initializes a new instance that does not assign a
default value to the field

PXDBGuidAttribute(bool) Initializes a new instance that either assigns a default
value to the field or doesn't

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

The attribute below binds the field to the unique indentifier column and assigns a default value to the
field.

[PXDBGuid(true)]
public virtual Guid? SetupID { get; set; }

The attribute below binds the field to the unique indentifier column. The field becomes a key field.

[PXDBGuid(IsKey = true)]
public virtual Guid? SetupID { get; set; }

PXDBGuid Attribute Constructors

The PXDBGuid attribute exposes the following constructors.

PXDBGuidAttribute()

Initializes a new instance that does not assign a default value to the field.

Syntax:

public PXDBGuidAttribute() : base() { }

PXDBGuidAttribute(bool)

Initializes a new instance that either assigns a default value to the field or doesn't.

Syntax:

public PXDBGuidAttribute(bool withDefaulting) : this()

Parameters:

• withDefaulting

 | API Reference | 415

If true, a new Guid value is assigned to the field on the FieldDefaulting event. Otherwise, a
value is not assigned.

PXDBIdentity Attribute

Maps an auto-incremented integer DAC field of int? type to the int database column.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXFieldDefaultingSubscriber

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXRowPersistedSubscriber

• IPXFieldVerifyingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBIdentityAttribute : PXDBFieldAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXRowPersistedSubscriber,
 IPXFieldVerifyingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The field value is auto-incremented by the attribute.

A field of this type is typically declared a key field. To do this, set the IsKey parameter to true.

Examples

[PXDBIdentity(IsKey = true)]
[PXUIField(DisplayName = "Contact ID", Visible = false)]
public virtual int? ContactID { get; set; }

PXDBLongIdentity Attribute

Maps an 8-byte auto-incremented integer DAC field of int64? type to the bigint database column.

 | API Reference | 416

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXFieldDefaultingSubscriber

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXRowPersistedSubscriber

• IPXFieldVerifyingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBLongIdentityAttribute : PXDBFieldAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXRowPersistedSubscriber,
 IPXFieldVerifyingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name. The field value is auto-incremented by the database.

A field of this type is typically declared a key field. To do this, set the IsKey parameter to true.

Examples

[PXDBLongIdentity(IsKey = true)]
public virtual Int64? RecordID { ... }

PXDBImage Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Syntax

public class PXDBImageAttribute : PXDBStringAttribute

 | API Reference | 417

Properties

• public string HeaderImage

Get, set.

PXDBShort Attribute

Maps a DAC field of short? type to the database column of smallint type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBShortAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the minimum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBShort(MaxValue = 9, MinValue = 0)]
public virtual short? TaxReportPrecision { get; set; }

PXDBInt Attribute

Maps a DAC field of int? type to the database column of int type.

 | API Reference | 418

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBIntAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBInt]
public virtual int? MajorStatus { get; set; }

The attribute below maps a field to the database column and explicitly sets the minimum and maximum
values for the field.

[PXDBInt(MinValue = 0, MaxValue = 365)]
public virtual int? ReceiptTranDaysBefore { get; set; }

The attribute below maps a field to the database column and sets the properties inherited from the
PXDBField attribute.

[PXDBInt(IsKey = true, BqlField = typeof(CuryARHistory.branchID))]
[PXSelector(typeof(Branch.branchID),
 SubstituteKey = typeof(Branch.branchCD))]
public virtual int? BranchID { get; set; }

 | API Reference | 419

PXDBLong Attribute

Maps a DAC field of int64? type to the database column of bigint type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBLongAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public Int64 MinValue

Gets or sets the minimum value for the field.

• public Int64 MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBLong()]
public virtual long? CuryInfoID { get; set; }

PXDBString Attribute

Maps a DAC field of string type to the database field of char, varchar, nchar, or nvarchar type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

 | API Reference | 420

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBStringAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public int Length

Gets the maximum length of the string value. If a string value exceeds the maximum length, it
will be trimmed. If IsFixed is set to true and the string length is less then the maximum, it will
be extended with spaces.

The default value is -1 (the string length is not limited). A different value can be set in the
constructor.

• public string InputMask

Gets or sets the pattern that indicates the allowed characters in a field value. The user interface
will not allow the user to enter other characters in the input control associated with the field.

The default value for the key fields is '>aaaaaa'.

Control characters:

• '>': the following chars to upper case

• '<': the following chars to lower case

• '&', 'C': any character or a space

• 'A', 'a': a letter or digit

• 'L', '?': a letter

• '#', '0', '9': a digit

Examples:

InputMask = ">LLLLL"

InputMask = ">aaaaaaaaaa"

InputMask = ">CC.00.00.00"

• public bool IsUnicode

 | API Reference | 421

Gets or sets an indication that the string consists of Unicode characters. This property should be
set to true if the database column has a Unicode string type (nchar or nvarchar). The default
value is false.

• public bool IsFixed

Gets or sets an indication that the string has a fixed length. This property should be set to true if
the database column has a fixed length type (char or nchar). The default value is false.

Constructors

Constructor Description

PXDBStringAttribute() Initializes a new instance of the attribute

PXDBStringAttribute(int) Initializes a new instance with the given maximum
length of a field value

Static Methods

Method Description

SetInputMask(PXCache, string, string) Sets the input mask for the string field with the
specified name for all data records in the cache object

SetInputMask(PXCache, object, string, string) Sets the input mask for the string field with the
specified name

SetInputMask<Field>(PXCache, string) Sets the input mask for the specified string field for all
data records in the cache object

SetInputMask<Field>(PXCache, object,
string)

Sets the input mask for the specified string field

SetLength(PXCache, string, int) Sets the maximum length for the string field with the
specified name for all data records in the cache object

SetLength(PXCache, object, string, int) Sets the maximum length for the string field with the
specified name

SetLength<Field>(PXCache, int) Sets the maximum length for the specified string field
for all data records in the cache object

SetLength<Field>(PXCache, object, int) Sets the maximum length for the specified string field

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

It is possible to specify the maximum length and input validation mask for the string.

You can modify the Length and InputMask properties at run time by calling the static methods.

Examples

The attribute below maps a string field to the database column (defines a bound field) and sets a limit
for the value length to 50.

[PXDBString(50)]
public virtual string Fax { get; set; }

 | API Reference | 422

The attribute below defines a bound field taking as a value strings of any 8 characters. In the user
interface, the input control will show the mask that splits the value into four groups separated by dots.

[PXDBString(8, InputMask = "CC.CC.CC.CC")]
public virtual string ReportID { get; set; }

The attribute below defines a bound field taking as a value Unicode strings of 5 uppercase characters
that are strictly aphabetical letters.

[PXDBString(5, IsUnicode = true, InputMask = ">LLLLL")]
public virtual string CuryID { get; set; }

The example below shows a complex definition of a string key field represented in the user interface by
a lookup control.

[PXDBString(15, IsUnicode = true, IsKey = true, InputMask = "")]
[PXDefault]
[PXUIField(DisplayName = "Reference Nbr.",
 Visibility = PXUIVisibility.SelectorVisible,
 TabOrder = 1)]
[PXSelector(typeof(
 Search<APRegister.refNbr,
 Where<APRegister.docType, Equal<Optional<APRegister.docType>>>>),
 Filterable = true)]
public virtual string RefNbr { get; set; }

In this example, the RefNbr field is mapped to the nvarchar(15) RefNbr column from the APRegister
table.

PXDBString Attribute Constructors

The PXDBString attribute exposes the following constructors.

PXDBStringAttribute()

Initializes a new instance of the attribute.

Syntax:

public PXDBStringAttribute()

PXDBStringAttribute(int)

Initializes a new instance with the given maximum length of a field value.

Syntax:

public PXDBStringAttribute(int length)

Parameters:

• length

The maximum length value assigned to the Length property.

PXDBString Attribute Methods

The PXDBString attribute exposes the following static methods.

SetInputMask(PXCache, string, string)

Sets the input mask for the string field with the specified name for all data records in the cache object.

 | API Reference | 423

Syntax:

public static void SetInputMask(PXCache cache, string name, string mask)

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• name

The field name.

• mask

The value that is assigned to the InputMask property.

SetInputMask(PXCache, object, string, string)

Sets the input mask for the string field with the specified name.

Syntax:

public static void SetInputMask(PXCache cache, object data, string name, string
 mask)

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• mask

The value that is assigned to the InputMask property.

SetInputMask<Field>(PXCache, string)

Sets the input mask for the specified string field for all data records in the cache object.

Syntax:

public static void SetInputMask<Field>(PXCache cache, string mask)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• mask

The value that is assigned to the InputMask property.

SetInputMask<Field>(PXCache, object, string)

Sets the input mask for the specified string field.

 | API Reference | 424

Syntax:

public static void SetInputMask<Field>(PXCache cache, object data, string mask)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• mask

The value that is assigned to the InputMask property.

SetLength(PXCache, string, int)

Sets the maximum length for the string field with the specified name for all data records in the cache
object.

Syntax:

public static void SetLength(PXCache cache, string name, int length)

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• name

The field name.

• length

The value that is assigned to the Length property.

SetLength(PXCache, object, string, int)

Sets the maximum length for the string field with the specified name.

Syntax:

public static void SetLength(PXCache cache, object data, string name, int length)

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• length

The value that is assigned to the Length property.

 | API Reference | 425

SetLength<Field>(PXCache, int)

Sets the maximum length for the specified string field for all data records in the cache object.

Syntax:

public static void SetLength<Field>(PXCache cache, int length)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• length

The value that is assigned to the Length property.

SetLength<Field>(PXCache, object, int)

Sets the maximum length for the specified string field.

Syntax:

public static void SetLength<Field>(PXCache cache, object data, int length)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• length

The value that is assigned to the Length property.

PXDBEmail Attribute

Maps a string DAC field representing email addresses to the database column of nvarchar type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Method)]
public class PXDBEmailAttribute : PXDBStringAttribute

Constructors

• public PXDBEmailAttribute() : base(255)

Initializes a new instance of the attribute. The maximum string length is set to 255. The string is
marked as Unicode.

 | API Reference | 426

Static Methods

Method Description

GetEMailFields(Type)

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The field value must be a Unicode string. The field value length is limited by 255.

Examples

[PXDBEmail]
[PXUIField(DisplayName = "Email",
 Visibility = PXUIVisibility.SelectorVisible)]
public virtual string Email { get; set; }

PXDBEmail Attribute Methods

The PXDBEmail attribute exposes the following static methods.

GetEMailFields(Type)

Syntax:

public static List<string> GetEMailFields(Type table)

PXDBLocalString Attribute

Maps a string DAC field to a localized string column in the database.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBLocalStringAttribute : PXDBStringAttribute

Constructors

Constructor Description

PXDBLocalStringAttribute() Initializes a new instance with the default parameters

PXDBLocalStringAttribute(int) Initializes a new instance with the specified maximum
length

 | API Reference | 427

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to database
columns that have culture information specified in their names. For example, for the Description field,
the English-specific column will be DescriptionenGB, the Russian-specific column DescriptionruRU,
etc.

PXDBLocalString Attribute Constructors

The PXDBLocalString attribute exposes the following constructors.

PXDBLocalStringAttribute()

Initializes a new instance with the default parameters.

Syntax:

public PXDBLocalStringAttribute() : base()

PXDBLocalStringAttribute(int)

Initializes a new instance with the specified maximum length.

Syntax:

public PXDBLocalStringAttribute(int length) : base(length)

PXDBCryptString Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Interfaces

• IPXFieldVerifyingSubscriber

• IPXRowUpdatingSubscriber

• IPXRowSelectingSubscriber

Syntax

public class PXDBCryptStringAttribute : PXDBStringAttribute,
 IPXFieldVerifyingSubscriber,
 IPXRowUpdatingSubscriber,
 IPXRowSelectingSubscriber

Properties

• public bool IsViewDecrypted

Get, set.

• public string ViewAsString

Get, set.

• public Type ViewAsField

Get, set.

 | API Reference | 428

Constructors

Constructor Description

PXDBCryptStringAttribute()

PXDBCryptStringAttribute(int) Initializes a new instance with the given maximum
length

Static Methods

Method Description

SetDecrypted(PXCache, string, bool) Overrides the visible state for the particular data item

SetDecrypted(PXCache, object, string, bool) Overrides the visible state for the particular data item

SetDecrypted<Field>(PXCache, bool) Overrides the view as state for the particular data item

SetDecrypted<Field>(PXCache, object, bool) Overrides the visible state for the particular data item

SetViewAs(PXCache, string, string) Overrides the view as state for the particular data item

SetViewAs(PXCache, string, Type) Overrides the view as state for the particular data item

SetViewAs(PXCache, object, string, string) Overrides the view as state for the particular data item

SetViewAs(PXCache, object, string, Type) Overrides the view as state for the particular data item

SetViewAs<Field>(PXCache, string) Overrides the view as state for the particular data item

SetViewAs<Field>(PXCache, Type) Overrides the view as state for the particular data item

SetViewAs<Field>(PXCache, object, string) Overrides the view as state for the particular data item

SetViewAs<Field>(PXCache, object, Type) Overrides the view as state for the particular data item

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

PXDBCryptString Attribute Constructors

The PXDBCryptString attribute exposes the following constructors.

PXDBCryptStringAttribute()

Syntax:

public PXDBCryptStringAttribute()

PXDBCryptStringAttribute(int)

Initializes a new instance with the given maximum length.

Syntax:

public PXDBCryptStringAttribute(int length) : base(length)

PXDBCryptString Attribute Methods

The PXDBCryptString attribute exposes the following static methods.

 | API Reference | 429

SetDecrypted(PXCache, string, bool)

Overrides the visible state for the particular data item.

Syntax:

public static void SetDecrypted(PXCache cache, string field, bool isDecrypted)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetDecrypted(PXCache, object, string, bool)

Overrides the visible state for the particular data item.

Syntax:

public static void SetDecrypted(PXCache cache, object data, string field, bool
 isDecrypted)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetDecrypted<Field>(PXCache, bool)

Overrides the view as state for the particular data item.

Syntax:

public static void SetDecrypted<Field>(PXCache cache, bool isDecrypted) where
 Field : IBqlField

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetDecrypted<Field>(PXCache, object, bool)

Overrides the visible state for the particular data item.

Syntax:

public static void SetDecrypted<Field>(PXCache cache, object data, bool isDecrypted)
 where Field : IBqlField

Parameters:

• cache

 | API Reference | 430

Cache containing the data item.

• def

Default value.

SetViewAs(PXCache, string, string)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs(PXCache cache, string field, string source)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs(PXCache, string, Type)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs(PXCache cache, string field, Type sourceField)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs(PXCache, object, string, string)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs(PXCache cache, object data, string field, string
 source)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs(PXCache, object, string, Type)

Overrides the view as state for the particular data item.

 | API Reference | 431

Syntax:

public static void SetViewAs(PXCache cache, object data, string field, Type
 sourceField)

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs<Field>(PXCache, string)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs<Field>(PXCache cache, string source) where Field :
 IBqlField

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs<Field>(PXCache, Type)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs<Field>(PXCache cache, Type sourceField) where Field :
 IBqlField

Parameters:

• cache

Cache containing the data item.

• def

Default value.

SetViewAs<Field>(PXCache, object, string)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs<Field>(PXCache cache, object data, string source) where
 Field : IBqlField

Parameters:

• cache

Cache containing the data item.

 | API Reference | 432

• def

Default value.

SetViewAs<Field>(PXCache, object, Type)

Overrides the view as state for the particular data item.

Syntax:

public static void SetViewAs<Field>(PXCache cache, object data, Type sourceField)
 where Field : IBqlField

Parameters:

• cache

Cache containing the data item.

• def

Default value.

PXRSACryptString Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute
 PXDBCryptStringAttribute

Syntax

public class PXRSACryptStringAttribute : PXDBCryptStringAttribute

Constructors

Constructor Description

PXRSACryptStringAttribute()

PXRSACryptStringAttribute(int)

Static Methods

Method Description

Encrypt(string)

PXRSACryptString Attribute Constructors

The PXRSACryptString attribute exposes the following constructors.

PXRSACryptStringAttribute()

Syntax:

public PXRSACryptStringAttribute()

 | API Reference | 433

PXRSACryptStringAttribute(int)

Syntax:

public PXRSACryptStringAttribute(int length) : base(length)

PXRSACryptString Attribute Methods

The PXRSACryptString attribute exposes the following static methods.

Encrypt(string)

Syntax:

public static string Encrypt(string source) : :

PXDB3DesCryphString Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute
 PXDBCryptStringAttribute

Syntax

public class PXDB3DesCryphStringAttribute : PXDBCryptStringAttribute

Constructors

Constructor Description

PXDB3DesCryphStringAttribute()

PXDB3DesCryphStringAttribute(int) Initializes a new instance with the given maximum
length

Static Methods

Method Description

Encrypt(string)

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

PXDB3DesCryphString Attribute Constructors

The PXDB3DesCryphString attribute exposes the following constructors.

PXDB3DesCryphStringAttribute()

Syntax:

public PXDB3DesCryphStringAttribute()

 | API Reference | 434

PXDB3DesCryphStringAttribute(int)

Initializes a new instance with the given maximum length.

Syntax:

public PXDB3DesCryphStringAttribute(int length) : base(length)

PXDB3DesCryphString Attribute Methods

The PXDB3DesCryphString attribute exposes the following static methods.

Encrypt(string)

Syntax:

public static string Encrypt(string source)

PXDBText Attribute

Maps a DAC field of string type to the database column of nvarchar or varchar type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBTextAttribute : PXDBStringAttribute

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBText(IsUnicode = true)]
[PXUIField(DisplayName = "Activity Details")]
public virtual string Body { ... }

PXDBTimeSpan Attribute

Maps a DAC field of int? type to the int database column. The field value represents a date as a
number of minutes passed from 01/01/1900.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBIntAttribute

 | API Reference | 435

Syntax

public class PXDBTimeSpanAttribute : PXDBIntAttribute

Properties

• public string InputMask

Gets or sets the input mask for date and time values that can be entered as value of the current
field. By default, the proprty equals HH:mm.

• public string DisplayMask

Gets or sets the display mask for date and time values that can be entered as value of the current
field. By default, the proprty equals HH:mm.

• public new string MinValue

Gets or sets the minimum value for the field. The value should be a valid string representation of
a date.

• public new string MaxValue

Gets or sets the maximum value for the field. The value should be a valid string representation of
a date.

Constructors

• public PXDBTimeSpanAttribute()

Initializes a new instance of the attribute with default parameters.

Static Methods

Method Description

FromMinutes(int) Returns the date obtained by adding the specified
number of minutes to 01/01/1900

Nested Classes

• public sealed class zero : Constant<string>

Represents the 00:00 string contant in BQL.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The field value stores a date as a number of minutes. In the UI, the string is typically represented by a
control allowing a selection from the list of time values with half-hour interval.

Examples

[PXDBTimeSpan]
[PXUIField(DisplayName = "Run Time")]
public virtual int? RunTime { get; set;]

PXDBTimeSpan Attribute Methods

The PXDBTimeSpan attribute exposes the following static methods.

 | API Reference | 436

FromMinutes(int)

Returns the date obtained by adding the specified number of minutes to 01/01/1900.

Syntax:

public static DateTime FromMinutes(int minutes)

Examples:

DateTime date = PXDBTimeSpanAttribute.FromMinutes(40);

PXDBTimeSpanLong Attribute

Maps a DAC field of int? type that represents a duration in time as the number of minutes to the int
database column.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBIntAttribute

Syntax

public class PXDBTimeSpanLongAttribute : PXDBIntAttribute

Properties

• public TimeSpanFormatType Format

Gets or sets the data format type. Possible values are defined by the TimeSpanFormatType
enumeration.

• public string InputMask

Gets or sets the pattern that indicates the allowed characters in a field value. By default, the
property is null, and the attribute determines the input mask by the Format value.

Constructors

• public PXDBTimeSpanLongAttribute()

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBTimeSpanLong(Format = TimeSpanFormatType.LongHoursMinutes)]
[PXUIField(DisplayName = "Estimation")]
public virtual Int32? TimeEstimated { get; set; }

TimeSpanFormatType Enumeration

Defines data format types for the PXDBTimeSpanLongAttribute and PXTimeSpanLongAttribute
attributes.

 | API Reference | 437

Members

• DaysHoursMinites = 0

• DaysHoursMinitesCompact

• LongHoursMinutes

• ShortHoursMinutes

• ShortHoursMinutesCompact

PXDBTimestamp Attribute

Maps a DAC field of byte[] type to the database column of timestamp type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXRowPersistedSubscriber

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBTimestampAttribute : PXDBFieldAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXRowPersistedSubscriber,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

The attribute binds the field to a timestamp column in the database. The database timestamp is a
counter that is incremented for each insert or update operation performed on a table with a timestamp
column. The counter tracks a relative time within a database (not an actual time that can be associated
with a clock). You can use the timestamp column of a data record to easily determine whether any
value in the data record has changed since the last time it was read.

Examples

[PXDBTimestamp()]

 | API Reference | 438

public virtual byte[] tstamp { get; set; }

PXDBBinary Attribute

Maps a DAC field of byte[] type to the binary database column of either fixed or variable length.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBBinaryAttribute : PXDBFieldAttribute

Properties

• public bool IsFixed

Gets or sets an indication that the binay value has a fixed length. This property should be set
to true if the database column has a fixed length type (binary) and to false if the database
column has a variable length type (varbinary). The default value is false.

• public int Length

Gets the maximum length of the binary value.

The default value is -1 (the length is not limited). A different value can be set in the constructor.

Constructors

Constructor Description

PXDBBinaryAttribute() Initializes a new instance of the attribute

PXDBBinaryAttribute(int) Initializes a new instance with the given maximum
length

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

Examples

[PXDBBinary]
[PXUIField(Visible = false)]
public virtual byte[] NewValue { get; set; }

PXDBBinary Attribute Constructors

The PXDBBinary attribute exposes the following constructors.

PXDBBinaryAttribute()

Initializes a new instance of the attribute.

 | API Reference | 439

Syntax:

public PXDBBinaryAttribute()

PXDBBinaryAttribute(int)

Initializes a new instance with the given maximum length.

Syntax:

public PXDBBinaryAttribute(int length)

PXDBVariant Attribute

Maps a DAC field of byte[] type to the database column of a variant type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBBinaryAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBVariantAttribute : PXDBBinaryAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Constructors

Constructor Description

PXDBVariantAttribute() Initializes a new instance of the attribute

PXDBVariantAttribute(int) Initializes a new instance with the given maximum
length

Static Methods

Method Description

GetValue(byte[])

SetValue(object)

Remarks

The attribute is added to the value declaration of a DAC field. The field becomes bound to the database
column with the same name.

 | API Reference | 440

Examples

[PXDBVariant]
[PXUIField(DisplayName = "Value")]
public virtual byte[] Value { get; set; }

PXDBVariant Attribute Constructors

The PXDBVariant attribute exposes the following constructors.

PXDBVariantAttribute()

Initializes a new instance of the attribute.

Syntax:

public PXDBVariantAttribute() : base()

PXDBVariantAttribute(int)

Initializes a new instance with the given maximum length.

Syntax:

public PXDBVariantAttribute(int length) : base(length)

PXDBVariant Attribute Methods

The PXDBVariant attribute exposes the following static methods.

GetValue(byte[])

Syntax:

public static object GetValue(byte[] val)

SetValue(object)

Syntax:

public static byte[] SetValue(object value)

Unbound Field Data Types
The following attributes define a data access class field of a specific type that are not bound to any
database columns.

Attribute C# data
type

Comment

PXBool bool? Boolean value

PXByte byte? 1-byte integer value

PXDate DateTime? Date and time

PXDateAndTime DateTime? Date and time values represented by separate input
controls in the user interface

PXDecimal Decimal? 16-byte floating point numeric value with a specific
precision

 | API Reference | 441

Attribute C# data
type

Comment

PXDouble double? 8-byte floating point value

PXFloat float? 4-byte floating point value

PXGuid Guid? 16-byte unique value

PXShort short? 2-byte integer value

PXInt int? 4-byte integer value

PXLong int64? 8-byte integer value

PXString string String of characters

PXTimeSpan int? Date and time value represented by minutes passed from
01/01/1900

PXTimeSpanLong int? Duration in time as the number of minutes

PXVariant byte[] Arbitrary array of bytes

PXBool Attribute

Indicates a DAC field of bool? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXBoolAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

 | API Reference | 442

Examples

[PXBool()]
[PXDefault(false)]
public virtual bool? Selected { get; set; }

PXByte Attribute

Indicates a DAC field of short? that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXByteAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

PXDate Attribute

Indicates a DAC field of DateTime? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 443

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXDateAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public string InputMask

Gets or sets the format string that defines how a field value inputted by a user should be
formatted. The property takes the same values as DisplayMask.

• public string DisplayMask

Gets or sets the format string that defines how a field value is displayed in the input control. If the
property is set to a one-character string, the corresponding standard date and time format string
is used. If the property value is longer, it is treated as a custom date and time format string. A
particular pattern depends on the culture set by the application.

• public string MinValue

Gets or sets the minimum value for the field.

• public string MaxValue

Gets or sets the maximum value for the field.

• public bool UseTimeZone

Gets or sets the value that indicates whether the attribute should convert the time to UTC, using
the local time zone. If true, the time is converted. By default, true.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXDate()]
public virtual DateTime? NextEffDate { get; set; }

PXDateAndTime Attribute

Indicates a DAC field of DateTime? type that is not mapped to a database column and is represented in
the user interface by two controls to input date and time values separately.

http://msdn.microsoft.com/en-us/library/az4se3k1%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

 | API Reference | 444

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDateAttribute

Syntax

public class PXDateAndTimeAttribute : PXDateAttribute

Static Methods

Method Description

SetDateEnabled(PXCache, object, string,
bool)

Enables or disables the input control that represents
the date part of the field value.

SetDateEnabled<Field>(PXCache, object,
bool)

Enables or disables the input control that represents
the date part of the field value.

SetTimeEnabled(PXCache, object, string,
bool)

Enables or disables the input control that represents
the time part of the field value.

SetTimeEnabled<Field>(PXCache, object,
bool)

Enables or disables the input control that represents
the time part of the field value.

Nested Classes

• public class now : Constant<DateTime>

Represents the local date and time in BQL.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXDateAndTime]
public virtual DateTime? StartDate { get; set; }

PXDateAndTime Attribute Methods

The PXDateAndTime attribute exposes the following static methods.

SetDateEnabled(PXCache, object, string, bool)

Enables or disables the input control that represents the date part of the field value.

Syntax:

public static void SetDateEnabled(PXCache cache, object data,
 string name, bool isEnabled)

Parameters:

• cache

The cache object to search for PXDateAndTime attributes.

• data

 | API Reference | 445

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isEnabled

The value indicating whether the input control is enabled.

SetDateEnabled<Field>(PXCache, object, bool)

Enables or disables the input control that represents the date part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetDateEnabled<Field>(PXCache cache, object data,
 bool isEnabled)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value indicating whether the input control is enabled.

SetTimeEnabled(PXCache, object, string, bool)

Enables or disables the input control that represents the time part of the field value.

Syntax:

public static void SetTimeEnabled(PXCache cache, object data,
 string name, bool isEnabled)

Parameters:

• cache

The cache object to search for PXDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The name of the field the attribute is attached to.

• isEnabled

The value indicating whether the input control is enabled.

 | API Reference | 446

SetTimeEnabled<Field>(PXCache, object, bool)

Enables or disables the input control that represents the time part of the field value. The field is
specified as the type parameter.

Syntax:

public static void SetTimeEnabled<Field>(PXCache cache, object data,
 bool isEnabled)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for PXDateAndTime attributes.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value indicating whether the input control is enabled.

PXDecimal Attribute

Indicates a DAC field of decimal? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXDecimalAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public double MinValue

Gets or sets the minimum value for the field.

• public double MaxValue

 | API Reference | 447

Gets or sets the maximum value for the field.

Constructors

Constructor Description

PXDecimalAttribute() Initializes a new instance with the default precision,
which equals 2

PXDecimalAttribute(int) Initializes a new instance with the given precision

PXDecimalAttribute(Type) Initializes a new instance with the precision calculated
at runtime using a BQL query

Static Methods

Method Description

SetPrecision(PXCache, string, int?) Sets the precision in the attribute intance that marks
the field with the specified name in all data records in
the cache object

SetPrecision(PXCache, object, string, int?) Sets the precision in the attribute intance that marks
the field with the specified name in a particular data
record

SetPrecision<Field>(PXCache, int?) Sets the precision in the attribute intance that marks
the specified field in all data records in the cache
object

SetPrecision<Field>(PXCache, object, int?) Sets the precision in the attribute intance that marks
the specified field in a particular data record

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXDecimal(0)]
[PXUIField(DisplayName = "SignBalance")]
public virtual Decimal? SignBalance { get; set; }

PXDecimal Attribute Constructors

The PXDecimal attribute exposes the following constructors.

PXDecimalAttribute()

Initializes a new instance with the default precision, which equals 2.

Syntax:

public PXDecimalAttribute()

PXDecimalAttribute(int)

Initializes a new instance with the given precision.

 | API Reference | 448

Syntax:

public PXDecimalAttribute(int precision)

PXDecimalAttribute(Type)

Initializes a new instance with the precision calculated at runtime using a BQL query.

Syntax:

public PXDecimalAttribute(Type type)

Parameters:

• type

A BQL query based on a class derived from IBqlSearch or IBqlField. For example, the
parameter can be set to typeof(Search<...>), or typeof(Table.field).

PXDecimal Attribute Methods

The PXDecimal attribute exposes the following static methods.

SetPrecision(PXCache, string, int?)

Sets the precision in the attribute intance that marks the field with the specified name in all data
records in the cache object.

Syntax:

public static void SetPrecision(PXCache cache, string name, int? precision)

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

• name

The name of the field that is be marked with the attribute.

• precision

The new precision value.

SetPrecision(PXCache, object, string, int?)

Sets the precision in the attribute intance that marks the field with the specified name in a particular
data record.

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int?
 precision)

Parameters:

• cache

The cache object to search for the attributes of PXDecimal type.

• data

The data record the method is applied to.

• name

 | API Reference | 449

The name of the field that is be marked with the attribute.

• precision

The new precision value.

SetPrecision<Field>(PXCache, int?)

Sets the precision in the attribute intance that marks the specified field in all data records in the cache
object.

Syntax:

public static void SetPrecision<Field>(PXCache cache, int? precision) where Field :
 IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

• precision

The new precision value.

SetPrecision<Field>(PXCache, object, int?)

Sets the precision in the attribute intance that marks the specified field in a particular data record.

Syntax:

public static void SetPrecision<Field>(PXCache cache, object data, int? precision)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBDecimal type.

• data

The data record the method is applied to.

• precision

The new precision value.

PXDouble Attribute

Indicates a DAC field of double? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

 | API Reference | 450

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXDoubleAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public double MinValue

Gets or sets the minimum value for the field.

• public double MaxValue

Gets or sets the maximum value for the field.

Constructors

Constructor Description

PXDoubleAttribute() Initializes a new instance of the attribute with default
parameters

PXDoubleAttribute(int) Initializes a new instance of the attribute with the
given precision

Static Methods

Method Description

SetPrecision(PXCache, string, int)

SetPrecision(PXCache, object, string, int)

SetPrecision<Field>(PXCache, int)

SetPrecision<Field>(PXCache, object, int)

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXDouble]
[PXUIField(Visible = false)]
public virtual Double? OriginalShift { get; set; }

PXDouble Attribute Constructors

The PXDouble attribute exposes the following constructors.

 | API Reference | 451

PXDoubleAttribute()

Initializes a new instance of the attribute with default parameters.

Syntax:

public PXDoubleAttribute()

PXDoubleAttribute(int)

Initializes a new instance of the attribute with the given precision. The precision is the number of digits
after the comma. If a user enters a value with greater number of fractional digits, the value will be
rounded.

Syntax:

public PXDoubleAttribute(int precision)

Parameters:

• precision

The value to use as the precision.

PXDouble Attribute Methods

The PXDouble attribute exposes the following static methods.

SetPrecision(PXCache, string, int)

Syntax:

public static void SetPrecision(PXCache cache, string name, int precision)

SetPrecision(PXCache, object, string, int)

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int
 precision)

SetPrecision<Field>(PXCache, int)

Syntax:

public static void SetPrecision<Field>(PXCache cache, int precision) where Field :
 IBqlField

SetPrecision<Field>(PXCache, object, int)

Syntax:

public static void SetPrecision<Field>(PXCache cache, object data, int precision)
 where Field : IBqlField

PXFloat Attribute

Indicates a DAC field of float? type that is not mapped to a database column.

 | API Reference | 452

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXFloatAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public float MinValue

Gets or sets the minimum value for the field.

• public float MaxValue

Gets or sets the maximum value for the field.

Constructors

Constructor Description

PXFloatAttribute() Initializes a new instance of the attribute with default
parameters

PXFloatAttribute(int) Initializes a new instance of the attribute with the
given precision

Static Methods

Method Description

SetPrecision(PXCache, string, int)

SetPrecision(PXCache, object, string, int)

SetPrecision<Field>(PXCache, int)

SetPrecision<Field>(PXCache, object, int)

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

 | API Reference | 453

PXFloat Attribute Constructors

The PXFloat attribute exposes the following constructors.

PXFloatAttribute()

Initializes a new instance of the attribute with default parameters.

Syntax:

public PXFloatAttribute()

PXFloatAttribute(int)

Initializes a new instance of the attribute with the given precision. The precision is the number of digits
after the comma. If a user enters a value with greater number of fractional digits, the value will be
rounded.

Syntax:

public PXFloatAttribute(int precision)

Parameters:

• precision

The value to use as the precision.

PXFloat Attribute Methods

The PXFloat attribute exposes the following static methods.

SetPrecision(PXCache, string, int)

Syntax:

public static void SetPrecision(PXCache cache, string name, int
 precision)

SetPrecision(PXCache, object, string, int)

Syntax:

public static void SetPrecision(PXCache cache, object data, string name, int
 precision)

SetPrecision<Field>(PXCache, int)

Syntax:

public static void SetPrecision<Field>(PXCache cache, int precision) where
 Field : IBqlField

SetPrecision<Field>(PXCache, object, int)

Syntax:

public static void SetPrecision<Field>(PXCache cache, object data, int
 precision) where Field : IBqlField

 | API Reference | 454

PXGuid Attribute

Indicates a DAC field of Guid? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXGuidAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXGuid]
[PXSelector(typeof(EPEmployee.userID),
 SubstituteKey = typeof(EPEmployee.acctCD),
 DescriptionField = typeof(EPEmployee.acctName))]
[PXUIField(DisplayName = "Custodian")]
public virtual Guid? Custodian { get; set; }

PXImage Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringAttribute

Syntax

public class PXImageAttribute : PXStringAttribute

 | API Reference | 455

Properties

• public string HeaderImage

Get, set.

PXInt Attribute

Indicates a DAC field of int? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXIntAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXInt()]
[PXUIField(DisplayName = "Documents", Visible = true)]
public virtual int? DocCount { get; set; }

PXLong Attribute

Indicates a DAC field of long? type that is not mapped to a database column.

 | API Reference | 456

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXLongAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public Int64 MinValue

Gets or sets the minimum value for the field.

• public Int64 MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXLong(IsKey = true)]
[PXUIField(DisplayName = "Transaction Num.")]
public virtual Int64? TranID { get; set; }

PXShort Attribute

Indicates a DAC field of short? type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

 | API Reference | 457

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXShortAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public int MinValue

Gets or sets the minimum value for the field.

• public int MaxValue

Gets or sets the maximum value for the field.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXShort()]
[PXDefault((short)0)]
[PXUIField(DisplayName = "Overdue Days", Enabled = false)]
public virtual short? OverdueDays { get; set; }

PXString Attribute

Indicates a DAC field of string type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXFieldState))]
public class PXStringAttribute : PXEventSubscriberAttribute,

 | API Reference | 458

 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXCommandPreparingSubscriber

Properties

• public virtual bool IsKey

Gets or sets the value that indicates whether the field is a key field.

• public int Length

Gets the maximum length of the string value. If a string value exceeds the maximum length, it
will be trimmed. If IsFixed is set to true and the string length is less then the maximum, it will
be extended with spaces. By default, the property is –1, which means that the string length is not
limited.

• public string InputMask

Gets or sets the pattern that indicates the allowed characters in a field value. The user interface
will not allow the user to enter other characters in the input control associated with the field.

The default value for the key fields is '>aaaaaa'.

Control characters:

• '>': the following chars to upper case

• '<': the following chars to lower case

• '&', 'C': any character or a space

• 'A', 'a': a letter or digit

• 'L', '?': a letter

• '#', '0', '9': a digit

Examples:

InputMask = ">LLLLL"

InputMask = ">aaaaaaaaaa"

InputMask = ">CC.00.00.00"

• public bool IsFixed

Gets or sets an indication that the string has a fixed length. This property should be set to true if
the database column has a fixed length type (char or nchar). The default value is false.

• public bool IsUnicode

Gets or sets an indication that the string consists of Unicode characters. This property should be
set to true if the database column has a Unicode string type (nchar or nvarchar). The default
value is false.

Constructors

Constructor Description

PXStringAttribute() Initializes a new instance with default parameters

PXStringAttribute(int) Initializes a new instance with the given maximum
length of a field value

 | API Reference | 459

Static Methods

Method Description

SetInputMask(PXCache, string, string) Sets the input mask for the string field with the
specified name for all data records in the cache object

SetInputMask(PXCache, object, string, string) Sets the input mask for the string field with the
specified name

SetInputMask<Field>(PXCache, string) Sets the input mask for the specified string field for all
data records in the cache object

SetInputMask<Field>(PXCache, object,
string)

Sets the input mask for the specified string field

SetLength(PXCache, string, int) Sets the maximum length for the string field with the
specified name for all data records in the cache object

SetLength(PXCache, object, string, int) Sets the maximum length for the string field with the
specified name

SetLength<Field>(PXCache, int) Sets the maximum length for the specified string field
for all data records in the cache object

SetLength<Field>(PXCache, object, int) Sets the maximum length for the specified string field

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

It is possible to specify the maximum length and input validation mask for the string.

You can modify the Length and InputMask properties at run time by calling the static methods.

Examples

The attribute below defines an unbound field taking as a value Unicode strings of 5 uppercase
characters that are strictly aphabetical letters.

[PXString(5, IsUnicode = true, InputMask = ">LLLLL")]
public virtual String FinChargeCuryID { get; set; }

PXString Attribute Constructors

The PXString attribute exposes the following constructors.

PXStringAttribute()

Initializes a new instance with default parameters.

Syntax:

public PXStringAttribute()

PXStringAttribute(int)

Initializes a new instance with the given maximum length of a field value.

Syntax:

public PXStringAttribute(int length)

Parameters:

 | API Reference | 460

• length

The maximum length value assigned to the Length property.

PXString Attribute Methods

The PXString attribute exposes the following static methods.

SetInputMask(PXCache, string, string)

Sets the input mask for the string field with the specified name for all data records in the cache object.

Syntax:

public static void SetInputMask(PXCache cache, string name, string mask)

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• name

The field name.

• mask

The value that is assigned to the InputMask property.

SetInputMask(PXCache, object, string, string)

Sets the input mask for the string field with the specified name.

Syntax:

public static void SetInputMask(PXCache cache, object data, string name, string
 mask)

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• mask

The value that is assigned to the InputMask property.

SetInputMask<Field>(PXCache, string)

Sets the input mask for the specified string field for all data records in the cache object.

Syntax:

public static void SetInputMask<Field>(PXCache cache, string mask) where Field :
 IBqlField

Parameters:

 | API Reference | 461

• cache

The cache object to search for the attributes of PXString type.

• mask

The value that is assigned to the InputMask property.

SetInputMask<Field>(PXCache, object, string)

Sets the input mask for the specified string field.

Syntax:

public static void SetInputMask<Field>(PXCache cache, object data, string mask)
 where
 Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• mask

The value that is assigned to the InputMask property.

SetLength(PXCache, string, int)

Sets the maximum length for the string field with the specified name for all data records in the cache
object.

Syntax:

public static void SetLength(PXCache cache, string name, int length)

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• name

The field name.

• length

The value that is assigned to the Length property.

SetLength(PXCache, object, string, int)

Sets the maximum length for the string field with the specified name.

Syntax:

public static void SetLength(PXCache cache, object data, string name, int
 length)

Parameters:

• cache

 | API Reference | 462

The cache object to search for the attributes of PXString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• length

The value that is assigned to the Length property.

SetLength<Field>(PXCache, int)

Sets the maximum length for the specified string field for all data records in the cache object.

Syntax:

public static void SetLength<Field>(PXCache cache, int length) where Field :
 IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• length

The value that is assigned to the Length property.

SetLength<Field>(PXCache, object, int)

Sets the maximum length for the specified string field.

Syntax:

public static void SetLength<Field>(PXCache cache, object data, int length) where
 Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXString type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• length

The value that is assigned to the Length property.

PXTimeSpan Attribute

Indicates a DAC field of int? type that represents a date value as minutes passed from 01/01/1900 and
that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntAttribute

 | API Reference | 463

Syntax

public class PXTimeSpanAttribute : PXIntAttribute

Properties

• public string InputMask

Gets or sets the pattern that indicates the allowed characters in a field value. The user interface
will not allow the user to enter other characters in the input control associated with the field.

• public string DisplayMask

Get, set.

• public new string MinValue

Gets or sets the minimum value for the field.

• public new string MaxValue

Gets or sets the maximum value for the field.

Constructors

• public PXTimeSpanAttribute()

Initializes a new instance with default parameters.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

PXTimeSpanLong Attribute

Indicates a DAC field of int? type that represents a duration in time as the number of minutes and that
is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntAttribute

Syntax

public class PXTimeSpanLongAttribute : PXIntAttribute

Properties

• public TimeSpanFormatType Format

Gets or sets the data format type. Possible values are defined by the TimeSpanFormatType
enumeration.

• public string InputMask

Gets or sets the pattern that indicates the allowed characters in a field value. By default, the
property is null, and the attribute determines the input mask by the Format value.

Constructors

• public PXTimeSpanLongAttribute()

 | API Reference | 464

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

Examples

[PXTimeSpanLong(Format = TimeSpanFormatType.LongHoursMinutes)]
public virtual int? InitResponse { get; set; }

PXVariant Attribute

Indicates a DAC field of byte[] type that is not mapped to a database column.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldUpdatingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXVariantAttribute : PXEventSubscriberAttribute,
 IPXFieldUpdatingSubscriber,
 IPXFieldSelectingSubscriber

Constructors

• public PXVariantAttribute() : base() { }

Initializes a new instance with default parameters.

Static Methods

Method Description

GetValue(byte[])

Remarks

The attribute is added to the value declaration of a DAC field. The field is not bound to a table column.

PXVariant Attribute Methods

The PXVariant attribute exposes the following static methods.

GetValue(byte[])

 | API Reference | 465

Syntax:

public static object GetValue(byte[] val)

UI Field Configuration
To configure the user interface layout of input controls and buttons, you should use

• PXUIField

Configures the properties of the input control representing a DAC field in the user interface, or the
button representing an action.

The attribute is mandatory for all DAC fields displayed in the user interface. You should add the
attribute to the field value declaration in the DAC, for example:

[PXDBDate()]
[PXUIField(DisplayName = "Pay Date")]
public virtual DateTime? PayDate { get; set; }

PXUIField Attribute

Configures the properties of the input control representing a DAC field in the user interface, or the
button representing an action. The attribute is mandatory for all DAC fields that are displayed in the
user interface.

See Remarks for more details. See Examples for examples of usage.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXInterfaceField

• IPXExceptionHandlingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldSelectingSubscriber

• IPXFieldVerifyingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Method |
 AttributeTargets.Class)]
[PXAttributeFamily(typeof(PXUIFieldAttribute))]
public class PXUIFieldAttribute : PXEventSubscriberAttribute,
 IPXInterfaceField,
 IPXExceptionHandlingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldSelectingSubscriber,
 IPXFieldVerifyingSubscriber

Properties

• public virtual bool Required

 | API Reference | 466

Gets or sets the value that indicates whether an asterisk sign is shown beside the field in the
user interface. Note that this property does not check that the field value is specified and add any
restriction of this kind. This is done by the PXDefault attribute.

The default value is false.

• public virtual bool Visible

Get, set. Allows to show/hide field edit control or grid column in user interface. To control,
whether form designer should generate template for this field, use Visibility property instead.

The default value is true.

• public virtual PXErrorHandling ErrorHandling

Gets or sets the PXErrorHandling value that specifies the way the attribute treats an error related
to the field. The error is either indicated only when the field is visible, always indicated, or never
indicated.

The default value is PXErrorHandling.WhenVisible.

• public virtual bool Enabled

Gets or sets the value that indicates whether the field input control is enabled. If the field is
disabled, the control does not allow the user to edit and select the field value. Compare to the
IsReadOnly property.

The default value is true.

• public virtual bool IsReadOnly

Gets or sets the value that indicates whether the field input control allows editing. If the property
is set to true, the user cannot edit the value, but can still select and copy the value. Compare to
the Enabled property.

The default value is false.

• public virtual string DisplayName

Gets or sets the field name displayed in the user interface. This name is rendered as the input
control label on a form or as the grid column header.

The default value is the field name.

• public virtual PXUIVisibility Visibility

Gets or sets the PXUIVisibility value that indicates whether the webpage layout designer should
generate a template for this field. You can specify whether the template is generated for a form
and grid, is generated for a form, grid, and lookup controls, or never appear in the user interface.
The default value is PXUIVisibility.Visible.

• public virtual int TabOrder

Gets or sets the order in which the field input control gets the focus when the user moves it by
pressing the TAB key.

• public virtual PXCacheRights MapViewRights

Gets or sets the PXCacheRights value that specifies the access on a cache for a cache to see
the button in the user interface. The property is used when the PXUIField configures an action
button.

• public virtual PXCacheRights MapEnableRights

Gets or sets the PXCacheRights that specifies the access rights on a cache to click the button in
the user interface. The property is used when the PXUIField configures an action button.

• public virtual string FieldClass

 | API Reference | 467

Gets or sets the value that indicates whether the field is shown or hidded depending on the
features enabled or disabled. By default, the property is set to the segmented field name.

Constructors

• public PXUIFieldAttribute()

Initializes a new instance of the attribute.

Static Methods

Method Description

GetDisplayName(PXCache, string) Returns the value of the DisplayName property for the
field with the specified name

GetDisplayName<Field>(PXCache) Returns the value of the DisplayName property for the
specified field

GetError(PXCache, object, string) Returns the error string displayed for the field with the
specified name

GetError<Field>(PXCache, object) Returns the error string displayed for the specified field

GetErrors(PXCache, object) Finds all fields with non-empty error strings and
returns a dictionary with field names as the keys and
error messages as the values

GetItemName(PXCache) Returns the user-friendly name of the specified cache
object

SetDisplayName(PXCache, string, string) Sets the display name of the field with the specified
name

SetDisplayName<Field>(PXCache, string) Sets the display name of the specified field

SetEnabled(PXCache, object, bool) Enables or disables the input controls for all fields in
the specific data record or all data records by setting
the Enabled property

SetEnabled(PXCache, object, string) Enables the input control for the field with the specified
name by setting the Enabled property to true

SetEnabled(PXCache, string, bool) Enables or disables the input control for the field with
the specified name by setting the Enabled property

SetEnabled(PXCache, object, string, bool) Enables or disables the input control for the field with
the specified name by setting the Enabled property

SetEnabled<Field>(PXCache, object) Enables the specified field of the specific data record
in the cache object by setting the Enabled property to
true

SetEnabled<Field>(PXCache, object, bool) Enables or disables the input control for the specified
field by setting the Enabled property

SetError(PXCache, object, string, string) Sets the error string to display as a tooltip for the field
with the specified name

SetError(PXCache, object, string, string,
string)

Sets the error string to display as a tooltip and the
error value to display in the input control for the field
with the specified name

 | API Reference | 468

Method Description

SetError<Field>(PXCache, object, string) Sets the error string to display as a tooltip for the
specified field

SetError<Field>(PXCache, object, string,) Sets the error string to display as a tooltip and the
error value to display in the input control for the
specified field

SetReadOnly(PXCache, object) Makes the input controls for all fields read-only by
setting the IsReadOnly property to true

SetReadOnly(PXCache, object, string) Makes the input control for the field with the specified
name read-only by setting the IsReadOnly property to
true

SetReadOnly(PXCache, object, bool) Makes the input controls for all field read-only or not
read-only by setting the IsReadOnly property

SetReadOnly(PXCache, object, string, bool) Makes the input control for the field with the specified
name read-only or not-read-only by setting the
IsReadOnly property

SetReadOnly<Field>(PXCache, object) Makes the input control for the specified field read-only
by setting the IsReadOnly property to true

SetReadOnly<Field>(PXCache, object, bool) Makes the input control for the specified field read-only
or not-read-only by setting the IsReadOnly property

SetRequired(PXCache, string, bool) Sets the Required property for the field with the
specified name for all data records in the cache object

SetRequired<Field>(PXCache, bool) Sets the Required property for the specified field for
all data records in the cache object

SetVisibility(PXCache, string, PXUIVisibility) Sets the visibility status of the input control for
the field with the specified name by setting the
Visibility property

SetVisibility(PXCache, object, string,) Sets the visibility status of the input control for
the field with the specified name by setting the
Visibility property

SetVisibility<Field>(PXCache, object,) Sets the visibility status of the input control for the
specified field by setting the Visibility property

SetVisible(PXCache, object, string) Makes the input control for the field with the specified
name visible in the user interface by setting the
Visible property to true

SetVisible(PXCache, string, bool) Shows or hides the input control for the field with the
specified name in the user interface for all data record
by setting the Visible property

SetVisible(PXCache, object, string, bool) Shows or hides the input control for the field with the
specified name in the user interface by setting the
Visible property

SetVisible<Field>(PXCache, object) Makes the input control for the specified field visible in
the user interface by setting the Visible property to
true

 | API Reference | 469

Method Description

SetVisible<Field>(PXCache, object, bool) Shows or hides the input control for the specified field
in the user interface by setting the Visible property

SetWarning(PXCache, object, string, string) Sets the error string to display as a tooltip for the field
with the specified name

SetWarning<Field>(PXCache, object, string) Sets the error string to display as a tooltip for the
specified field

Remarks

The attribute is added:

• To a DAC field declaration to configure the field input control

• To the declaration of the method that implements an action to configure the action button

The attribute's properties configure the control layout in the user interface. You can set the display
name, specify whether the control is visible or hidden, enable or disable the control, set the error
marker, and specify access rights to view and use the control.

You can use the static methods to set the properties at run time. The PXUIFieldAttribute static
methods can be called either in the business logic container constructor or the RowSelected event
handlers.

The RowSelected event handler is raised when the user interface controls are prepared to be displayed.
This happens each type the webpage sends a request to the server.

For input controls enclosed in a form, the properties can be set in any RowSelected event handler.
For a grid column, the Visible and Required properties should be set only in the RowSelected event
handler corresponding to the primary view DAC. For example, on a master-detail webpage, the detail
grid column layout shoudl be configured in the RowSelected event handler of the master DAC type.

Also, if the grid column layout is configured at runtime, the data parameter should be set to null. This
will indicate that the property should be set for all data records shown in the grid. If a specific data
record is passed to the method rather than null, the method invocation will have no effect.

Examples

Configuring the input control for a DAC field:

[PXDBDecimal(2)]
[PXUIField(DisplayName = "Documents Total",
 Visibility = PXUIVisibility.SelectorVisible,
 Enabled = false)]
public virtual decimal? CuryDocsTotal { get; set; }

Changing the layout configuration properties at runtime:

protected virtual void APInvoice_RowSelected(PXCache cache,
 PXRowSelectedEventArgs)
{
 APInvoice doc = e.Row as APInvoice;

 // Disable the field input control
 PXUIFieldAttribute.SetEnabled<APInvoice.taxZoneID>(
 cache, doc, false);

 // Showing or hiding a 'required' mark beside a field input control
 PXUIFieldAttribute.SetRequired<APInvoice.dueDate>(
 cache, (doc.DocType != APDocType.DebitAdj));

 | API Reference | 470

 // Making a field visible.
 // The data parameter is set to null to set the property for all
 // APTran data records.
 PXUIFieldAttribute.SetVisible<APTran.projectID>(
 Transactions.Cache, null, true);
}

Note in the SetEnabled method, the first parameter is set to the cache variable. This is a PXCache
object keeping APInvoice data records. The second parameter is set to such a data record obtained
from e.Row.

On the other hand, the SetVisible method is called for the APTran DAC field, and therefore a different
cache object should be passed to the method. The appropriate cache is specified using the Cache
property of the Transactions view, which can be defined as something like this:

public PXSelect<APTran,
 Where<APTran.tranType, Equal<Current<APInvoice.docType>>,
 And<APTran.refNbr, Equal<Current<APInvoice.refNbr>>>>>

Configuring the action button:

// The action declaration
public PXAction<APDocumentFilter> viewDocument;
// The action method declaration
[PXUIField(DisplayName = "View Document",
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXButton]
public virtual IEnumerable ViewDocument(PXAdapter adapter)
{
 ...
}

Related Types

• PXUIVisibility Enumeration

• PXErrorHandling Enumeration

• PXErrorLevel Enumeration

• PXCacheRights Enumeration

PXUIField Attribute Methods

The PXUIField attribute exposes the following static methods.

GetDisplayName(PXCache, string)

Returns the value of the DisplayName property for the field with the specified name.

Syntax:

public static string GetDisplayName(PXCache cache, string name)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

 | API Reference | 471

GetDisplayName<Field>(PXCache)

Returns the value of the DisplayName property for the specified field.

Syntax:

public static string GetDisplayName<Field>(PXCache cache)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

GetError(PXCache, object, string)

Returns the error string displayed for the field with the specified name.

Syntax:

public static string GetError(PXCache cache, object data, string name)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

GetError<Field>(PXCache, object)

Returns the error string displayed for the specified field.

Syntax:

public static string GetError<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

GetErrors(PXCache, object)

Finds all fields with non-empty error strings and returns a dictionary with field names as the keys and
error messages as the values.

Syntax:

public static Dictionary<string, string> GetErrors(PXCache cache, object data)

 | API Reference | 472

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record whose fields are checked for error strings. If null, the method takes into account
all data records in the cache object.

GetItemName(PXCache)

Returns the user-friendly name of the specified cache object. The name is set using the PXCacheName
attribute.

Syntax:

public static string GetItemName(PXCache sender)

Parameters:

• cache

The cache object the method is applied to.

SetDisplayName(PXCache, string, string)

Sets the display name of the field with the specified name.

Syntax:

public static void SetDisplayName(PXCache cache, string name, string displayName)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

• displayName

The new display name.

SetDisplayName<Field>(PXCache, string)

Sets the display name of the specified field.

Syntax:

public static void SetDisplayName<Field>(PXCache cache, string displayName)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• displayName

The new display name.

 | API Reference | 473

SetEnabled(PXCache, object, bool)

Enables or disables the input controls for all fields in the specific data record or all data records by
setting the Enabled property.

Syntax:

public static void SetEnabled(PXCache cache, object data, bool isEnabled)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value that is assigned to the Enabled property.

SetEnabled(PXCache, object, string)

Enables the input control for the field with the specified name by setting the Enabled property to true.

Syntax:

public static void SetEnabled(PXCache cache, object data, string name)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

SetEnabled(PXCache, string, bool)

Enables or disables the input control for the field with the specified name by setting the Enabled
property.

Syntax:

public static void SetEnabled(PXCache cache, string name, bool isEnabled)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

• isEnabled

The value that is assigned to the Enabled property.

 | API Reference | 474

SetEnabled(PXCache, object, string, bool)

Enables or disables the input control for the field with the specified name by setting the Enabled
property.

Syntax:

public static void SetEnabled(PXCache cache, object data,
 string name, bool isEnabled)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• isEnabled

The value that is assigned to the Enabled property.

SetEnabled<Field>(PXCache, object)

Enables the specified field of the specific data record in the cache object by setting the Enabled
property to true.

Syntax:

public static void SetEnabled<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

SetEnabled<Field>(PXCache, object, bool)

Enables or disables the input control for the specified field by setting the Enabled property.

Syntax:

public static void SetEnabled<Field>(PXCache cache, object data,
 bool isEnabled)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

 | API Reference | 475

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isEnabled

The value that is assigned to the Enabled property.

SetError(PXCache, object, string, string)

Sets the error string to display as a tooltip for the field with the specified name.

Syntax:

public static void SetError(PXCache cache, object data,
 string name, string error)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• error

The string that is set as the error message string.

SetError(PXCache, object, string, string, string)

Sets the error string to display as a tooltip and the error value to display in the input control for the
field with the specified name.

Syntax:

public static void SetError(PXCache cache, object data, string name,
 string error, string errorValue)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• error

The error string displayed as a tooltip on the field input control.

• errorValue

The string displayed in the field input control (is not assigned to the field).

 | API Reference | 476

SetError<Field>(PXCache, object, string)

Sets the error string to display as a tooltip for the specified field.

Syntax:

public static void SetError<Field>(PXCache cache, object data, string error)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• error

The error string displayed as a tooltip on the field input control.

SetError<Field>(PXCache, object, string, string)

Sets the error string to display as a tooltip and the error value to display in the input control for the
specified field. The error level is set to PXErrorLevel.Error.

Syntax:

public static void SetError<Field>(PXCache cache, object data,
 string error, string errorValue)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• error

The error string displayed as a tooltip on the field input control.

• errorValue

The string displayed in the field input control (is not assigned to the field).

SetReadOnly(PXCache, object)

Makes the input controls for all fields read-only by setting the IsReadOnly property to true.

Syntax:

public static void SetReadOnly(PXCache cache, object data)

Parameters:

• cache

 | API Reference | 477

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

SetReadOnly(PXCache, object, string)

Makes the input control for the field with the specified name read-only by setting the IsReadOnly
property to true.

Syntax:

public static void SetReadOnly(PXCache cache, object data, string name)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

SetReadOnly(PXCache, object, bool)

Makes the input controls for all field read-only or not read-only by setting the IsReadOnly property.

Syntax:

public static void SetReadOnly(PXCache cache, object data, bool isReadOnly)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isReadOnly

The value that is assigned to the IsReadOnly property.

SetReadOnly(PXCache, object, string, bool)

Makes the input control for the field with the specified name read-only or not-read-only by setting the
IsReadOnly property.

Syntax:

public static void SetReadOnly(PXCache cache, object data,
 string name, bool isReadOnly)

Parameters:

• cache

 | API Reference | 478

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• isReadOnly

The value that is assigned to the IsReadOnly property.

SetReadOnly<Field>(PXCache, object)

Makes the input control for the specified field read-only by setting the IsReadOnly property to true.

Syntax:

public static void SetReadOnly<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

SetReadOnly<Field>(PXCache, object, bool)

Makes the input control for the specified field read-only or not-read-only by setting the IsReadOnly
property.

Syntax:

public static void SetReadOnly<Field>(PXCache cache, object data,
 bool isReadOnly)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isReadOnly

The value that is assigned to the IsReadOnly property.

SetRequired(PXCache, string, bool)

Sets the Required property for the field with the specified name for all data records in the cache object.

 | API Reference | 479

Syntax:

public static void SetRequired(PXCache cache, string name, bool required)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

• required

The value assigned to the Required property.

SetRequired<Field>(PXCache, bool)

Sets the Required property for the specified field for all data records in the cache object.

Syntax:

public static void SetRequired<Field>(PXCache cache, bool required)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• required

The value assigned to the Required property.

SetVisibility(PXCache, string, PXUIVisibility)

Sets the visibility status of the input control for the field with the specified name by setting the
Visibility property.

Syntax:

public static void SetVisibility(PXCache cache, string name,
 PXUIVisibility visibility)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

• visibility

The value that is assigned to the Enabled property.

SetVisibility(PXCache, object, string, PXUIVisibility)

Sets the visibility status of the input control for the field with the specified name by setting the
Visibility property.

 | API Reference | 480

Syntax:

public static void SetVisibility(PXCache cache, object data,
 string name, PXUIVisibility visibility)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• visibility

The value that is assigned to the Visibility property.

SetVisibility<Field>(PXCache, object, PXUIVisibility)

Sets the visibility status of the input control for the specified field by setting the Visibility property.

Syntax:

public static void SetVisibility<Field>(PXCache cache, object data,
 PXUIVisibility visibility)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• visibility

The value that is assigned to the Visibility property.

SetVisible(PXCache, object, string)

Makes the input control for the field with the specified name visible in the user interface by setting the
Visible property to true.

Syntax:

public static void SetVisible(PXCache cache, object data, string name)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

 | API Reference | 481

• name

The field name.

SetVisible(PXCache, string, bool)

Shows or hides the input control for the field with the specified name in the user interface for all data
record by setting the Visible property.

Syntax:

public static void SetVisible(PXCache cache, string name, bool isVisible)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• name

The field name.

• isVisible

The value that is assigned to the Enabled property.

SetVisible(PXCache, object, string, bool)

Shows or hides the input control for the field with the specified name in the user interface by setting the
Visible property.

Syntax:

public static void SetVisible(PXCache cache, object data,
 string name, bool isVisible)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• isVisible

The value that is assigned to the Enabled property.

SetVisible<Field>(PXCache, object)

Makes the input control for the specified field visible in the user interface by setting the Visible
property to true.

Syntax:

public static void SetVisible<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

 | API Reference | 482

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

SetVisible<Field>(PXCache, object, bool)

Shows or hides the input control for the specified field in the user interface by setting the Visible
property.

Syntax:

public static void SetVisible<Field>(PXCache cache, object data, bool isVisible)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isVisible

The value that is assigned to the Visible property.

SetWarning(PXCache, object, string, string)

Sets the error string to display as a tooltip for the field with the specified name. The error level is set to
PXErrorLevel.Warning.

Syntax:

public static void SetWarning(PXCache cache, object data,
 string name, string error)

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• name

The field name.

• error

The error string displayed as a tooltip on the field input control.

SetWarning<Field>(PXCache, object, string)

Sets the error string to display as a tooltip for the specified field. The error level is set to
PXErrorLevel.Warning.

 | API Reference | 483

Syntax:

public static void SetWarning<Field>(PXCache cache, object data,
 string error)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXUIField type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• error

The error string displayed as a tooltip on the field input control.

PXUIVisibility Enumeration

This enumeration is used to define:

• The visibility of an input control or a grid column in the webpage layout designer.

• The default set of columns displayed in the pop-up of the PXSelector input control.

• The set of columns automatically added to the PXGrid control with the AutoGenerateColumns
property set to AppendDynamic, when no appropriate columns are defined for the PXGrid control.

Syntax

public enum PXUIVisibility

Members

• Undefined

The visibility of a field input control or column is not defined.

• Invisible = 1

The field input control or column is not displayed in the webpage layout designer.

• Visible

The field input control or column is displayed in the webpage layout designer.

• SelectorVisible = 4 | Visible

The field input control or column is displayed in the webpage layout designer. Also, the column
that corresponds to the field is added to the PXSelector lookup control when the PXSelector
attribute does not define the set of columns explicitly.

• Dynamic

The field input control or column is displayed in the webpage layout designer., but the field colum
is automatically added to the PXGrid control with the AutoGenerateColumns property value set to
AppendDynamic, when the control has no appropriate column defined for this field.

PXErrorLevel Enumeration

This enumeration specifies the level of the PXSetPropertyException exception. Depending on the
level, different error or warning signs are attached to UI controls associated with particular fields or
rows.

 | API Reference | 484

Syntax

public enum PXErrorLevel

Members

• Undefined

The Error sign is attached to the input controls or cells of the DAC fields whose PXFieldState
Error property values are not null.

• RowInfo

The Information sign is attached to a DAC row within the PXGrid control.

• Warning

The Warning sign is attached to a DAC field input control or cell.

• RowWarning

The Warning sign is attached to a DAC row within the PXGrid control.

• Error

The Error sign is attached to a DAC field input control or a cell.

• RowError

The Error sign is attached to a DAC row within the PXGrid control.

PXCacheRights Enumeration

Maps the user role's access rights for a specific PXCache object.

Syntax

public enum PXCacheRights

Members

• Denied

Matches the roles for whom access to a PXCache object is denied.

• Select

Matches the roles that are allowed to read data records of the DAC type corresponding to the
PXCache object.

• Update

Matches the roles that are allowed to update data records of the DAC type corresponding to the
PXCache object.

• Insert

Matches the roles that are allowed to insert data records of the DAC type corresponding to the
PXCache object.

• Delete

Matches the roles that are allowed to delete data records of the DAC type corresponding to the
PXCache object.

 | API Reference | 485

Examples

Using the enumeration value to confiuge access rights for the button representing a graph action in the
user interface:

public PXAction<ApproveBillsFilter> ViewDocument;
[PXUIField(DisplayName = "View Document",
 MapEnableRights = PXCacheRights.Update,
 MapViewRights = PXCacheRights.Select)]
[PXButton]
public virtual IEnumerable viewDocument(PXAdapter adapter)
{
 ...
}

The user with the select rights for the ApproveBillsFilter cache will see the View Document button
in the user interface. For the user with the update rights for the ApproveBillsFilter cache, the View
Document button will also be enabled.

Default Values
You can set the default values to DAC fields using the following attributes:

• PXDefault sets the default value and validates the field value on saving to the database. Derived
attributes:

• PXUnboundDefault behaves in the same way as PXDefault, but the default value is assigned
to the field when a data record is retrieved from the database.

• PXDefaultValidate

• PXDBDefault sets the default value using the value of some source field and updates the value if
the source field value changes in the database before the data record is saved.

Differences

The first choice to set the default value to a DAC field, is the PXDefault attribute. You can set a
constant as the default value or provide a BQL query to obtain a value from the database or data
records from the cache. The default value is assigned to the field when a data record holding this field is
inserted into the cache.

You can use the PXDefault just to make the field mandatory for input, by using the attribute without
parameters.

The PXDefault attribute is not suitable when the default value is taken from a field that can be auto-
generated by the database (such as the identity field). In this case, you should use the PXDBDefault
attribute. It updates the value assigned to the field as default with the value generated by the
database,

For example, if you implement a master-detail relationship, you should use the PXDBDefault attribute
to bind the detail data record fields to master data record key fields. If the master data record is new,
its identity field will be set to a real value by the database, when the master record is saved. So if a
detail data record is created before the master data record is saved, the detail data record field will be
set to the temprorary value of the master identity field. However, the PXDBDefault attribute will replace
it with the real one on saving of the detail data record to the database.

You can use the PXUnboundDefault attribute to set the default value to an unbound field. The value is
assigned when a data record is retrieved from the database (on the RowSelecting event).

PXDefault Attribute

Sets the default value for a DAC field.

See Remarks for more details. See Examples for examples of usage.

 | API Reference | 486

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldDefaultingSubscriber

• IPXRowPersistingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXDefaultAttribute))]
public class PXDefaultAttribute : PXEventSubscriberAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowPersistingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public virtual bool SearchOnDefault

Gets or sets the value that indicates whether the BQL query specified calculate the default value is
executed or ignored. By default, is true (the BQL query is executed).

• public virtual PXPersistingCheck PersistingCheck

Gets or sets the PXPersistingCheck value that defines how to check the field value for null before
saving a data record to the database. If a value doesn't pass a check, the attribute will throw the
PXRowPersistingException exception. As a result, the save action will fail and the user will get
an error message.

By default, the property equals PXPersistingCheck.Null, which disallows null values. Note
that for fields that are displayed in the user interface, this setting also disallows blank values
(containing only whitespce characters).

• public virtual Type MapErrorTo

Gets or sets the value that redirects the error from the field the attribute is placed on (source
field) to another field. If an error happens on the source field, the error message will be
displayed over the input control of the other field. The property can be set to a type derived from
IBqlField. The BQL query is set in a constructor.

Examples:

[PXDefault(MapErrorTo = typeof(PMRegister.date))]
public virtual String TranPeriodID { get; set; }

• public virtual object Constant

Gets or sets a constant value that will be used as the default value.

• public virtual Type SourceField

Gets or sets the field whose value will be taken from the BQL query result and used as the default
value. The property can be set to a type derived from IBqlField. The BQL query is set in a
constructor.

 | API Reference | 487

Examples:

[PXDefault(
 typeof(
 Select<VendorClass,
 Where<VendorClass.vendorClassID,
 Equal<Current<Vendor.vendorClassID>>>>),
 SourceField = typeof(VendorClass.allowOverrideRate))]
public virtual Boolean? AllowOverrideRate { get; set; }

Constructors

Constructor Description

PXDefaultAttribute() Initializes a new instance that does not provide the
default value, but checks whether the field value is not
null before saving to the database

PXDefaultAttribute(Type) Initializes a new instance that calculates the default
value using the provided BQL query

PXDefaultAttribute(object) Initializes a new instance that defines the default value
as a constant value

PXDefaultAttribute(object, Type) Initializes a new instance that calculates the default
value using the provided BQL query and uses the
constant value if the BQL query returns nothing

PXDefaultAttribute(TypeCode, string) Converts the provided string to a specific type and
Initializes a new instance that uses the conversion
result as the default value

PXDefaultAttribute(TypeCode, string, Type) Initializes a new instance that determines the default
value using either the provided BQL query or the
constant if the BQL query returns nothing

Static Methods

Method Description

Select(PXGraph, BqlCommand, Type, string,
object)

SetDefault(PXCache, string, object) Sets the new default value of the field with the
specified name for all data records in the cache

SetDefault(PXCache, object, string, object) Sets the new default value of the field with the
specified name for a particular data record

SetDefault<Field>(PXCache, object) Sets the new default value of the specified field for all
data records in the cache

SetDefault<Field>(PXCache, object, object) Sets the new default value of the specified field for a
particular data record

SetPersistingCheck(PXCache, string, object,) Sets the PersistingCheck property for the field with
the specified name in a particular data record

SetPersistingCheck<Field>(PXCache,
object,)

Sets the PersistingCheck property for the specifed
field in a particular data record

 | API Reference | 488

Remarks

The PXDefault attribute provides the default value for a DAC field. The default value is assigned to the
field when the cache raises the FiedlDefaulting event. This happens when the a new row is inserted
in code or through the user interface.

A value specified as default can be a constant or the result of a BQL query. If you provide a BQL query,
the attribute will execute it on the FieldDefaulting event. You can specify both, in which case the
attribute first executes the BQL query and uses the constant if the BQL query returns an empty set.
If you provide a DAC field as the BQL query, the attribute takes the value of this field from the cache
object's Current property. The attribute uses the cache object of the DAC type in which the field is
defined.

The PXDefault attribute also checks that the field value is not null before saving to the database. You
can adjust this behavior using the PersistingCheck property. Its value indicates whether the attribute
should check that the value is not null, check that the value is not null or a blank string, or not check.

The attribute can redirect the error that happened on the field to another field if you set the
MapErrorTo property.

You can use the static methods to change the attribute properties for a particular data record in the
cache or for all data record in the cache.

Examples

The attribute below sets a constant as the default value.

[PXDefault(false)]
public virtural bool? IsActive { get; set; }

The attribute below provides a string constants that is converted to the default value of the specific
type.

[PXDefault(TypeCode.Decimal, "0.0")]
public virtual Decimal? AdjDiscAmt { get; set; }

The attribute below will take the default value from the ARPayment cache object and won't check the
field value on saving of the changes to the database.

[PXDefault(typeof(ARPayment.adjDate),
 PersistingCheck = PXPersistingCheck.Nothing)]
public virtual DateTime? TillDate { get; set; }

The attribute below only prevents the field from being null and does not set a default value.

[PXDefault]
public virtual string BAccountAcctCD { get; set; }

The attribute below will execute the Search BQL query and take the CAEntryType.ReferenceID field
value from the result.

[PXDefault(typeof(
 Search<CAEntryType.referenceID,
 Where<CAEntryType.entryTypeId,
 Equal<Current<AddTrxFilter.entryTypeID>>>>))]
public virtual int? ReferenceID { get; set; }

The attribute below will execute the Select BQL query and take the VendorClass.AllowOverrideRate
field value from the result or will use false as the default value if the BQL query returns an empty set.

[PXDefault(
 false,
 typeof(

 | API Reference | 489

 Select<VendorClass,
 Where<VendorClass.vendorClassID,
 Equal<Current<Vendor.vendorClassID>>>>),
 SourceField = typeof(VendorClass.allowOverrideRate))]
public virtual Boolean? AllowOverrideRate { get; set; }

Setting a new default value to a field at run time:

// The view declaration in a graph
public PXSelect<ARAdjust> Adjustments;
...
// The code executed in some graph method
PXDefaultAttribute.SetDefault<ARAdjust.adjdDocType>(Adjustments.Cache, "CRM");

Changing the way the attribute checks the field value on saving of the changes to the database:

protected virtual void ARPayment_RowSelected(PXCache cache, PXRowSelectedEventArgs
 e)
{
 ARPayment doc = e.Row as ARPayment;
 ...
 PXDefaultAttribute.SetPersistingCheck<ARPayment.depositAfter>(
 cache, doc,
 isPayment && (doc.DepositAsBatch == true)?
 PXPersistingCheck.NullOrBlank : PXPersistingCheck.Nothing);
 ...
}

Related Types

• PXPersistingCheck Enumeration

PXDefault Attribute Constructors

The PXDefault attribute exposes the following constructors.

PXDefaultAttribute()

Initializes a new instance that does not provide the default value, but checks whether the field value is
not null before saving to the database.

Syntax:

public PXDefaultAttribute()

PXDefaultAttribute(Type)

Initializes a new instance that calculates the default value using the provided BQL query.

Syntax:

public PXDefaultAttribute(Type sourceType)

Parameters:

• sourceType

The BQL query that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXDefaultAttribute(object)

Initializes a new instance that defines the default value as a constant value.

 | API Reference | 490

Syntax:

public PXDefaultAttribute(object constant)

Parameters:

• constant

Constant value that is used as the default value.

PXDefaultAttribute(object, Type)

Initializes a new instance that calculates the default value using the provided BQL query and uses the
constant value if the BQL query returns nothing. If the BQL query is of Select type, you should also
explicitly set the SourceField property. If the BQL query is a DAC field, the attribute will take the value
from the Current property of the cache object corresponding to the DAC.

Syntax:

public PXDefaultAttribute(object constant, Type sourceType) : this(sourceType)

Parameters:

• constant

Constant value that is used as the default value.

• sourceType

The BQL query that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXDefaultAttribute(TypeCode, string)

Converts the provided string to a specific type and Initializes a new instance that uses the conversion
result as the default value.

Syntax:

public PXDefaultAttribute(TypeCode converter, string constant)

Parameters:

• converter

The type code that specifies the type to covert the string to.

• constant

The string representation of the constant used as the default value.

PXDefaultAttribute(TypeCode, string, Type)

Initializes a new instance that determines the default value using either the provided BQL query or the
constant if the BQL query returns nothing.

Syntax:

public PXDefaultAttribute(TypeCode converter, string constant, Type sourceType) :
 this(sourceType)

Parameters:

• converter

The type code that specifies the type to convert the string constant to.

 | API Reference | 491

• constant

The string representation of the constant used as the default value if the BQL query returns
nothing.

• sourceType

The BQL command that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXDefault Attribute Methods

The PXDefault attribute exposes the following static methods.

Select(PXGraph, BqlCommand, Type, string, object)

Syntax:

public static object Select(PXGraph graph, BqlCommand Select, Type sourceType,
 string sourceField, object row)

SetDefault(PXCache, string, object)

Sets the new default value of the field with the specified name for all data records in the cache.

Syntax:

public static void SetDefault(PXCache cache, string field, object def)

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• field

The name of the field to set the default value to.

• def

The new default value.

SetDefault(PXCache, object, string, object)

Sets the new default value of the field with the specified name for a particular data record.

Syntax:

public static void SetDefault(PXCache cache, object data, string field, object def)

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• field

The name of the field to set the default value to.

• def

 | API Reference | 492

The new default value.

SetDefault<Field>(PXCache, object)

Sets the new default value of the specified field for all data records in the cache.

Syntax:

public static void SetDefault<Field>(PXCache cache, object def)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• def

The new default value.

SetDefault<Field>(PXCache, object, object)

Sets the new default value of the specified field for a particular data record.

Syntax:

public static void SetDefault<Field>(PXCache cache, object data, object def)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• def

The new default value.

SetPersistingCheck(PXCache, string, object, PXPersistingCheck)

Sets the PersistingCheck property for the field with the specified name in a particular data record.

Syntax:

public static void SetPersistingCheck(PXCache cache, string field,
 object data, PXPersistingCheck check)

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• field

The field name.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

 | API Reference | 493

• def

The value that is set to the property.

SetPersistingCheck<Field>(PXCache, object, PXPersistingCheck)

Sets the PersistingCheck property for the specifed field in a particular data record.

Syntax:

public static void SetPersistingCheck<Field>(PXCache cache, object data,
 PXPersistingCheck check)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDefault type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• def

The value that is set to the property.

PXPersistingCheck Enumeration

Defines different ways the PXDefault attribute checks the field value before a data record with this field
is saved to the database.

Syntax

public enum PXPersistingCheck

Members

• Null

Check that the field value is not null.

Note that the user interface (UI) trims string values, so for fields displayed in the UI, values
containing only whitespace characters will also be rejected.

• NullOrBlank

Check that the field value is not null and is not a string that contains only whitespace characters.

• Nothing

Do not check the field value.

PXDBDefault Attribute

Sets the default value for a DAC field. Use to assign a value from the auto-generated key field.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldDefaultingSubscriber

 | API Reference | 494

• IPXRowPersistingSubscriber

• IPXRowPersistedSubscriber

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Class, AllowMultiple = true)]
public class PXDBDefaultAttribute : PXEventSubscriberAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber

Properties

• public virtual PXPersistingCheck PersistingCheck

Gets or sets the PXPersistingCheck value that defines how to check the field value before saving
a data record to the database. The attribute either checks that the value is not null, checks
that the value is null or a blank string (contains only whitespace characters), or doesn't check
the value. If the attribute discovers that the value is in fact null or blank, it will throw the
PXRowPersistingException exception. As a result, the save action will fail and the user will get
an error message.

• public bool DefaultForUpdate

Gets or sets the value that indicates whether the default value is reassigned on a database update
operation.

• public bool DefaultForInsert

Gets or sets the value that indicates whether the default value is reassigned on a database insert
operation.

Constructors

• public PXDBDefaultAttribute(Type sourceType)

Initializes a new instance of the attribute. Obtains the default value using the provided BQL query.

Parameters:

• sourceType

The BQL query that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

Static Methods

Method Description

SetDefaultForInsert<Field>(PXCache, object,
bool)

Sets the DefaultForInsert property for a particular
data record

SetDefaultForUpdate<Field>(PXCache,
object, bool)

Sets the DefaultForUpdate property for a particular
data record

 | API Reference | 495

Examples

Setting the default value that will be taken from the current POReceipt cache object and reassigned
only on insertion of the data record to the database:

public partial class LandedCostTran : PX.Data.IBqlTable
{
 ...
 [PXDBString(3, IsFixed = true)]
 [PXDBDefault(typeof(POReceipt.receiptType),
 DefaultForUpdate = false)]
 public virtual string POReceiptType { get; set; }
 ...
}

Changing the SetDefaultForUpdate property:

PXDBDefaultAttribute.SetDefaultForUpdate<SOOrderShipment.shipAddressID>(
 OrderList.Cache, null, false);

The method sets the property for the ShipAddressID field in all data records in the cache object
associated with the OrderList view:

PXDBDefault Attribute Methods

The PXDBDefault attribute exposes the following static methods.

SetDefaultForInsert<Field>(PXCache, object, bool)

Sets the DefaultForInsert property for a particular data record.

Syntax:

public static void SetDefaultForInsert<Field>(
 PXCache cache, object data, bool def)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PDBXDefault type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• def

The new value for the property.

SetDefaultForUpdate<Field>(PXCache, object, bool)

Sets the DefaultForUpdate property for a particular data record.

Syntax:

public static void SetDefaultForUpdate<Field>(
 PXCache cache, object data, bool def)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXDBDefault type.

 | API Reference | 496

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• def

The new value for the property.

PXUnboundDefault Attribute

Sets the default value to an unbound DAC field. The value is assigned to the field when the data record
is retrieved from the database.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDefaultAttribute

Interfaces

• IPXRowSelectingSubscriber

Syntax

public class PXUnboundDefaultAttribute : PXDefaultAttribute,
 IPXRowSelectingSubscriber

Constructors

Constructor Description

PXUnboundDefaultAttribute() Initializes a new instance that does not provide the
default value, but checks whether the field value is not
null before saving to the database

PXUnboundDefaultAttribute(Type) Initializes a new instance that calculates the default
value using the provided BQL query

PXUnboundDefaultAttribute(object) Initializes a new instance that defines the default value
as a constant value

PXUnboundDefaultAttribute(object, Type) Initializes a new instance that calculates the default
value using the provided BQL query and uses the
constant value if the BQL query returns nothing

PXUnboundDefaultAttribute(TypeCode,
string)

Converts the provided string to a specific type and
initializes a new instance that uses the conversion
result as the default value

PXUnboundDefaultAttribute(TypeCode, string,
Type)

Initializes a new instance that determines the default
value using either the provided BQL query or the
constant if the BQL query returns nothing

Remarks

This attributes is similar to the PXDefault attribute, but, unlike the PXDefault attribute, it assigns
the provided default value to the field when a data record is retrieved from the database (on the
RowSelecting event). The PXDefault attribute assigns the default value to the field when a data record
is inserted to the cache object.

 | API Reference | 497

Examples

[PXDecimal(4)]
[PXUnboundDefault(TypeCode.Decimal, "0.0")]
public virtual Decimal? DocBal { get; set; }

PXUnboundDefault Attribute Constructors

The PXUnboundDefault attribute exposes the following constructors.

PXUnboundDefaultAttribute()

Initializes a new instance that does not provide the default value, but checks whether the field value is
not null before saving to the database.

Syntax:

public PXUnboundDefaultAttribute()

PXUnboundDefaultAttribute(Type)

Initializes a new instance that calculates the default value using the provided BQL query.

Syntax:

public PXUnboundDefaultAttribute(Type sourceType) : base(sourceType)

Parameters:

• sourceType

The BQL query that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXUnboundDefaultAttribute(object)

Initializes a new instance that defines the default value as a constant value.

Syntax:

public PXUnboundDefaultAttribute(object constant) : base(constant)

Parameters:

• constant

Constant value that is used as the default value.

PXUnboundDefaultAttribute(object, Type)

Initializes a new instance that calculates the default value using the provided BQL query and uses the
constant value if the BQL query returns nothing. If the BQL query is of Select type, you should also
explicitly set the SourceField property. If the BQL query is a DAC field, the attribute will take the value
from the Current property of the cache object corresponding to the DAC.

Syntax:

public PXUnboundDefaultAttribute(object constant, Type sourceType)
 : base(constant, sourceType)

Parameters:

• constant

Constant value that is used as the default value.

 | API Reference | 498

• sourceType

The BQL query that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXUnboundDefaultAttribute(TypeCode, string)

Converts the provided string to a specific type and initializes a new instance that uses the conversion
result as the default value.

Syntax:

public PXUnboundDefaultAttribute(TypeCode converter, string constant)
 : base(converter, constant)

Parameters:

• converter

The type code that specifies the type to covert the string to..

• constant

The string representation of the constant used as the default value.

PXUnboundDefaultAttribute(TypeCode, string, Type)

Initializes a new instance that determines the default value using either the provided BQL query or the
constant if the BQL query returns nothing.

Syntax:

public PXUnboundDefaultAttribute(TypeCode converter, string constant, Type
 sourceType)
 : base(converter, constant, sourceType)

Parameters:

• converter

The type code that specifies the type to convert the string constant to.

• constant

The string representation of the constant used as the default value if the BQL query returns
nothing.

• sourceType

The BQL command that is used to calculate the default value. Accepts the types derived from:
IBqlSearch, IBqlSelect, IBqlField, IBqlTable.

PXDefaultValidate Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDefaultAttribute

Syntax

public class PXDefaultValidateAttribute : PXDefaultAttribute

 | API Reference | 499

Constructors

• public PXDefaultValidateAttribute(Type sourceType, Type
validateExists) : base(sourceType)

Complex Input Controls
You should use attributes to configure complex input controls such as dropdown lists and lookup
control.

Dropdown Lists

The following attributes configure a dropdown list that will represent a DAC field in the user interface:

• PXStringList

Configures the dropdown list that will let a user select from a fixed set of strings.

• PXIntList

Configures the dropdown list that will let a user select from a fixed set of values. The control
displays strings, while the field is assigned the integer value corresponding to the selected string.

• PXDecimalList

Configures the dropdown list that will let a user select from a fixed set of strings converted to
decimal values.

• PXImagesList

• PXDBIntList

• PXDBStringList

Lookup Controls

The following attributes configure a lookup control that will represent a field in the user interface:

• PXSelector

Configures the lookup control for a DAC field that references a data record from a particular table
by holding its key.

• PXCustomSelector

The base class to derive custom attributes configuring lookup controls.

• PXRestrictor

Adds a restriction to a BQL command that selects data for a lookup control and displays the error
message when the value entered does not fit the restriction.

Segmented Key Controls

A segmented key value is a string value that identifies a data record and consists of one or several
segments. A segmented key is an entity identified by a string (referred to as dimension). A segmented
key is associated with segments. For each segment, you can define the list of possible values. You
can create a new segment when the data records identified by the segmented key already exist in the
database.

The following attributes configure a control to input a segmented key value in the user interface:

• PXDimension

 | API Reference | 500

Configures the input control that formats an input as a segmented key value and displays the list
of allowed values for each key segment.

• PXDimensionSelector

Configures the input control that combines functionality of the PXDimenstion attribute and the
PXSelector attribute. A user can observe the data set defined by the attribute and select a data
record from this data set to assign its segmented key value to the field or to substitute it with the
surrogate key.

• PXDimensionWildcard

Behaves as the PXDimensionSelector attribute, but additionally allows the ? character treated as
a wildcard.

PXStringList Attribute

Sets a dropdown list as the input control for a DAC field. The control will let a user select from a fixed
set of strings or input a value manually.

See Remarks for more details. See Examples for examples of usage.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

• IPXLocalizableList

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXBaseListAttribute))]
public class PXStringListAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber,
 IPXLocalizableList

Properties

• public Dictionary<string, string> ValueLabelDic

Gets the dictionary of allowed value-label pairs.

• public virtual bool IsLocalizable

Gets or sets the value that indicates whether the values and labels used by the attribute are
localizable.

• public bool ExclusiveValues

Gets or sets the value that indicates whether a user can input a value not present in the list of
allowed values. If true, it is prohibited. By default, the property is set to true, which means that
the user can select only from the values in the dropdown list.

• public virtual Type BqlField

Returns null on get. Sets the BQL field representing the field in BQL queries.

 | API Reference | 501

Constructors

Constructor Description

PXStringListAttribute() Initializes a new instance with empty lists of allowed
values and labels

PXStringListAttribute(string) Initializes a new instance with the list of allowed values
obtained from the provided string

PXStringListAttribute(string[], string[]) Initializes a new instance with the specified lists of
allowed values and corresponding labels

Static Methods

Method Description

AppendList(PXCache, object, string, string[],
string[])

Extends the lists of allowed values and labels in
the attribute instance that marks the field with the
specified name in a particular data record

AppendList<Field>(PXCache, object, string[],
string[])

Extends the lists of allowed values and labels in the
attribute instance that marks the specified field in a
particular data record

SetList(PXCache, object, string,) Sets the lists of allowed values and labels from the
provided instance to the attribute instance that marks
the field with the specified name in a particular data
record

SetList(PXCache, object, string, string[],
string[])

Sets the lists of allowed values and labels for the
attribute instance that marks the field with the
specified name in a particular data record

SetList<Field>(PXCache, object,
PXStringListAttribute)

Sets the lists of allowed values and labels from the
provided instance to the attribute instance that marks
the specified field in a particular data record

SetList<Field>(PXCache, object, string[],
string[])

Sets the lists of allowed values and labels from the
provided instance to the attribute instance that marks
the specified field in a particular data record

Remarks

The attribute configures a dropdown list that will represent the DAC field in the user interface. You
should provide the list of allowed string values and the list of the corresponding labels in the attribute
constructor.

You can reconfigure the dropdown list at run time by calling the static methods. You can set a different
list of values of labels or extend the list.

Examples

The attribute is added to the DAC field definition as follows.

[PXStringList(
 new[] { "N", "P", "I", "F" },
 new[] { "New", "Prepared", "Processed", "Partially Processed" }
)]
[PXDefault("N")]
public virtual string Status { get; set; }

 | API Reference | 502

The attribute below obtains the list of values from the provided string.

[PXStringList("Dr.,Miss,Mr,Mrs,Prof.")]
public virtual string TitleOfCourtesy { get; set; }

The attribute below obtains the lists of values and labels from the provided string. The user will select
from Import and Export. While the field will be set to I or E.

[PXStringList("I;Import,E;Export")]
public virtual string TitleOfCourtesy { get; set; }

The example below demonstrates an invocation of a PXStringListAttribute static method.

List<string> values = new List<string>();
List<string> labels = new List<string>();
... // Fill the values and labels lists
// Specify as arrays of values and labels of the dropdown list
PXStringListAttribute.SetList<AUSchedule.actionName>(
 Schedule.Cache, null, values.ToArray(), labels.ToArray());

The method called in the example will set the new lists of values and labels for all data records in
the cache object the Schedule.Cache variable references. The method will assign the lists to the
PXStringList attribute instances attached to the ActionName field.

PXStringList Attribute Constructors

The PXStringList attribute exposes the following constructors.

PXStringListAttribute()

Initializes a new instance with empty lists of allowed values and labels.

Syntax:

public PXStringListAttribute() : base()

PXStringListAttribute(string)

Initializes a new instance with the list of allowed values obtained from the provided string. The string
should contain either values separated by a comma, or value-label pairs where the value and label are
separated by a semicolon and different pairs are separated by a comma. In the first case labels are set
to value strings.

Syntax:

public PXStringListAttribute(string list) : this()

Parameters:

• list

The string containing the list of values or value-label pairs.

PXStringListAttribute(string[], string[])

Initializes a new instance with the specified lists of allowed values and corresponding labels. When a
user selects a label in the user interface, the corresponding value is assigned to the field marked by the
instance. The two lists must be of the same length.

Syntax:

public PXStringListAttribute(string[] allowedValues, string[] allowedLabels) :
 this()

 | API Reference | 503

Parameters:

• allowedValues

The list of values assigned to the field when a user selects the corresponding labels..

• allowedLabels

The list of labels displayed in the user interface when a user expands the control.

PXStringList Attribute Methods

The PXStringList attribute exposes the following static methods.

AppendList(PXCache, object, string, string[], string[])

Extends the lists of allowed values and labels in the attribute instance that marks the field with the
specified name in a particular data record.

Syntax:

public static void AppendList(PXCache cache, object data, string field,
 string[] allowedValues, string[] allowedLabels)

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• allowedValues

The list of values that is appended to the existing list of values.

• allowedLabels

The list of labels that is appended to the existing list of labels.

AppendList<Field>(PXCache, object, string[], string[])

Extends the lists of allowed values and labels in the attribute instance that marks the specified field in a
particular data record.

Syntax:

public static void AppendList<Field>(PXCache cache, object data,
 string[] allowedValues,
 string[] allowedLabels)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• allowedValues

The list of values that is appended to the existing list of values.

 | API Reference | 504

• allowedLabels

The list of labels that is appended to the existing list of labels.

SetList(PXCache, object, string, PXStringListAttribute)

Sets the lists of allowed values and labels from the provided instance to the attribute instance that
marks the field with the specified name in a particular data record.

Syntax:

public static void SetList(PXCache cache, object data, string field,
 PXStringListAttribute listSource)

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• field

The name of the field that is be marked with the attribute.

• listSource

The attribute instance from which the lists of allowed values and labels are obtained.

SetList(PXCache, object, string, string[], string[])

Sets the lists of allowed values and labels for the attribute instance that marks the field with the
specified name in a particular data record.

Syntax:

public static void SetList(PXCache cache, object data, string field,
 string[] allowedValues, string[] allowedLabels)

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• field

The name of the field that is be marked with the attribute.

• allowedValues

The new list of values.

• allowedLabels

The new list of labels.

 | API Reference | 505

SetList<Field>(PXCache, object, PXStringListAttribute)

Sets the lists of allowed values and labels from the provided instance to the attribute instance that
marks the specified field in a particular data record.

Syntax:

public static void SetList<Field>(PXCache cache, object data,
 PXStringListAttribute listSource)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• listSource

The attribute instance from which the lists of allowed values and labels are obtained.

SetList<Field>(PXCache, object, string[], string[])

Sets the lists of allowed values and labels from the provided instance to the attribute instance that
marks the specified field in a particular data record.

Syntax:

public static void SetList<Field>(PXCache cache, object data,
 string[] allowedValues,
 string[] allowedLabels)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXStringList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• allowedValues

The new list of values.

• allowedLabels

The new list of labels.

PXDecimalList Attribute

Sets a dropdown list as the input control for a DAC field of decimal type.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

 | API Reference | 506

Syntax

public class PXDecimalListAttribute : PXStringListAttribute

Constructors

• public PXDecimalListAttribute(string[] values, string[] labels) :
base(values, labels)

Initializes a new instance with the provided lists of allowed values and labels. When a user selects
a label in the user interface, the corresponding value is converted to decimal type and assigned
to the field marked by the instance. The two lists must be of the same length.

Parameters:

• values

The array of string values the user will be able to select from. A string value is converted by
the attribute to the decimal value.

• labels

The array of labels corresponding to values and displayed in the user interface.

Remarks

The user will be able to select a value from the predefined values list. Values are specified in the
constructor as strings, because the attribute derives from PXStringList. The attribute converts a
selected value to the decimal type that is assigned to the field.

The DAC field data type must be defined using the PXDBDecimalString attribute.

Examples

[PXDecimalList(
 new string[] { "0.1", "0.5", "1.0", "10", "100" },
 new string[] { "0.1", "0.5", "1.0", "10", "100" })]
public virtual decimal? InvoicePrecision { get; set; }

PXImagesList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

Syntax

public class PXImagesListAttribute : PXStringListAttribute

Properties

• public override bool IsLocalizable

Constructors

Constructor Description

PXImagesListAttribute()

 | API Reference | 507

Constructor Description

PXImagesListAttribute(string[], string[],
string[])

PXImagesList Attribute Constructors

The PXImagesList attribute exposes the following constructors.

PXImagesListAttribute()

Syntax:

public PXImagesListAttribute()

PXImagesListAttribute(string[], string[], string[])

Syntax:

public PXImagesListAttribute(string[] allowedValues, string[] allowedLabels,
 string[] allowedImages) : base(allowedValues, allowedLabels)

PXIntList Attribute

Sets a dropdown list as the input control for a DAC field. The control will let a user select from a fixed
set of integer values represented in the dropdown list by string labels.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

• IPXLocalizableList

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXBaseListAttribute))]
public class PXIntListAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber,
 IPXLocalizableList

Properties

• public virtual bool IsLocalizable

Gets or sets the value that indicates whether the labels used by the attribute are localizable.

• public Dictionary<int, string> ValueLabelDic

Gets the dictionary of allowed value-label pairs.

 | API Reference | 508

Constructors

Constructor Description

PXIntListAttribute() Initializes a new instance with empty lists of allowed
values and labels

PXIntListAttribute(string) Initializes a new instance with the list of allowed values
obtained from the provided string

PXIntListAttribute(Type) Initializes a new instance, extracting the list of allowed
values and labels from the provided enumeration

PXIntListAttribute(int[], string[]) Initializes a new instance with the specified lists of
allowed values and corresponding labels

Static Methods

Method Description

SetList<Field>(PXCache, object, int[],) Sets the lists of allowed values and labels from the
provided instance to the attribute instance that marks
the specified field in a particular data record

Remarks

The attribute configures a dropdown list that will represent the DAC field in the user interface. You
should provide the list of allowed integer values and the list of the corresponding labels in the attribute
constructor.

You can reset the lists of values and labels at run time by calling the SetList<> static method.

Examples

[PXIntList(
 new int[] { 0, 1 },
 new string[] { "Apply Credit Hold", "Release Credit Hold" })]
public virtual int? Action { get; set; }

PXIntList Attribute Constructors

The PXIntList attribute exposes the following constructors.

PXIntListAttribute()

Initializes a new instance with empty lists of allowed values and labels.

Syntax:

public PXIntListAttribute()

PXIntListAttribute(string)

Initializes a new instance with the list of allowed values obtained from the provided string. The string
should contain either values separated by a comma, or value-label pairs where the value and label are
separated by a semicolon and different pairs are separated by a comma. In the first case labels are set
to value strings. Values are converted from strings into integers.

Syntax:

public PXIntListAttribute(string list) : this()

 | API Reference | 509

Parameters:

• list

The string containing the list of values separated by comma.

PXIntListAttribute(Type)

Initializes a new instance, extracting the list of allowed values and labels from the provided
enumeration. Uses the enumeration values as allowed values and enumeration values names as the
corresponding labels.

Syntax:

public PXIntListAttribute(Type enumType) : this()

Parameters:

• enumType

The enum type that defines the lists of allowed values and labels.

PXIntListAttribute(int[], string[])

Initializes a new instance with the specified lists of allowed values and corresponding labels. When a
user selects a label in the user interface, the corresponding value is assigned to the field marked by the
instance. The two lists must be of the same length.

Syntax:

public PXIntListAttribute(int[] allowedValues, string[] allowedLabels) : this()

Parameters:

• allowedValues

The list of values assigned to the field when a user selects the corresponding labels..

• allowedLabels

The list of labels displayed in the user interface when a user expands the control.

PXIntList Attribute Methods

The PXIntList attribute exposes the following static methods.

SetList<Field>(PXCache, object, int[], string[])

Sets the lists of allowed values and labels from the provided instance to the attribute instance that
marks the specified field in a particular data record.

Syntax:

public static void SetList<Field>(PXCache cache, object data, int[] allowedValues,
 string[] allowedLabels) where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXIntList type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

 | API Reference | 510

• allowedValues

The new list of values.

• allowedLabels

The new list of labels.

PXDBIntList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXBaseListAttribute

Syntax

public sealed class PXDBIntListAttribute : PXBaseListAttribute

Constructors

• public PXDBIntListAttribute(Type table, Type valueField, Type
descriptionField) : base(new PXDBIntAttributeHelper(table, valueField,
descriptionField))

PXDBStringList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXBaseListAttribute

Syntax

public sealed class PXDBStringListAttribute : PXBaseListAttribute

Constructors

• public PXDBStringListAttribute(Type table, Type valueField, Type
descriptionField) : base(new PXDBStringAttributeHelper(table,
valueField, descriptionField))

PXSelector Attribute

Configures the lookup control for a DAC field that references a data record from a particular table by
holding its key field.

See Remarks for more details. See Examples for examples of usage.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldVerifyingSubscriber

 | API Reference | 511

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method)]
[PXAttributeFamily(typeof(PXSelectorAttribute))]
public class PXSelectorAttribute : PXEventSubscriberAttribute,
 IPXFieldVerifyingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public virtual Type DescriptionField

Gets or sets the field from the referenced table that contains the description.

• public virtual Type SubstituteKey

Gets or sets the field from the referenced table that substitutes the key field used as internal
value and is displayed as a value in the user interface (natural key).

• public virtual Type Field

Gets the field that identifies a referenced data record (surrogate key) and is assigned to the field
annotated with the PXSelector attribute. Typically, it is the first parameter of the BQL query
passed to the attribute constructor.

• public virtual bool DirtyRead

Gets or sets a value that indicates whether the attribute should take into account the unsaved
modifications when displaying data records in control. If false, the data records are taken from
the database and not merged with the cache object. If true, the data records are merged with
the modification stored in the cache object.

• public virtual bool Filterable

Gets or sets the value that indicates whether the filters defined by the user should be stored in
the database.

• public virtual bool CacheGlobal

Gets or sets the value that indicates whether the attribute should cache the data records retrieved
from the database to show in the lookup control. By default, the attribute does not cache the data
records.

• public virtual string[] Headers

Gets or sets the list of labels for column headers that are displayed in the lookup control. By
default, the attribute uses display names of the fields.

• public BqlCommand PrimarySelect

Gets the BQL query that is used to retrieve data records to show to the user.

• public int ParsCount

Get.

 | API Reference | 512

Constructors

Constructor Description

PXSelectorAttribute(Type) Initializes a new instance that will use the specified
BQL query to retrieve the data records to select from

PXSelectorAttribute(Type, params Type[]) Initializes a new instance that will use the specified
BQL query to retrieve the data records to select from,
and display the provided set of columns

Static Methods

Method Description

ClearGlobalCache(Type) Clears the internal cache of the PXSelector attribute,
removing the data records retrieved from the specified
table

ClearGlobalCache<Table>() Clears the internal cache of the PXSelector attribute,
removing the data records retrieved from the specified
table

GetField(PXCache, object, string, object,) Returns a value of the field from a foreign data record

GetItem(PXCache, PXSelectorAttribute,
object, object)

Returns the foreign data record by the specified key

GetItemType(PXCache, string) Returns the data access class referenced by the
attribute instance that marks the field with specified
name

GetSelectorFields(Type)

Select(PXCache, object, string) Returns the data record referenced by the attribute
instance that marks the field with the specified name
in a particular data record

Select(PXCache, object, string, object) Returns the referenced data record that holds the
specified value

Select<Field>(PXCache, object) Returns the data record referenced by the attribute
instance that marks the specified field in a particular
data record

Select<Field>(PXCache, object, object) Returns the referenced data record that holds the
specified value

SelectAll(PXCache, string, object) Returns all data records kept by the attribute instance
the marks the field with the specified name in a
particular data record

SelectAll<Field>(PXCache, object) Returns all data records kept by the attribute instance
the marks the specified field in a particular data record

SelectFirst(PXCache, object, string) Returns the first data record retrieved by the attribute
instance that marks the field with the specified name
in a particular data record

SelectFirst<Field>(PXCache, object) Returns the first data record retrieved by the attribute
instance that marks the specified field in a particular
data record

 | API Reference | 513

Method Description

SelectLast(PXCache, object, string) Returns the last data record retrieved by the attribute
instance that marks the field with the specified name
in a particular data record

SelectLast<Field>(PXCache, object) Returns the last data record retrieved by the attribute
instance that marks the specified field in a particular
data record

SetColumns(PXCache, string, string[],
string[])

Sets the list of columns and column headers for
all attribute instances that mark the field with the
specified name in all data records in the cache object

SetColumns(PXCache, object, string, string[],
string[])

Sets the list of columns and column headers to display
for the attribute instance that marks the field with the
specified name in a particular data record

SetColumns<Field>(PXCache, Type[],
string[])

Sets the list of columns and column headers for all
attribute instances that mark the specified field in all
data records in the cache object

SetColumns<Field>(PXCache, object,
Type[],)

Sets the list of columns and column headers to display
for the attribute instance that marks the specified field
in a particular data record

StoreCached<Field>(PXCache, object,
object)

Remarks

The attribute configures the input control for a DAC field that references a data record from a particular
table. Such field holds a key value that identifies the data record in this table.

The input control will be of "lookup" type (may also be called a "selector"). A user can either input the
value for the field manually or select from the list of the data records. If a value is inserted manually,
the attribute checks if it is included in the list. You can specify a complex BQL query to define the set of
data records that appear in the list.

The key field usually represents a database identity column that may not be user-friendly (surrogate
key). It is possible to substitute its value with the value of another field from the same data record
(natural key). This field should be specified in the SubstituteKey property. In this case, the table, and
the DAC, have two fields that uniquely identify a data record from this table. For example, the Account
table may have the numeric AccountID field and the user-friendly string AccountCD field. On a field that
references Account data records in another DAC, you should place the PXSelector attribute as follows.

[PXSelector(typeof(Search<Account.accountID>),
 SubstituteKey = typeof(Account.accountCD))]

The attribute will automatically convert the stored numeric value to the displayed string value and back.
Note that only the AccountCD property should be marked with IsKey property set to true.

It is also possible to define the list of columns to display. You can use an appropriated constructor and
specify the types of the fields. By default, all fields that have the PXUIField attribute's Visibility
property set to PXUIVisibility.SelectorVisible.

Along with a key, some other field can be displayed as the description of the key. This field should be
specified in the DescriptionField property. The way the description is displayed in the lookup control
is configured in the webpage layout through the DisplayMode property of the PXSelector control. The
default display format is ValueField – DescriptionField. It can be changed to display the description only.

To achieve better performance, the attribute can be configured to cache the displayed data records.

 | API Reference | 514

Examples

The example below shows the simplest PXSelector attribute declaration. All Category data records will
be available for selection. Their CategoryCD field values will be inserted without conversion.

[PXSelector(typeof(Category.categoryCD))]
public virtual string CategoryCD { get; set; }

The attribute below configures the lookup control to let the user select from the Customer data records
retrieved by the Search BQL query. The displayed columns are specified explicitly: AccountCD and
CompanyName.

[PXSelector(
 typeof(Search<Customer.accountCD,
 Where<Customer.companyType, Equal<CompanyType.customer>>>),
 new Type[]
 {
 typeof(Customer.accountCD),
 typeof(Customer.companyName)
 })]
public virtual string AccountCD { get; set; }

The Customer.accountCD field data will be inserted as a value without conversion.

The attribute below let the user select from the Branch data records. The attribute displays the
Branch.BranchCD field value in the user interface, but actually assigns the Branch.BranchID field value
to the field.

[PXSelector(typeof(Branch.branchID),
 SubstituteKey = typeof(Branch.branchCD))]
public virtual int? BranchID { get; set; }

The example below shows the PXSelector attribute in combination with other attributes.

[PXDBString(10, IsUnicode = true, InputMask = ">aaaaaaaaaa")]
[PXUIField(DisplayName = "Class ID")]
[PXSelector(
 typeof(Search<CRLeadClass.cRLeadClassID,
 Where<CRLeadClass.isActive, Equal<True>>>),
 DescriptionField = typeof(CRLeadClass.description),
 CacheGlobal = true)]
public virtual string ClassID { get; set; }

Here, the PXSelector attribute configures a lookup field that will let a user select from the data set
defined by the Search query. The lookup control will display descriptions the data records, taking them
from CRLeadClass.description field. The attribute will cache records in memory to reduce the number
of database calls.

PXSelector Attribute Constructors

The PXSelector attribute exposes the following constructors.

PXSelectorAttribute(Type)

Initializes a new instance that will use the specified BQL query to retrieve the data records to
select from. The list of displayed columns is created automatically and consists of all columns
from the referenced table with the Visibility property of the PXUIField attribute set to
PXUIVisibility.SelectorVisible.

Syntax:

public PXSelectorAttribute(Type type)

Parameters:

 | API Reference | 515

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

PXSelectorAttribute(Type, params Type[])

Initializes a new instance that will use the specified BQL query to retrieve the data records to select
from, and display the provided set of columns.

Syntax:

public PXSelectorAttribute(Type type, params Type[] fieldList) : this(type)

Parameters:

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

• fieldList

Fields to display in the control.

PXSelector Attribute Methods

The PXSelector attribute exposes the following static methods.

ClearGlobalCache(Type)

Clears the internal cache of the PXSelector attribute, removing the data records retrieved from the
specified table. Typically, you don't need to call this method, because the attribute subscribes on the
change notifications related to the table and drops the cache automatically.

Syntax:

public static void ClearGlobalCache(Type table)

Parameters:

• table

The DAC to drop from the attribute's cache.

ClearGlobalCache<Table>()

Clears the internal cache of the PXSelector attribute, removing the data records retrieved from the
specified table. Typically, you don't need to call this method, because the attribute subscribes on the
change notifications related to the table and drops the cache automatically.

Syntax:

public static void ClearGlobalCache<Table>() where Table : IBqlTable

Type Parameters:

• Table

The DAC to drop from the attribute's cache.

 | API Reference | 516

GetField(PXCache, object, string, object, string)

Returns a value of the field from a foreign data record.

Syntax:

public static object GetField(PXCache cache, object data, string field, object
 value,
 string foreignField)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record that contains a reference to the foreign data record.

• field

The name of the field holding the referenced data record key value.

• value

The key value of the referenced data record.

• foreignField

The name of the referenced data record field whose value is returned by the method.

GetItem(PXCache, PXSelectorAttribute, object, object)

Returns the foreign data record by the specified key.

Syntax:

public static object GetItem(PXCache cache, PXSelectorAttribute attr, object
 data, object key)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• attr

The instance of the PXSelector attribute to query for a data record.

• data

The data record that contains a reference to the foreign data record.

• key

The key value of the referenced data record.

GetItemType(PXCache, string)

Returns the data access class referenced by the attribute instance that marks the field with specified
name.

Syntax:

public static Type GetItemType(PXCache cache, string field)

Parameters:

 | API Reference | 517

• cache

The cache object to search for the attributes of PXSelector type.

• field

The name of the field that marked with the attribute.

GetSelectorFields(Type)

Syntax:

public static List<KeyValuePair<string, Type>> GetSelectorFields(Type table)

Select(PXCache, object, string)

Returns the data record referenced by the attribute instance that marks the field with the specified
name in a particular data record.

Syntax:

public static object Select(PXCache cache, object data, string field)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• field

The name of the field that is be marked with the attribute.

Select(PXCache, object, string, object)

Returns the referenced data record that holds the specified value. The data record should be referenced
by the attribute instance that marks the field with the specified in a particular data record.

Syntax:

public static object Select(PXCache cache, object data, string field, object
 value)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• field

The name of the field that is be marked with the attribute.

• value

The value to search the referenced table for.

Returns:

Foreign record.

 | API Reference | 518

Select<Field>(PXCache, object)

Returns the data record referenced by the attribute instance that marks the specified field in a
particular data record.

Syntax:

public static object Select<Field>(PXCache cache, object data) where Field :
 IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

Select<Field>(PXCache, object, object)

Returns the referenced data record that holds the specified value. The data record is searched among
the ones referenced by the attribute instance that marks the specified field in a particular data record.

Syntax:

public static object Select<Field>(PXCache cache, object data, object value)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• value

The value to search the referenced table for.

SelectAll(PXCache, string, object)

Returns all data records kept by the attribute instance the marks the field with the specified name in a
particular data record.

Syntax:

public static List<object> SelectAll(PXCache cache, string fieldname, object
 data)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• fieldname

The name of the field that should be marked with the attribute.

• data

The data record the method is applied to.

 | API Reference | 519

SelectAll<Field>(PXCache, object)

Returns all data records kept by the attribute instance the marks the specified field in a particular data
record.

Syntax:

public static List<object> SelectAll<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

SelectFirst(PXCache, object, string)

Returns the first data record retrieved by the attribute instance that marks the field with the specified
name in a particular data record.

Syntax:

public static object SelectFirst(PXCache cache, object data, string field)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• field

The name of the field that is be marked with the attribute.

SelectFirst<Field>(PXCache, object)

Returns the first data record retrieved by the attribute instance that marks the specified field in a
particular data record.

Syntax:

public static object SelectFirst<Field>(PXCache cache, object data) where Field :
 IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

SelectLast(PXCache, object, string)

Returns the last data record retrieved by the attribute instance that marks the field with the specified
name in a particular data record.

 | API Reference | 520

Syntax:

public static object SelectLast(PXCache cache, object data, string field)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• field

The name of the field that is be marked with the attribute.

SelectLast<Field>(PXCache, object)

Returns the last data record retrieved by the attribute instance that marks the specified field in a
particular data record.

Syntax:

public static object SelectLast<Field>(PXCache cache, object data) where Field :
 IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

SetColumns(PXCache, string, string[], string[])

Sets the list of columns and column headers for all attribute instances that mark the field with the
specified name in all data records in the cache object.

Syntax:

public static void SetColumns(PXCache cache, string field, string[] fieldList,
 string[]
 headerList)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• field

The name of the field marked with the attribute.

• fieldList

The new list of field names.

• headerList

The new list of column headers.

 | API Reference | 521

SetColumns(PXCache, object, string, string[], string[])

Sets the list of columns and column headers to display for the attribute instance that marks the field
with the specified name in a particular data record.

Syntax:

public static void SetColumns(PXCache cache, object data, string field, string[]
 fieldList, string[] headerList)

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to. If null, the method is applied to all data records kept in
the cache object.

• field

The name of the field marked with the attribute.

• fieldList

The new list of field names.

• headerList

The new list of column headers.

SetColumns<Field>(PXCache, Type[], string[])

Sets the list of columns and column headers for all attribute instances that mark the specified field in all
data records in the cache object.

Syntax:

public static void SetColumns<Field>(PXCache cache, Type[] fieldList, string[]
 headerList) where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXSelector type.

• fieldList

The new list of field names.

• headerList

The new list of column headers.

SetColumns<Field>(PXCache, object, Type[], string[])

Sets the list of columns and column headers to display for the attribute instance that marks the
specified field in a particular data record.

Syntax:

public static void SetColumns<Field>(PXCache cache, object data, Type[] fieldList,
 string[] headerList) where Field : IBqlField

Parameters:

 | API Reference | 522

• cache

The cache object to search for the attributes of PXSelector type.

• data

The data record the method is applied to.

• fieldList

The new list of field names.

• headerList

The new list of column headers.

StoreCached<Field>(PXCache, object, object)

Syntax:

public static void StoreCached<Field>(PXCache cache, object data, object item) where
 Field : IBqlField

PXCustomSelector Attribute

The base class for custom selector attributes. Derive the attribute class from this class and implement
the GetRecords() method.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXSelectorAttribute

Syntax

public class PXCustomSelectorAttribute : PXSelectorAttribute

Constructors

Constructor Description

PXCustomSelectorAttribute(Type) Initializes a new instance with the specified BQL query
for selecting the data records to show to the user

PXCustomSelectorAttribute(Type, params
Type[])

Initializes a new instance that will use the specified
BQL query to retrieve the data records to select from,
and display the provided set of columns

PXCustomSelector Attribute Constructors

The PXCustomSelector attribute exposes the following constructors.

PXCustomSelectorAttribute(Type)

Initializes a new instance with the specified BQL query for selecting the data records to show to the
user.

Syntax:

public PXCustomSelectorAttribute(Type type) : base(type)

Parameters:

 | API Reference | 523

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

PXCustomSelectorAttribute(Type, params Type[])

Initializes a new instance that will use the specified BQL query to retrieve the data records to select
from, and display the provided set of columns.

Syntax:

public PXCustomSelectorAttribute(Type type, params Type[] fieldList) : base(type,
 fieldList)

Parameters:

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

• fieldList

Fields to display in the control.

PXDimension Attribute

Sets up the input control for a DAC field that holds a segmented value. The control formats the input
as a segmented key value and displays the list of allowed values for each key segment when the user
presses F3 on a keyboard.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

• IPXFieldVerifyingSubscriber

• IPXFieldDefaultingSubscriber

• IPXRowPersistingSubscriber

• IPXRowPersistedSubscriber

• IPXFieldUpdatingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method)]
[Serializable]
public class PXDimensionAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber,
 IPXFieldVerifyingSubscriber,
 IPXFieldDefaultingSubscriber,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber,

 | API Reference | 524

 IPXFieldUpdatingSubscriber

Properties

• public virtual bool ValidComboRequired

Gets or sets the value that indicates whether the user can specify only one of the predefined
values as a segment or the user can input arbitrary values.

• public virtual string Wildcard

Gets or sets the one character long string that will be treated as a wildcard – a character that
matches any symbols. Typically, the property is set when the field to which the attribute is
attached is used for filtering. See also the PXDimensionWildcard attribute.

Constructors

• public PXDimensionAttribute(string dimension) : base()

Creates an instance to work with the provided segmented key.

Parameters:

• dimension

The string identifier of the segmented key.

Static methods

• public static string[] GetSegmentValues(string dimensionid, int
segmentnumber)

• public static void Clear()

Examples

[PXDimension("SUBACCOUNT", ValidComboRequired = false)]
public virtual string SubID { get; set; }

PXDimensionSelector Attribute

Sets up the lookup control for a DAC field that holds a segmented key value or references a data record
identified by a segmented key. The attribute combines the PXDimension and PXSelector attributes.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXAggregateAttribute

Interfaces

• IPXFieldVerifyingSubscriber

• IPXRowPersistingSubscriber

• IPXRowPersistedSubscriber

Syntax

[PXAttributeFamily(typeof(PXSelectorAttribute))]
public class PXDimensionSelectorAttribute : PXAggregateAttribute,

 | API Reference | 525

 IPXFieldVerifyingSubscriber,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber

Properties

• public virtual Type DescriptionField

Gets or sets the field from the referenced table that contains the description.

• public virtual bool CacheGlobal

Gets or sets the value that indicates whether the attribute should cache the data records retrieved
from the database to show in the lookup control. By default, the attribute does not cache the data
records.

• public virtual bool Filterable

Gets or sets the value that indicates whether the filters defined by the user should be stored in
the database.

• public virtual bool DirtyRead

Gets or sets a value that indicates whether the attribute should take into account the unsaved
modifications when displaying data records in control. If false, the data records are taken from
the database and not merged with the cache object. If true, the data records are merged with
the modification stored in the cache object.

• public virtual Type Field

Gets the field that identifies a referenced data record (surrogate key) and is assigned to the field
annotated with the PXSelector attribute. Typically, it is the first parameter of the BQL query
passed to the attribute constructor.

• public virtual string[] Headers

Gets or sets the list of labels for column headers that are displayed in the lookup control. By
default, the attribute uses display names of the fields.

• public virtual bool ValidComboRequired

Gets or sets the value that indicates whether only the values from the combobox are allowed in
segments.

Constructors

Constructor Description

PXDimensionSelectorAttribute(string, Type) Initializes a new instance to reference the data records
that are identified by the specified segmented key

PXDimensionSelectorAttribute(string, Type,
Type)

Initializes a new instance to reference the data records
that are identified by the specified segmented key

PXDimensionSelectorAttribute(string, Type,
Type,)

Initializes a new instance to reference the data records
that are identified by the specified segmented key

Static Methods

Method Description

SetValidCombo(PXCache, string, bool)

SetValidCombo<Field>(PXCache, bool)

 | API Reference | 526

Method Description

SuppressViewCreation(PXCache)

Examples

The attribute below sets up the control for input of the BIZACCT segmented key's values. Since the
AcctCD field itself is specified as the substitute key it will keep the segmented key value.

[PXDimensionSelector(
 "BIZACCT",
 typeof(BAccount.acctCD), // BQL query for lookup
 typeof(BAccount.acctCD))] // Substitute key
public virtual string AcctCD { get; set; }

In the following example the RunRateItemID field references the data records from

[PXDimensionSelector(
 InventoryAttribute.DimensionName,
 typeof(
 Search<InventoryItem.inventoryID,
 Where<InventoryItem.itemType, Equal<INItemTypes.nonStockItem>,
 And<Match<Current<AccessInfo.userName>>>>>),
 typeof(InventoryItem.inventoryCD),
 DescriptionField = typeof(InventoryItem.descr))]
public virtual int? RunRateItemID { get; set; }

Related Types

• PXSelector Attribute

• PXDimension Attribute

PXDimensionSelector Attribute Constructors

The PXDimensionSelector attribute exposes the following constructors.

PXDimensionSelectorAttribute(string, Type)

Initializes a new instance to reference the data records that are identified by the specified segmented
key. Uses the provided BQL query to retrieve the data records.

Syntax:

public PXDimensionSelectorAttribute(string dimension, Type type) : base()

Parameters:

• dimension

The string identifier of the segmented key.

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

PXDimensionSelectorAttribute(string, Type, Type)

Initializes a new instance to reference the data records that are identified by the specified segmented
key. Uses the provided BQL query to retrieve the data records and substitutes the field value (surrogate
key) with the provided field (natural key).

 | API Reference | 527

Syntax:

public PXDimensionSelectorAttribute(string dimension, Type type, Type
 substituteKey) :
 base()

Parameters:

• dimension

The string identifier of the segmented key.

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

• substituteKey

The field to sustitute the surrogate field's value in the user interface.

PXDimensionSelectorAttribute(string, Type, Type, params Type[])

Initializes a new instance to reference the data records that are identified by the specified segmented
key. Uses the provided BQL query to retrieve the data records and substitutes the field value (surrogate
key) with the provided field (natural key).

Syntax:

public PXDimensionSelectorAttribute(string dimension, Type type, Type substituteKey,
 params Type[] fieldList) : base()

Parameters:

• dimension

The string identifier of the segmented key.

• type

A BQL query that defines the data set that is shown to the user along with the key field that
is used as a value. Set to a field (type part of a DAC field) to select all data records from the
referenced table. Set to a BQL command of Search type to specify a complex select statement.

• substituteKey

The field to sustitute the surrogate field's value in the user interface.

• fieldList

Fields to display in the control.

PXDimensionSelector Attribute Methods

The PXDimensionSelector attribute exposes the following static methods.

SetValidCombo(PXCache, string, bool)

Syntax:

public static void SetValidCombo(PXCache cache, string name, bool isRequired)

SetValidCombo<Field>(PXCache, bool)

 | API Reference | 528

Syntax:

public static void SetValidCombo<Field>(PXCache cache, bool isRequired) where
 Field : IBqlField

SuppressViewCreation(PXCache)

Syntax:

public static void SuppressViewCreation(PXCache cache)

PXDimensionWildcard Attribute

Sets up the lookup control for a DAC field that holds a segmented key value and allows the ? wildcard
character. The attribute combines the PXDimension and PXSelector attributes.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXAggregateAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

public class PXDimensionWildcardAttribute : PXAggregateAttribute,
 IPXFieldSelectingSubscriber

Properties

• public virtual Type DescriptionField

Gets or sets the field from the referenced table that contains the description.

• public virtual string Wildcard

Gets or sets the wildcard string that matches any symbol in the segment.

• public virtual string[] Headers

Gets or sets the list of labels for column headers that are displayed in the lookup control. By
default, the attribute uses display names of the fields.

Constructors

Constructor Description

PXDimensionWildcardAttribute(string, Type) Creates a selector

PXDimensionWildcardAttribute(string, Type,
params Type[])

Creates a selector overriding the columns

PXDimensionWildcard Attribute Constructors

The PXDimensionWildcard attribute exposes the following constructors.

 | API Reference | 529

PXDimensionWildcardAttribute(string, Type)

Creates a selector.

Syntax:

public PXDimensionWildcardAttribute(string dimension, Type type) : base()

Parameters:

• type

Referenced table. Should be either IBqlField or IBqlSearch.

PXDimensionWildcardAttribute(string, Type, params Type[])

Creates a selector overriding the columns.

Syntax:

public PXDimensionWildcardAttribute(string dimension, Type type, params Type[]
 fieldList) : base()

Parameters:

• type

Referenced table. Should be either IBqlField or IBqlSearch.

• fieldList

Fields to display in the selector.

• headerList

Headers of the selector columns.

Referential Integrity and Calculations
The following attributes implement referential integrity and perform calculations over related data at
run time:

• PXParent

Creates a reference to a parent data record. When the parent data record is deleted all child data
records that reference it are also deleted.

• PXFormula

Calculates a field from other fields of the same data record or sets an aggregation expression to
calculate a parent data record field from child data record fields. Calculations happen at run time.

• PXUnboundFormula

Calculates the value from the child data record fields and aggregates all such values computed for
the child data records into the parent data record field. Calculations happen at run time.

• PXDBChildIdentity

Indicates that a DAC field references an auto-generated key field from another table and ensures
the field value is correct after changes are committed to the database.

• PXLineNbr

Generates unique line numbers that identify child data records in the parent-child relationship.

Note that all the attributes in the list above add run time server-side logic. The referential integrity
is implemented on the server side. And the calculations are implemented on the server side. See the
Adhoc SQL for Fields section for the attributes that enable calculation of fields on the database side.

 | API Reference | 530

PXParent Attribute

Creates a reference to the parent record, establishing a parent-child relationship between two tables.

See Remarks for more details. See Examples for examples of usage.

Inheritance Hierarchy

PXEventSubscriberAttribute

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Class, AllowMultiple = true)]
public class PXParentAttribute : PXEventSubscriberAttribute

Properties

• public virtual bool ParentCreate

Gets or sets the value that permits or forbids creation of the parent through the
CreateParent(PXCache, object, Type) method. In particular, the PXFormula attribute tries to
create a parent data record if it doesn't exist, by invoking this method. By default, the property
equals false.

• public virtual bool LeaveChildren

Gets or sets the value that indicates whether the child data records are left or deleted on parent
data record deletion. By default, the property equals false, which means that child data records
are deleted.

• public virtual Type ParentType

Gets the DAC type of the parent data record. The type is determined in the constructor as the first
table referenced in the Select query.

• public virtual bool UseCurrent

Gets or sets the value that indicates at run time whether to take the parent data record from
the Current property or retrieve it from the database. In both cases the attribute uses the view
corresponding to the Select query provided in the constructor.

Constructors

• public PXParentAttribute(Type selectParent)

Initializes a new instance that defines the parent data record using the provided BQL query. To
provide parameters to the BQL query, use Current to pass the values from the child data record
that is Current for the cache object.

Parameters:

• selectParent

The BQL query that selects the parent record. Should be based on a class derived from
IBqlSelect, such as Select<>.

 | API Reference | 531

Static Methods

Method Description

CopyParent(PXCache, object, object, Type) Makes the parent of the provided data record be the
parent of the other provided data record

CreateParent(PXCache, object, Type) Creates the parent for the provided child data record
for the attribute instance that references the provided
parent type or a type derived from it

GetParentCreate(PXCache, Type) Returns the value of the ParentCreate property from
the attribute instance that references the provided
parent type or a type derived from it

GetParentType(PXCache) Returns the parent type of the first attribute instance
found in the cache object

SelectParent(PXCache, object) Returns the parent data record of the provided child
data record

SelectParent(PXCache, object, Type) Returns the parent data record of the provided child
data record

SelectSiblings(PXCache, object) Returns the child data records that have the same
parent as the provided child data record

SelectSiblings(PXCache, object, Type) Returns the child data records that have the same
parent as the provided child data record

SetLeaveChildren<Field>(PXCache, object,
bool)

Enables or disables cascade deletion of child data
records for the attribute instance in a paricular data
record

SetParent(PXCache, object, Type, object) Sets the provided data record of parent type as the
parent of the child data record

Remarks

You can place the attribute on any field of the child DAC. The primary goal of the attribute is to perform
cascade deletion of the child data records once a parent data record is deleted.

The parent data record is defined by a BQL query of Select<> type. Typically, the query includes a
Where clause that adds conditions for the parent's key fields to equal child's key fields. In this case,
the values of child data record key fields are specified using the Current parameter. The business logic
controller that provides the interface for working with these parent and child data records should define
a view selecting parent data records and a view selecting child data records. These views will againg be
connected using the Current parameter.

You can use the static methods to retrieve a particular parent data record or child data records, or get
and set some attribute parameters.

Once the PXParent attribute is added to some DAC field, you can use the PXFormula attribute to define
set calculations for parent data record fields from child data record fields.

Examples

The attribute below specifies a query for selecting the parent Document data record for a given child
DocTransaction data record.

[PXParent(typeof(
 Select<Document,
 Where<Document.docNbr, Equal<Current<DocTransaction.docNbr>>,

 | API Reference | 532

 And<Document.docType, Equal<Current<DocTransaction.docType>>>>>))]
public virtual string DocNbr { get; set; }

Another example is given below.

[PXParent(typeof(
 Select<ARTran,
 Where<ARTran.tranType, Equal<Current<ARFinChargeTran.tranType>>,
 And<ARTran.refNbr, Equal<Current<ARFinChargeTran.refNbr>>,
 And<ARTran.lineNbr, Equal<Current<ARFinChargeTran.lineNbr>>>>>>))]
public virtual short? LineNbr { get; set; }

Obtaining the parent data record at run time:

CR.Location child = (CR.Location)e.Row;
BAccount parent =
 (BAccount)PXParentAttribute.SelectParent(sender, child, typeof(BAccount));

Setting the parent data record at run time:

// Views definitions in a graph
public PXSelect<INRegister> inregister;
public PXSelect<INTran> intranselect;
...
// Code executed in some graph method
INTran tran = (INTran)res;
PXParentAttribute.SetParent(
 intranselect.Cache, tran, typeof(INRegister), inregister.Current);

PXParent Attribute Methods

The PXParent attribute exposes the following static methods.

CopyParent(PXCache, object, object, Type)

Makes the parent of the provided data record be the parent of the other provided data record. Uses the
first attribute instance that references the provided parent type or a type derived from it.

Syntax:

public static void CopyParent(PXCache cache, object item, object copy, Type
 ParentType)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• item

The child data record whose parent data record is made the parent of another data record.

• copy

The data record that becomes the child of the provided data record's parent.

• ParentType

The DAC type of the parent data record.

CreateParent(PXCache, object, Type)

Creates the parent for the provided child data record for the attribute instance that references the
provided parent type or a type derived from it. Does nothing if ParentCreate equals false in this
attribute instance. If the parent is created, it is inserted into the cache object.

 | API Reference | 533

Syntax:

public static void CreateParent(PXCache cache, object row, Type
 ParentType)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• row

The child data record for which the parent is created.

• ParentType

The DAC type of the parent data record.

GetParentCreate(PXCache, Type)

Returns the value of the ParentCreate property from the attribute instance that references the
provided parent type or a type derived from it.

Syntax:

public static bool GetParentCreate(PXCache cache, Type ParentType)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• ParentType

The DAC type of the parent data record.

GetParentType(PXCache)

Returns the parent type of the first attribute instance found in the cache object.

Syntax:

public static Type GetParentType(PXCache cache)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

SelectParent(PXCache, object)

Returns the parent data record of the provided child data record. Uses the first attribute instance found
in the cache object.

Syntax:

public static object SelectParent(PXCache cache, object row)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

 | API Reference | 534

• row

The child data record whose parent data record is retireved.

SelectParent(PXCache, object, Type)

Returns the parent data record of the provided child data record. Uses the first attribute instance that
references the provided parent type or a type derived from it.

Syntax:

public static object SelectParent(PXCache cache, object row, Type ParentType)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• row

The child data record whose parent data record is retireved.

• ParentType

The DAC type of the parent data record.

SelectSiblings(PXCache, object)

Returns the child data records that have the same parent as the provided child data record. Returns an
array of zero length if fails to retrieve the parent. Uses the first attribute instance found in the cache
object.

Syntax:

public static object[] SelectSiblings(PXCache cache, object row)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• row

The child data record for which the data records having the same parent are retrieved.

SelectSiblings(PXCache, object, Type)

Returns the child data records that have the same parent as the provided child data record. Returns an
array of zero length if fails to retrieve the parent. Uses the first attribute instance that references the
provided parent type or a type derived from it.

Syntax:

public static object[] SelectSiblings(PXCache cache, object row, Type
 ParentType)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• row

The child data record for which the data records having the same parent are retrieved.

 | API Reference | 535

• ParentType

The DAC type of the parent data record.

SetLeaveChildren<Field>(PXCache, object, bool)

Enables or disables cascade deletion of child data records for the attribute instance in a paricular data
record.

Syntax:

public static void SetLeaveChildren<Field>(PXCache cache, object data, bool
 isLeaveChildren) where Field : IBqlField

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• data

The data record the method is applied to. If null, the method is applied to all data records in the
cache object.

• isLeaveChildren

The new value for the LeaveChildren property. If true, enables cascade deletion. Otherwise,
disables it.

SetParent(PXCache, object, Type, object)

Sets the provided data record of parent type as the parent of the child data record.

Syntax:

public static void SetParent(PXCache cache, object row, Type ParentType, object
 parent)

Parameters:

• cache

The cache object to search for the attributes of PXParent type.

• row

The child data record for which the parent data record is set. Must not be null.

• ParentType

The DAC type of the parent data record.

• parent

The new parent data record.

PXFormula Attribute

Calculates a field from other fields of the same data record and sets an aggregation formula to calculate
a parent data record field from child data record fields.

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 536

Interfaces

• IPXRowUpdatedSubscriber

• IPXRowInsertedSubscriber

• IPXRowDeletedSubscriber

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class, AllowMultiple = true)]
public class PXFormulaAttribute : PXEventSubscriberAttribute,
 IPXRowUpdatedSubscriber,
 IPXRowInsertedSubscriber,
 IPXRowDeletedSubscriber

Properties

• public virtual string FormulaFieldName

Get the name of the field the attribute is attached to.

• public virtual Type Formula

Gets or sets the BQL query that is used to calculate the value of the field the attribute is attached
to. The value should derive from Constant<>, IBqlField, or IBqlCreator.

• public virtual Type ParentField

Gets or sets the parent data record field the aggregation result is assigned to. The value should
derive from IBqlField.

• public virtual Type Aggregate

Gets or sets the BQL query that represents the aggregation formula used to calculate the
parent data record field from the child data records fields. The value should derive from
IBqlAggregateCalculator.

• public virtual bool Persistent

Gets or sets the value that indicates whether the attribute recalculates the formula for the child
field after a saving of changes to the database. You may need recalculation if the fields the
formula depends on are updated on the RowPersisting event. By default, the property equals
false.

Constructors

Constructor Description

PXFormulaAttribute(Type) Initializes a new instance that calculates the value of
the field the attribute is atached to, by the provided
formula

PXFormulaAttribute(Type, Type) Initializes a new instance that calculates the value
of the field the attribute is atached to and sets an
aggregate function to calculate the value of a field in
the parent data record

 | API Reference | 537

Static Methods

Method Description

CalcAggregate<Field>(PXCache, object) Calculates the fields of the parent data record using
the aggregation formula from the attribute instance
that marks the specified field

CalcAggregate<Field>(PXCache, object, bool) Calculates the fields of the parent data record using
the aggregation formula from the attribute instance
that marks the specified field

SetAggregate<Field>(PXCache, Type) Sets the new aggregation formula in the attribute
instances that mark the specified field, for all data
records in the cache object

Remarks

The attribute assigns the computed value to the field the attribute is attached to. The value is also
used for aggregated calculation of the parent data record field (if the aggregate expression has been
specified in the attribute parameter).

The PXParent attribute must be added to some field of the child DAC.

Examples

The attribute below sums two fields and assigns it the field the attribute is attached to.

[PXFormula(typeof(
 Add<SOOrder.curyPremiumFreightAmt, SOOrder.curyFreightAmt>))]
public virtual Decimal? CuryFreightTot { get; set; }

The attribute below performs more complex calculation.

[PXFormula(typeof(
 Switch<
 Case<Where<Add<SOOrder.releasedCntr, SOOrder.billedCntr>,
 Equal<short0>>,
 SOOrder.curyOrderTotal>,
 Add<SOOrder.curyUnbilledOrderTotal, SOOrder.curyFreightTot>>))]
public decimal? CuryDocBal { get; set; }

The attribute below multiplies the TranQty and UnitPrice fields and assigns the result to the
ExtPrice field. The attribute also calculates the sum of the computed ExtPrice values over all child
DocTransaction data records and assigns the result to the parent's TotalAmt field.

[PXUIField(DisplayName = "Line Total", Enabled = false)]
[PXFormula(
 typeof(Mult<DocTransaction.tranQty, DocTransaction.unitPrice>),
 typeof(SumCalc<Document.totalAmt>))]
public virtual decimal? ExtPrice { get; set; }

A common practice is to disable the input control for a calculated field. In the example above, the
control is disabled using the PXUIField attribute.

The attribute below does not provide a formula for calculating the TranQty property. The value inputted
by a user is assigned to the field. The attribute only sets the formula to calculate the TotalQty field in
the parent data record as the sum of TranQty values over all related child data records.

[PXFormula(null, typeof(SumCalc<Document.totalQty>))]
public virtual decimal? TranQty { get; set; }

 | API Reference | 538

PXFormula Attribute Constructors

The PXFormula attribute exposes the following constructors.

PXFormulaAttribute(Type)

Initializes a new instance that calculates the value of the field the attribute is atached to, by the
provided formula.

Syntax:

public PXFormulaAttribute(Type formulaType)

Parameters:

• formulaType

The formula to calculate the field value from other fields of the same data record. The formula
can be an expression built from BQL functions such as Add, Sub, Mult, Div, Switch and other
functions.

PXFormulaAttribute(Type, Type)

Initializes a new instance that calculates the value of the field the attribute is atached to and sets an
aggregate function to calculate the value of a field in the parent data record. The aggregation function
is applied to the values calculated by the first parameter for all child data records.

Syntax:

public PXFormulaAttribute(Type formulaType, Type aggregateType)

Parameters:

• formulaType

The formula to calculate the field value from other fields of the same data record. The formula
can be an expression built from BQL functions such as Add, Sub, Mult, Div, Switch and other
functions. If null, the aggregation function takes into account the field value inputted by the user.

• aggregateType

The aggregation formula to calculate the parent data record field from the child data records
fields. Use an aggregation function such as SumCalc, CountCalc, MinCalc, and MaxCalc.

PXFormula Attribute Methods

The PXFormula attribute exposes the following static methods.

CalcAggregate<Field>(PXCache, object)

Calculates the fields of the parent data record using the aggregation formula from the attribute instance
that marks the specified field. The calculation is applied to the child data records merged with the
modifications kept in the session.

Syntax:

public static void CalcAggregate<Field>(PXCache sender, object parent) where Field :
 IBqlField

Parameters:

• sender

The cache object to search for the attributes of PXFormula type.

• parent

 | API Reference | 539

The parent data record.

CalcAggregate<Field>(PXCache, object, bool)

Calculates the fields of the parent data record using the aggregation formula from the attribute instance
that marks the specified field. The calculation is applied to the child data records that are either taken
directly from the database or merged with the modifications kept in the session.

Syntax:

public static void CalcAggregate<Field>(PXCache sender, object parent, bool
 IsReadOnly) where Field : IBqlField

Parameters:

• sender

The cache object to search for the attributes of PXFormula type.

• parent

The parent data record.

• IsReadOnly

If true, the child data records are not merged with the unsaved modification accessible through
the cache object. Otherwise, the child data records are merged with the modifications.

SetAggregate<Field>(PXCache, Type)

Sets the new aggregation formula in the attribute instances that mark the specified field, for all data
records in the cache object.

Syntax:

public static void SetAggregate<Field>(PXCache sender, Type aggregateType) where
 Field : IBqlField

Parameters:

• sender

The cache object to search for the attributes of PXFormula type.

• aggregateType

The new aggregation formula that will be used to calculate the parent data record field from the
child data records fields.

Formulas

The classes described below are used as aggregation formulas in the PXFormula or PXUnboundFormula
attribute to compute the parent data record field from the child data records fields. The expression that
is calculated for each child data record is set in the first constructor parameters in the attributes.

SumCalc<Field> : IBqlAggregateCalculator, IBqlUnboundAggregateCalculator

Calculates the aggregated sum of expressions over all child data records and assings it to the specified
parent data record field. The PXUnboundFormula attribute also supports this aggregation function.

Type Parameters:

• Field : IBqlField

 | API Reference | 540

Examples:

[PXFormula(typeof(Mult<INTran.qty, INTran.unitPrice>),
 typeof(SumCalc<INRegister.totalAmount>))]
public virtual Decimal? TranAmt { get; set; }

CountCalc<Field> : IBqlAggregateCalculator, ICountCalc

Calculates the number of the child data records and assigns it to the specified parent data record field.

Type Parameters:

• Field : IBqlField

Examples:

[PXFormula(null, typeof(CountCalc<ARSalesPerTran.refCntr>))]
public virtual Decimal? CuryTranAmt { get; set; }

MinCalc<Field> : IBqlAggregateCalculator

Calculates the minimum expression over all child data records and assigns it to the specified parent
data record field.

Type Parameters:

• Field : IBqlField

MaxCalc<Field> : IBqlAggregateCalculator

Calculates the maximum expression over all child data records and assigns it to the specified parent
data record field.

Type Parameters:

• Field : IBqlField

Examples:

[PXFormula(null,typeof(MaxCalc<CABankStatement.tranMaxDate>))]
public virtual DateTime? TranDate { get; set; }

Functions Used in Formulas

To define a formula for the PXFormula attribute to calculate a DAC field, you can use the following BQL
functions:

• Arithmetic operations

• Switch expression

• The functions represented by the classes listed below

Row<Field, DependentField> : IBqlOperand, IBqlCreator

Returns the value of the specified field and creates an additional dependency for the formula – on the
provided dependency field. Each time the dependency field is updated, the formula is recalculated. The
formula also depends on all other field referenced in the formula.

Type Parameters:

• Field : IBqlField

• DependentField : IBqlField

 | API Reference | 541

Examples:

[PXFormula(
 typeof(Mult<Row<POLine.baseOrderQty, POLine.orderQty>, POLine.unitWeight>),
 typeof(SumCalc<POOrder.orderWeight>))]
public virtual Decimal? ExtWeight { get; set; }

Parent<Field> : IBqlCreator, IBqlOperand

Returns the value of the specified field from the parent data record. The parent data record is defined
by the PXParent attribute.

Type Parameters:

• Field : IBqlOperand

Examples:

[PXUnboundFormula(
 typeof(Switch<
 Case<Where<SOLine.operation, Equal<Parent<SOOrder.defaultOperation>>,
 And<SOLine.lineType, NotEqual<SOLineType.miscCharge>>>,
 SOLine.orderQty>,
 decimal0>),
 typeof(SumCalc<SOOrder.orderQty>))]
public virtual decimal? OrderQty { get; set; }

Selector<KeyField, ForeignOperand> : IBqlCreator, IBqlOperand

Searches for the PXSelector attribute on the key field and calculates the provided expression for the
data record currently referenced by PXSelector.

Type Parameters:

• KeyField : IBqlOperand

The key field to which the PXSelector attribute should be attached.

• ForeignOperand : IBqlOperand

The expression that is calculated for the data record currently referenced by PXSelector.

Examples:

[PXFormula(typeof(
 Selector<APPaymentChargeTran.entryTypeID,
 Selector<CAEntryType.accountID, Account.accountCD>>))]
public virtual int? AccountID { get; set; }

Validate<V1> : IBqlCreator, IBqlTrigger

Raises the FieldVerifying event for the field to which the PXFormula attribute is attached once the
specified field changes.

Validate<V1,V2> : IBqlCreator, IBqlTrigger

Raises the FieldVerifying event for the field to which the PXFormula attribute is attached once the
specified fields change.

Examples:

[PXFormula(typeof(Validate<ContractItem.maxQty, ContractItem.minQty>))]
public decimal? DefaultQty { get; set; }

 | API Reference | 542

Validate<V1, V2, V3> : IBqlCreator, IBqlTrigger

Raises the FieldVerifying event for the field to which the PXFormula attribute is attached once the
specified fields change.

Validate<V1, V2, V3, V4> : IBqlCreator, IBqlTrigger

Raises the FieldVerifying event for the field to which the PXFormula attribute is attached once the
specified fields change.

Default<V1> : IBqlCreator, IBqlTrigger

Raises the FieldDefaulting event for the field to which the PXFormula attribute is attached once the
specified field changes.

Type Parameters:

• V1 : IBqlField

Examples:

[PXFormula(typeof(Default<NotificationSource.setupID>))]
public virtual string Format { get; set; }

Default<V1, V2> : IBqlCreator, IBqlTrigger

Raises the FieldDefaulting event for the field to which the PXFormula attribute is attached once the
specified fields change.

Type Parameters:

• V1 : IBqlField

• V2 : IBqlField

Default<V1, V2, V3> : IBqlCreator, IBqlTrigger

Raises the FieldDefaulting event for the field to which the PXFormula attribute is attached once the
specified fields change.

Type Parameters:

• V1 : IBqlField

• V2 : IBqlField

• V3 : IBqlField

Default<V1, V2, V3, V4> : IBqlCreator, IBqlTrigger

Raises the FieldDefaulting event for the field to which the PXFormula attribute is attached once the
specified fields change.

Type Parameters:

• V1 : IBqlField

• V2 : IBqlField

• V3 : IBqlField

• V4 : IBqlField

BqlFormula<Op1> : BqlFormula, IBqlCreator

An abstract class used to derive custom BQL functions.

 | API Reference | 543

Type Parameters:

• Op1 : IBqlOperand

BqlFormula<Op1, Op2> : BqlFormula<Op1>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

BqlFormula<Op1, Op2, O3> : BqlFormula<Op1, Op2>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

BqlFormula<Op1, Op2, Op3, Op4> : BqlFormula<Op1, Op2, Op3>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

• Op4 : IBqlOperand

BqlFormula<Op1, Op2, Op3, Op4, Op5> : BqlFormula<Op1, Op2, Op3, Op4>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

• Op4 : IBqlOperand

• Op5 : IBqlOperand

BqlFormula<Op1, Op2, Op3, Op4, Op5, Op6> : BqlFormula<Op1, Op2, Op3, Op4, Op5>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

• Op4 : IBqlOperand

 | API Reference | 544

• Op5 : IBqlOperand

• Op6 : IBqlOperand

BqlFormula<Op1, Op2, Op3, Op4, Op5, Op6, Op7> : BqlFormula<Op1, Op2, Op3, Op4, Op5,
Op6>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

• Op4 : IBqlOperand

• Op5 : IBqlOperand

• Op6 : IBqlOperand

• Op7 : IBqlOperand

BqlFormula<Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8> : BqlFormula<Op1, Op2, Op3, Op4,
Op5, Op6, Op7>

An abstract class used to derive custom BQL functions.

Type Parameters:

• Op1 : IBqlOperand

• Op2 : IBqlOperand

• Op3 : IBqlOperand

• Op4 : IBqlOperand

• Op5 : IBqlOperand

• Op6 : IBqlOperand

• Op7 : IBqlOperand

• Op8 : IBqlOperand

PXUnboundFormula Attribute

Calculates the value from the child data record fields and computes the aggregation of such values over
all child data records.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXFormulaAttribute

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class, AllowMultiple = true)]
public class PXUnboundFormulaAttribute : PXFormulaAttribute

 | API Reference | 545

Properties

• public override string FormulaFieldName

Get the name of the field the attribute is attached to.

Constructors

• public PXUnboundFormulaAttribute(Type formulaType, Type
aggregateType) :base(formulaType, aggregateType)

Initializes a new instance that calculates the value of the field the attribute is atached to and sets
an aggregate function to calculate the value of a field in the parent data record. The aggregation
function is applied to the values calculated by the first parameter for all child data records.

Parameters:

• formulaType

The formula to calculate the field value from other fields of the same data record. The
formula can be an expression built from BQL functions such as Add, Sub, Mult, Div, Switch
and other functions. If null, the aggregation function takes into account the field value
inputted by the user.

• aggregateType

The aggregation formula to calculate the parent data record field from the child data records
fields. Currenlty, only SumCalc is supported.

Remarks

Unlike the PXFormula attribute, this attribute does not assign the computed value to the field the
attribute is attached to. The value is only used for aggregated calculation of the parent data record
field. Hence, you can place this attribute on declaration of any child DAC field.

The PXParent attribute must be added to some field of the child DAC.

Examples

[PXUnboundFormula(
 typeof(Mult<APAdjust.adjgBalSign, APAdjust.curyAdjgAmt>),
 typeof(SumCalc<APPayment.curyApplAmt>))]
public virtual decimal? CuryAdjgAmt { get; set; }

Several UnboundFormula attributes can be placed on the same DAC field definition, as shown in the
example below.

[PXUnboundFormula(
 typeof(Switch<
 Case<WhereExempt<APTaxTran.taxID>, APTaxTran.curyTaxableAmt>,
 decimal0>),
 typeof(SumCalc<APInvoice.curyVatExemptTotal>))]
[PXUnboundFormula(
 typeof(Switch<
 Case<WhereTaxable<APTaxTran.taxID>, APTaxTran.curyTaxableAmt>,
 decimal0>),
 typeof(SumCalc<APInvoice.curyVatTaxableTotal>))]
public override Decimal? CuryTaxableAmt { get; set; }

PXDBChildIdentity Attribute

Indicates that a DAC field references an auto-generated key field from another table and ensures the
DAC field's value is correct after changes are committed to the database.

 | API Reference | 546

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowPersistingSubscriber

• IPXRowPersistedSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBChildIdentityAttribute : PXEventSubscriberAttribute,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber

Constructors

• public PXDBChildIdentityAttribute(Type sourceType)

Initializes a new instance that takes the value for the field the attribute is attached to from the
provided source field.

Parameters:

• sourceType

The source field type to get the value from, should be nested (defined in a DAC) and
implement IBqlField.

Remarks

The attribute updates the field value once the source field is assigned a real value by the database.

Examples

[PXDBInt()]
[PXDBChildIdentity(typeof(Address.addressID))]
public virtual int? DefPOAddressID { get; set; }

PXLineNbr Attribute

Automatically generates unique line numbers that identify for child data records in the parent-child
relationship. This attribute does not work without the PXParent attribute.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldDefaultingSubscriber

• IPXRowDeletedSubscriber

• IPXRowInsertedSubscriber

 | API Reference | 547

Syntax

public sealed class PXLineNbrAttribute : PXEventSubscriberAttribute,
 IPXFieldDefaultingSubscriber,
 IPXRowDeletedSubscriber,
 IPXRowInsertedSubscriber

Properties

• public short IncrementStep

Gets or sets the number by which the line number is incremented or decremented. By default, the
property equals 1.

Constructors

• public PXLineNbrAttribute(Type sourceType)

Initializes a new instance of the attribute. As a parameter you can provide the parent data record
field that stores the number of child data records or the parent DAC if there is no such field. In
the latter case the attribute will calculate the number of child data records automatically.

Parameters:

• sourceType

The parent data record field that stores the number of children or the parent DAC.

Static Methods

Method Description

NewLineNbr<TField>(PXCache, object) Returns the next line number for the provided parent
data record

Remarks

The attribute should be placed on the child DAC field that stores the line number. The line number is a
two-byte integer incremented by the IncrementStep property value, which equals 1 by default. The line
number uniquely identifies a data record among the child data records related to a given parent data
record. The attribute calculates each next value by incrementing the current number of the child data
records.

The child DAC field to store the line number typically has the short? data type. It also should be a key
field. You indicate that the field is a key field by setting the IsKey property of the data type attribute to
true.

As a parameter, you should pass either the parent DAC field that stores the number of related child data
records or the parent DAC itself. In the latter case, the attribute will determine the number of related
child data records by itself. If the parent DAC field is specified, the attribute automatically updates its
value.

Examples

The attribute below takes the number of related child data records from the provided parent field. The
PXParent attribute must be added to some other field of this DAC.

[PXDBShort(IsKey = true)]
[PXLineNbr(typeof(ARRegister.lineCntr))]
public virtual short? LineNbr { get; set; }

 | API Reference | 548

In the following example, the attribute calculates the number of related child data records by itself.

[PXDBShort(IsKey = true)]
[PXLineNbr(typeof(Vendor))]
[PXParent(typeof(
 Select<Vendor,
 Where<Vendor.bAccountID, Equal<Current<TaxReportLine.vendorID>>>>))]
public virtual short? LineNbr { get; set; }

PXLineNbr Attribute Methods

The PXLineNbr attribute exposes the following static methods.

NewLineNbr<TField>(PXCache, object)

Returns the next line number for the provided parent data record. The returned value should be used as
the child identifier stored in the specified field.

Syntax:

public static object NewLineNbr<TField>(PXCache cache, object Current) where
 TField :
 class, IBqlField

Parameters:

• cache

The cache object to search for the

• Current

The parent data record for which the next child identifier (line number) is returned.

Returns:

The line number as an object. Cast to short?.

Adhoc SQL for Fields
The following attributes set database-side calculation of DAC fields that are not bound to particular
database columns:

• PXDBCalced

Defines the SQL expression that calculates an unbound field from the fields of the same DAC
whose values are taken from the database.

• PXDBScalar

Defines the SQL subrequest that retrieves the value for an unbound DAC field. The subrequest can
retrieve data from any bound field from any DAC.

The attributes will add the provided expression and the subrequest into the SQL query that selects data
records of the given DAC.

PXDBCalced Attribute

Defines the SQL expression that calculates an unbound field from the fields of the same DAC whose
values are taken from the database.

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 549

Interfaces

• IPXRowSelectingSubscriber

• IPXCommandPreparingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property |
 AttributeTargets.Class)]
public class PXDBCalcedAttribute : PXEventSubscriberAttribute,
 IPXRowSelectingSubscriber,
 IPXCommandPreparingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public virtual bool Persistent

Gets or sets the value that indicates whether the field the attribute is attached to is updated after
a database commit operation.

Constructors

• public PXDBCalcedAttribute(Type operand, Type type)

Initializes a new instance that uses the provided BQL expression to calculate the value of the field.

Parameters:

• operand

The BQL query that is translated into SQL code that retrieves the value of the field. Specify
any combination of BQL functions, constants, and the bound fields of the same DAC.

• type

The data type of the field.

Remarks

You should place the attribute on the field that is not bound to any particular database column.

The attribute will translate the provided BQL query into the SQL code and insert it into the select
statement that retrieves data records of this DAC. In the BQL query, you can reference any bound
field of the same DAC or an unbound field marked with PXDBScalar. You can also use BQL constants,
arithmetic operations, equivalents of SQL function (such as SUBSTRING and REPLACE), and the Switch
expression.

If, in contrast, you need to calculate the field on the server side at run time, use the PXFormula
attribute.

Note that you should also annotate the field with an attribute that indicates an unbound field of a
particular data type. Otherwise, the field may be displayed incorretly in the user interface.

Examples

The attribute below defines the expression to calculate the field of decimal type.

[PXDBCalced(typeof(Sub<POLine.curyExtCost, POLine.curyOpenAmt>),
 typeof(decimal))]
public virtual decimal? CuryClosedAmt { get; set; }

 | API Reference | 550

See the following example with the Switch expression.

[PXDBCalced(
 typeof(Switch<Case<Where<INUnit.unitMultDiv, Equal<MultDiv.divide>>,
 Mult<INSiteStatus.qtyOnHand, INUnit.unitRate>>,
 Div<INSiteStatus.qtyOnHand, INUnit.unitRate>>),
 typeof(decimal))]
public virtual decimal? QtyOnHandExt { get; set; }

See the following example with the more complex BQL expression.

[Serializable]
public class Product : PX.Data.IBqlTable
{
 ...
 [PXDecimal(2)]
 [PXDBCalced(typeof(
 Minus<Sub<Sub<IsNull<Product.availQty, decimal_0>,
 IsNull<Product.bookedQty, decimal_0>>,
 Product.minAvailQty>>),
 typeof(decimal))]
 public virtual decimal? Discrepancy { get; set; }
 ...
}

This example also shows the enclosing declaration of the Product DAC. You can retrieve the records
from the Product table by executing the following code in some graph.

PXSelect<Product>.Select(this);

This BQL statement will be translated into the following SQL query.

SELECT [other fields],
 -((ISNULL(Product.AvailQty, .0) - ISNULL(Product.BookedQty, .0))
 - Product.MinAvailQty) as Product.Discrepancy
FROM Product

PXDBScalar Attribute

Defines the SQL subrequest that will be used to retrieve the value for the DAC field.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute

Syntax

[PXAttributeFamily(typeof(PXDBFieldAttribute))]
public class PXDBScalarAttribute : PXDBFieldAttribute

Constructors

• public PXDBScalarAttribute(Type search)

Initializes a new instance that uses the provided Search command to retrieve the value of the
field the attribute is attached to.

Parameters:

• search

The BQL query based on the Search class or other class derived from IBqlSearch.

 | API Reference | 551

Remarks

You should place the attribute on the field that is not bound to any particular database column.

The attribute will translate the provided BQL Search command into the SQL subrequest and insert
it into the select statement that retrieves data records of this DAC. In the BQL command, you can
reference any bound field of any DAC.

Note that you should also annotate the field with an attribute that indicates an unbound field of a
particular data type. Otherwise, the field may be displayed incorretly in the user interface.

You should not use fields marked with the PXDBScalar attribute in BQL parameters (Current,
Optional, and Required).

Examples

The attribute below selects the AcctName value from the Vendor table as the VendorName value.

[PXString(50, IsUnicode = true)]
[PXDBScalar(typeof(
 Search<Vendor.acctName,
 Where<Vendor.bAccountID, Equal<RQRequestLine.vendorID>>>))]
public virtual string VendorName { get; set; }

PXDBUserPassword Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBCalcedAttribute

Interfaces

• IPXFieldUpdatingSubscriber

Syntax

public class PXDBUserPasswordAttribute : PXDBCalcedAttribute,
 IPXFieldUpdatingSubscriber

Constructors

• public PXDBUserPasswordAttribute() : base(typeof(Users.password),
typeof(string))

Audit Fields
The following attributes are placed on DAC fields used for data audit. The framework binds these fields
to database columns and automatically assigns field values.

• PXDBCreatedByID

Maps a DAC field to the database column and automatically sets the field value to the ID of the
user who created the data record.

• PXDBCreatedByScreenID

Maps a DAC field to the database column and automatically sets the field value to the string ID of
the application screen that created the data record.

• PXDBCreatedDateTime

 | API Reference | 552

Maps a DAC field to the database column and automatically sets the field value to the data
record's creation date and time.

• PXDBCreatedDateTimeUtc

Maps a DAC field to the database column and automatically sets the field value to the data
record's creation UTC date and time.

• PXDBLastModifiedByID

Maps a DAC field to the database column and automatically sets the field value to the ID of the
user who was the last to modify the data record.

• PXDBLastModifiedByScreenID

Maps a DAC field to the database column and automatically sets the field value to the string ID of
the application screen on which the data record was modified the last time.

• PXDBLastModifiedDateTime

Maps a DAC field to the database column and automatically sets the field value to the data
record's last modification date and time.

• PXDBLastModifiedDateTimeUtc

Maps a DAC field to the database column and automatically sets the field value to the data
record's last modification date and time in UTC.

PXDBCreatedByID Attribute

Maps a DAC field to the database column and automatically sets the field value to the ID of the user
who created the data record.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXAggregateAttribute

Interfaces

• IPXRowInsertingSubscriber

• IPXFieldVerifyingSubscriber

Syntax

[Serializable]
public class PXDBCreatedByIDAttribute : PXAggregateAttribute,
 IPXRowInsertingSubscriber,
 IPXFieldVerifyingSubscriber

Properties

• public Type BqlField

Returns null on get. Sets the BQL field representing the field in BQL queries.

• public bool DontOverrideValue

Gets or sets the value that indicates whether a field update is allowed after the field value is set
for the first time.

 | API Reference | 553

Constructors

• public PXDBCreatedByIDAttribute() : this(typeof(Creator.pKID),
typeof(Creator.username), typeof(Creator.username),

Initializes a new instance of the attribute.

Nested Classes

• public sealed class Creator : Users

The class used internally to represent the creator of a data record.

Nested classes:

• public new abstract class pKID : IBqlField

• public new abstract class username : IBqlField

Properties:

• public override String Username

Gets or sets the user name.

Syntax:

[PXDBString]
[PXUIField(DisplayName = "Created By",
 Enabled = false,
 Visibility = PXUIVisibility.SelectorVisible)]
public override String Username { get; set; }

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be Guid?.

The attribute aggregates the PXDBGuid and PXDisplaySelector (derives from PXSelector).

Examples

[PXDBCreatedByID()]
public virtual Guid? CreatedByID { get; set; }

PXDBCreatedByScreenID Attribute

Maps a DAC field to the database column and automatically sets the field value to the string ID of the
application screen that created the data record.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute

Interfaces

• IPXRowInsertingSubscriber

Syntax

public class PXDBCreatedByScreenIDAttribute : PXDBStringAttribute,
 IPXRowInsertingSubscriber

 | API Reference | 554

Constructors

• public PXDBCreatedByScreenIDAttribute() : base(10)

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be string.

Examples

[PXDBCreatedByScreenID()]
public virtual string CreatedByScreenID { get; set; }

PXDBCreatedDateTime Attribute

Maps a DAC field to the database column and automatically sets the field value to the data record's
creation date and time.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute

Interfaces

• IPXCommandPreparingSubscriber

• IPXRowInsertingSubscriber

Syntax

public class PXDBCreatedDateTimeAttribute : PXDBDateAttribute,
 IPXCommandPreparingSubscriber,
 IPXRowInsertingSubscriber

Constructors

• public PXDBCreatedDateTimeAttribute() : base()

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be DateTime?.

Examples

[PXDBCreatedDateTime()]
public virtual DateTime? CreatedDateTime { get; set; }

PXDBCreatedDateTimeUtc Attribute

Maps a DAC field to the database column and automatically sets the field value to the data record's
creation UTC date and time.

 | API Reference | 555

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute
 PXDBCreatedDateTimeAttribute

Syntax

public class PXDBCreatedDateTimeUtcAttribute : PXDBCreatedDateTimeAttribute

Constructors

• public PXDBCreatedDateTimeUtcAttribute() : base()

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be DateTime?.

Examples

[PXDBCreatedDateTimeUtc]
[PXUIField(DisplayName = "Date Created", Enabled = false)]
public virtual DateTime? CreatedDateTime { get; set; }

PXDBLastModifiedByID Attribute

Maps a DAC field to the database column and automatically sets the field value to the ID of the user
who was the last to modify the data record.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXAggregateAttribute
 PXDBCreatedByIDAttribute

Interfaces

• IPXRowUpdatingSubscriber

Syntax

[Serializable]
public class PXDBLastModifiedByIDAttribute : PXDBCreatedByIDAttribute,
 IPXRowUpdatingSubscriber

Constructors

• public PXDBLastModifiedByIDAttribute() : base(typeof(Modifier.pKID),
typeof(Modifier.username), typeof(Modifier.username),

Initializes a new instance of the attribute.

Nested Classes

• public sealed class Modifier : Users

 | API Reference | 556

The class used internally to represent the user who modified the data record.

Nested classes:

• public new abstract class pKID : IBqlField

• public new abstract class username : IBqlField

Properties

• public override String Username

Gets or sets the user name.

Syntax:

[PXDBString]
[PXUIField(DisplayName = "Last Modified By",
 Enabled = false,
 Visibility = PXUIVisibility.SelectorVisible)]
public override String Username { get; set; }

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be Guid?.

Examples

[PXDBLastModifiedByID()]
[PXUIField(DisplayName = "Last Modified By")]
public virtual Guid? LastModifiedByID { get; set; }

PXDBLastModifiedByScreenID Attribute

Maps a DAC field to the database column and automatically sets the field value to the string ID of the
application screen on which the data record was modified the last time.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBStringAttribute
 PXDBCreatedByScreenIDAttribute

Interfaces

• IPXRowUpdatingSubscriber

Syntax

public class PXDBLastModifiedByScreenIDAttribute :
 PXDBCreatedByScreenIDAttribute,
 IPXRowUpdatingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be string.

Examples

[PXDBLastModifiedByScreenID()]

 | API Reference | 557

public virtual string LastModifiedByScreenID { get; set; }

PXDBLastModifiedDateTime Attribute

Maps a DAC field to the database column and automatically sets the field value to the data record's last
modification date and time.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute
 PXDBCreatedDateTimeAttribute

Interfaces

• IPXCommandPreparingSubscriber

• IPXRowUpdatingSubscriber

Syntax

public class PXDBLastModifiedDateTimeAttribute :
 PXDBCreatedDateTimeAttribute,
 IPXCommandPreparingSubscriber,
 IPXRowUpdatingSubscriber

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be DateTime?.

Examples

[PXDBLastModifiedDateTimeUtc]
[PXUIField(DisplayName = "Last Modified Date", Enabled = false)]
public virtual DateTime? LastModifiedDateTime { get; set; }

PXDBLastModifiedDateTimeUtc Attribute

Maps a DAC field to the database column and automatically sets the field value to the data record's last
modification date and time in UTC.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute
 PXDBCreatedDateTimeAttribute
 PXDBLastModifiedDateTimeAttribute

Syntax

public class PXDBLastModifiedDateTimeUtcAttribute :
 PXDBLastModifiedDateTimeAttribute

Constructors

• public PXDBLastModifiedDateTimeUtcAttribute()

 | API Reference | 558

Initializes a new instance of the attribute.

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be DateTime?.

Examples

[PXDBLastModifiedDateTimeUtc]
[PXUIField(DisplayName = "Last Modified Date", Enabled = false)]
public virtual DateTime? LastModifiedDateTime { get; set; }

PXDBLastChangeDateTime Attribute

Maps a DAC field to the database column and automatically sets the field value to the data record's last
modification date and time.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBDateAttribute

Interfaces

• IPXRowUpdatingSubscriber

Syntax

public class PXDBLastChangeDateTimeAttribute : PXDBDateAttribute,
 IPXRowUpdatingSubscriber

Constructors

• public PXDBLastChangeDateTimeAttribute(Type monitoredField)

Initializes a new instance that will monitor the specified field. On each modification of this field,
the attribute will update assign the modification date and time to the field that is marked with the
attribute.

Parameters:

• monitoredField

The field to monitor. Specify a type that implements IBqlField.

Remarks

The attribute is added to the value declaration of a DAC field. The field data type should be DateTime?.

Examples

[PXDBLastChangeDateTime(typeof(CRCase.status))]
public virtual DateTime? StatusDate { get; set; }

Data Projection
The following attributes implement projection of data from one or several data into a single data access
class (DAC):

 | API Reference | 559

• PXProjection

Binds the DAC to an arbitrary data set. The attribute thus defines a named view, but implemented
by the server side rather then the database.

• PXExtraKey

Indicates that the field implements a relationship between two tables. The use of this attribute
enables update of the referenced table on update of the projection.

PXProjection Attribute

Binds the DAC to an arbitrary data set defined by the Select command. The attribute thus defines a
named view, but implemented by the server side rather then the database.

Inheritance Hierarchy

Attribute
 PXDBInterceptorAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXProjectionAttribute : PXDBInterceptorAttribute

Properties

• public bool Persistent

Gets or sets the value that indicates whether the instances of the DAC that represents the
projection can be saved to the database. If the property equals true, the attribute will parse the
Select command and determine the tables that should be updated. Alternatively, you can specify
the list of tables in the constructor. If the property equals false, the DAC is readonly.

Constructors

Constructor Description

PXProjectionAttribute(Type) Initializes a new instance that binds the DAC to the
data set defined by the provided Select command

PXProjectionAttribute(Type, Type[]) Initializes a new instance that binds the DAC to the
specified data set and enables saving of the DAC
instances to the database

Remarks

You can place the attribute on the DAC declaration. The framework doesn't bind such DAC to a database
table—that is, doesn't select data from the table having the same name as the DAC. Instead, you
specify an arbitrary BQL Select command that is executed to retrieve data for the DAC. The Select
command can select data from one or several comands and include any BQL clauses.

By default, the projection is readonly, but you can make it updatable by setting the Persistent
property to true. The attribute will use the Select command to determine which tables needs
updating. However, only the first table referenced by the Select command is updated by default. If the
data should be committed not only into main table, but also to the joined tables, the fields that connect
the tables must be marked with the PXExtraKey attribute. Additionally, you can use the constructor with
two parameters to provide the list of table explicitly. This list should include the tables referenced in the
Select command. This constructor will also set the Persistent property to true.

 | API Reference | 560

You should explicitly map the projection fields to the column retrieved by the Select command. To
map a field, set the BqlField property of the attribute that binds the field to the database (such as
PXDBString and PXDBDecimal) to the type that represents the column, as follows.

[PXDBString(15, IsUnicode = true,
 BqlField = typeof(Supplier.accountCD))]
public virtual string AccountCD { get; set; }

Examples

In the following example, the attribute joins data from two table and projects it to the single DAC.

[Serializable]
[PXProjection(typeof(
 Select2<Supplier,
 InnerJoin<SupplierProduct,
 On<SupplierProduct.accountID, Equal<Supplier.accountID>>>>))]
public partial class SupplierPrice : IBqlTable
{
 public abstract class accountID : PX.Data.IBqlField
 {
 }
 // The field mapped to the Supplier field (through setting of BqlField)
 [PXDBInt(IsKey = true, BqlField = typeof(Supplier.accountID))]
 public virtual int? AccountID { get; set; }

 public abstract class productID : PX.Data.IBqlField
 {
 }
 // The field mapped to the SupplierProduct field
 // (through setting of BqlField)
 [PXDBInt(IsKey = true, BqlField = typeof(SupplierProduct.productID))]
 [PXUIField(DisplayName = "Product ID")]
 public virtual int? ProductID { get; set; }

 ...
}

Note how the DAC declares the fields. The projection defined in the example is readonly. To make it
updatable, you should set the Persistent property to true, changing the attribute declaration to the
following one.

[PXProjection(
 typeof(Select2<Supplier,
 InnerJoin<SupplierProduct,
 On<SupplierProduct.accountID, Equal<Supplier.accountID>>>>),
 Persistent = true
)]

If the projection should be able to update both tables, you should place the PXExtraKey attribute on the
field that relates the tables—the AccountID property—as follows.

[PXDBInt(IsKey = true, BqlField = typeof(Supplier.accountID))]
[PXExtraKey]
public virtual int? AccountID { get; set; }

PXProjection Attribute Constructors

The PXProjection attribute exposes the following constructors.

PXProjectionAttribute(Type)

Initializes a new instance that binds the DAC to the data set defined by the provided Select command.

 | API Reference | 561

Syntax:

public PXProjectionAttribute(Type select)

Parameters:

• select

The BQL command that defines the data set, based on the Select class or any other class that
implements IBqlSelect.

PXProjectionAttribute(Type, Type[])

Initializes a new instance that binds the DAC to the specified data set and enables update saving of the
DAC instances to the database. The tables that should be updated during update of the current DAC.

Syntax:

public PXProjectionAttribute(Type select, Type[] persistent) : this(select)

Parameters:

• select

The BQL command that defines the data set, based on the Select class or any other class that
implements IBqlSelect.

• persistent

The list of DACs that represent the tables to update during update of the current DAC.

PXExtraKey Attribute

Indicates that the field implements a relationship between two tables in a projection. The use of this
attribute enables update of the referenced table on update of the projection.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXCommandPreparingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXExtraKeyAttribute : PXEventSubscriberAttribute,
 IPXCommandPreparingSubscriber

Remarks

You can place the attribute on the field declaration in the DAC that represents a projection. The
attribute is required when the projection combines data from joined tables and more than one table
needs to be updated on update of the projection. In this case the attribute should be placed on all fields
that implement the relationship between the main and the joined tables.

 | API Reference | 562

Examples

The following example shows the declaration of a projection that can update data in two tables.

// Projection declaration
[PXProjection(
 typeof(
 Select2<CRCampaignMembers,
 RightJoin<Contact,
 On<Contact.contactID, Equal<CRCampaignMembers.contactID>>>>
),
 Persistent = true)]
[Serializable]
public partial class SelCampaignMembers : CRCampaignMembers, IPXSelectable
{
 ...
 // The field connecting the current DAC with the Contact DAC
 [PXDBInt(BqlField = typeof(Contact.contactID))]
 [PXExtraKey]
 public virtual int? ContactContactID { get; set; }
 ...
}

Note that the Select commands retrieves data from two tables, CRCampaignMembers and Contact.
To make the projection updatable, you set the Persistent property to true. The projection field that
implements relationship between the tables is marked with the PXExtraKey attribute.

Access Control
The group mask value indicates access rights a user should have to use a data record. To be able to set
access rights for particular data records, you should use the PXDBGroupMask attribute to mark the DAC
field that holds the group mask value.

PXDBGroupMask Attribute

Marks a DAC field of byte[] type that holds the group mask value.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBBinaryAttribute

Syntax

public class PXDBGroupMaskAttribute : PXDBBinaryAttribute

Constructors

Constructor Description

PXDBGroupMaskAttribute() Initializes an instance of the attribute with default
parameters

PXDBGroupMaskAttribute(int) Initializes an instance of the attribute with the
specified maximum length of the value

Examples

The code below shows definition of a DAC field tha holds a group mask value.

[PXDBGroupMask()]

 | API Reference | 563

public virtual Byte[] GroupMask { get; set; }

PXDBGroupMask Attribute Constructors

The PXDBGroupMask attribute exposes the following constructors.

PXDBGroupMaskAttribute()

Initializes an instance of the attribute with default parameters.

Syntax:

public PXDBGroupMaskAttribute() : base()

PXDBGroupMaskAttribute(int)

Initializes an instance of the attribute with the specified maximum length of the value.

Syntax:

public PXDBGroupMaskAttribute(int length) : base(length)

Notes
By using the PXNote attribute, you enable a user to attach text notes, files, and activity items to data
records.

You should use the PXNote attribute in the data access class of these data records to mark the field
that will store the identifier of a note in the Note table. Basically, notes are used to attach text to data
record. This text is stored in the note data record in the Note table. Additionally, you can attach files
or other entities to a data record through a note. This feature is implemented through additional tables
that store identifiers of a note and the attached entity.

The PXNote attribute can also be configured to save the specified table fields in a note. In this case,
the user will be able to search the data records by the values saved in the note, using the Acumatica
Framework application website search.

PXNote Attribute

Binds a DAC field of long? type to the database column that keeps note identifiers and enables
attachment of text comments, files, and activity items to a data record.

See Remarks for more details. See Examples for examples of usage.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBLongAttribute

Interfaces

• IPXRowPersistingSubscriber

• IPXRowPersistedSubscriber

• IPXRowDeletedSubscriber

• IPXReportRequiredField

 | API Reference | 564

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXNoteAttribute : PXDBLongAttribute,
 IPXRowPersistingSubscriber,
 IPXRowPersistedSubscriber,
 IPXRowDeletedSubscriber,
 IPXReportRequiredField

Properties

• public Type[] ExtraSearchResultColumns

Gets or sets the list of fields that will be displayed in a separate column when rendering search
results.

• public Type[] Searches

Gets the list of fields whose values will be saved in the note and will be available to the website
search. The default value is null. The property is set through the constructor.

• public Type[] ForeignRelations

Gets or sets the list of fields that connect the current table with foreign tables. The fields from the
foreign tables can be specified along with current table fields in the Searches list.

• public bool ShowInReferenceSelector

Gets or sets the value that indicates whether activity items can be associated with the DAC where
the PXNote attribute is used. If the property equals true, the DAC will appear in the list of types
in the lookup that selects the related data record for an activity. If the property equals false,
activity attributes cannot be associated with data records of the DAC. By default the property
equals false.

• public Type DescriptionField

Gets or set the field whose value will be displayed as value in the lookup that selects the related
data record for an activity.

• public Type Selector

Gets or sets the BQL expression that selects the data records to be displayed in the pop-up
window of the lookup that selects the related data record for an activity. As the BQL expression,
you can specify a Search<> command or just a field. This field, or the main field of the Search<>
command, will be the value that identifies a data record in the activity item.

• public Type[] FieldList

Gets or set the list of columns that will be displayed in the pop-up window of the lookup that
selects the related data record for an activity.

Constructors

Constructor Description

PXNoteAttribute() Initializes a new instance of the attribute

PXNoteAttribute(params Type[]) Initializes an instance of the attribute that will save
values of the provided fields in the note

 | API Reference | 565

Static Methods

Method Description

GetFileNotes(PXCache, object) Returns the list of identifiers of files that are shown in
the Files pop-up window

GetNote(PXCache, object) Returns the text comment of the note attached to the
provided object

GetNoteID(PXCache, object, string) Returns the identifier of the note attached to the
provided object and inserts a new note into the cache
if the note does not exist

GetNoteID<Field>(PXCache, object) Returns the identifier of the note attached to the
provided object and inserts a new note into the cache
if the note does not exist

GetNoteIDNow(PXCache, object) Returns the identifier of the note attached to the
provided object and inserts a new not into the
database if the note does not exist

GetNoteIDReadonly(PXCache, object, string) Returns the identifier of the note attached to the
provided object or null if the note does not exist

GetNoteIDReadonly<Field>(PXCache, object) Returns the identifier of the note attached to the
provided object or null if the note does not exist

SetFileNotes(PXCache, object, params
Guid[])

Sets the list of identifiers of files that are shown in the
Files pop-up window

SetNote(PXCache, object, string) Sets the text of the note attached to the provided data
record

UpdateEntityType(PXCache, object, string,
Type)

Sets the DAC type of the data record to which the note
is attached

Remarks

The attribute should be placed on the DAC field that will hold the identifier of the related note. A note
is a data record in the Note database table. A note data record contains the note identifier, the text
comment, the DAC name of the related data record, and some other fields.

Only one data record can reference a note. So the identifier of this note can be used as the global
identifier of the data record. Thanks to this fact, in addition to adding text comments to a data record
notes are used to implement:

• Full-text search of data records: A note can be used to store the specified fields of the related
data record, which can be found by these fields through the website search.

• File attachments: The relationships between files and notes are kept in a separate table, NoteDoc,
as pairs of a file identifier and note identifier. The UploadFile stores general information about
files, and the UploadRevision stores specific revisions of files.

• Association of activity items with a data record.

For any of these features to work, the given DAC should define a field marked with the PXNote
attribute.

 | API Reference | 566

Examples

The attribute below indicates that the DAC field references a note.

[PXNote(new Type[0])]
public virtual long? NoteID { get; set; }

Here, new Type[0] as parameter is used to force creation of the note on saving of a data record even
if the used did not create a note manually.

The attribute below indicates that the DAC field holds note identifier, sets the lists of fields (from
different tables) that will be saved in the note, and allows association of a data record with activity
items. It will be possible to find the Vendor data record through the application website search by the
values of these fields.

[PXNote(
 typeof(Vendor.acctCD),
 typeof(Vendor.acctName),
 typeof(Contact.eMail),
 typeof(Contact.phone1),
 typeof(Contact.fax),
 typeof(Address.addressLine1),
 typeof(Address.city),
 typeof(Address.countryID),
 typeof(Address.postalCode),
 ForeignRelations =
 new Type[] { typeof(Vendor.defContactID),
 typeof(Vendor.defAddressID) },
 ExtraSearchResultColumns =
 new Type[] { typeof(CR.Contact) },

 ShowInReferenceSelector = true,
 DescriptionField = typeof(Vendor.acctCD),
 Selector = typeof(Vendor.acctCD)
)]
public virtual long? NoteID { get; set; }

The first few parameters specify fields to save in the note. The ForeignRelations property specifies
the Vendor fields that reference the related Contact and Address data records. Fields from these tables
are also provided among the field to save in the note.

The ShowInReferenceSelector allows attaching activity items to Vendor data records. On the
activity webpage, the lookup field for selecting a related data record will display the Vendor.AcctCD
(configured by DescriptionField) when a Vendor data record is selected and use the same field (due
to Selector) as the reference value.

PXNote Attribute Constructors

The PXNote attribute exposes the following constructors.

PXNoteAttribute()

Initializes a new instance of the attribute that will be used to attach notes to data record but won't save
values of the fields in a note.

Syntax:

public PXNoteAttribute()

PXNoteAttribute(params Type[])

Initializes an instance of the attribute that will save values of the provided fields in the note. The values
saved in a note will be updated each time the data record is saved.

 | API Reference | 567

If you don't need to save fields in the note, but need to have a note automatically created for each data
record of the current DAC type, provide an empty array as the parameter:

[Note(new Type[0])]

Syntax:

public PXNoteAttribute(params Type[] searches)

Examples:

• params searches

The fields to save within the note to enable full-text search of a data record by these fields.

PXNote Attribute Methods

The PXNote attribute exposes the following static methods.

GetFileNotes(PXCache, object)

Returns the list of identifiers of files that are shown in the Files pop-up window.

Syntax:

public static Guid[] GetFileNotes(PXCache sender, object data)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

GetNote(PXCache, object)

Returns the text comment of the note attached to the provided object.

Syntax:

public static string GetNote(PXCache sender, object data)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

GetNoteID(PXCache, object, string)

Returns the identifier of the note attached to the provided object and inserts a new note into the cache
if the note does not exist.

Syntax:

public static long GetNoteID(PXCache cache, object data, string name)

Parameters:

• sender

 | API Reference | 568

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

• name

The name of the field that stores note identifier. If null, the method will search attributes on all
fields and use the first PXNote attribute it finds.

GetNoteID<Field>(PXCache, object)

Returns the identifier of the note attached to the provided object and inserts a new note into the cache
if the note does not exist. The field that stores note identifier is specified in the type parameter.

Syntax:

public static long GetNoteID<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

GetNoteIDNow(PXCache, object)

Returns the identifier of the note attached to the provided object and inserts a new not into the
database if the note does not exist.

Syntax:

public static long? GetNoteIDNow(PXCache cache, object data)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

GetNoteIDReadonly(PXCache, object, string)

Returns the identifier of the note attached to the provided object or null if the note does not exist.

Syntax:

public static long? GetNoteIDReadonly(PXCache cache, object data, string name)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

 | API Reference | 569

• name

The name of the field that stores note identifier. If null, the method will search attributes on all
fields and use the first PXNote attribute it finds.

GetNoteIDReadonly<Field>(PXCache, object)

Returns the identifier of the note attached to the provided object or null if the note does not exist. The
field that stores note identifier is specified in the type parameter.

Syntax:

public static long? GetNoteIDReadonly<Field>(PXCache cache, object data)
 where Field : IBqlField

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

SetFileNotes(PXCache, object, params Guid[])

Sets the list of identifiers of files that are shown in the Files pop-up window.

Syntax:

public static void SetFileNotes(PXCache cache, object data,
 params Guid[] fileIDs)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

• fileIDs

The indetifiers of files to display.

SetNote(PXCache, object, string)

Sets the text of the note attached to the provided data record.

Syntax:

public static void SetNote(PXCache sender, object data, string note)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

• note

 | API Reference | 570

The text to place in the note.

UpdateEntityType(PXCache, object, string, Type)

Sets the DAC type of the data record to which the note is attached. The full name of the DAC is saved
in the database in the note record. This information is used, for example, to determine the webpage to
open to show full details of the data record associated with a note.

Syntax:

public static void UpdateEntityType(PXCache cache, object data,
 string noteFieldName, Type newEntityType)

Parameters:

• sender

The cache object to search for the attributes of PXNote type.

• data

The data record the method is applied to.

• noteFieldName

The name of the field that stores note identifier.

• newEntityType

New DAC type to associate with the note.

Report Optimization
The value of an unbound DAC field can be calculated in the property getter. The calculation can involve
other fields of the same DAC. However, at the time when the value of the DAC field is requested, other
fields are not guaranteed to be calculated or assigned their values. Such situations are normal when the
Integration Services or Copy-Paste functionality is used, or when the field is used in reports.

To ensure that the fields referenced in the property getter have values at the time when it is executed,
you should use the PXDependsOnFields attribute.

PXDependsOnFields Attribute

Used for calculated DAC fields that contain referenses to other fields in their property getters. The
attribute allows such fields to work properly in reports and Integration Services.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Property, AllowMultiple = false)]
public sealed class PXDependsOnFieldsAttribute : Attribute

Constructors

• public PXDependsOnFieldsAttribute(params Type[] fields)

Initializes an instance of the attribute that makes the field the attribute is attached to depend on
the provided DAC fields.

 | API Reference | 571

Examples

The code below shows definition of a calculated DAC field.

[PXDefault(TypeCode.Decimal, "0.0")]
[PXUIField(DisplayName = "Balance")]
public virtual Decimal? ActualBalance
{
 [PXDependsOnFields(typeof(docBal), typeof(taxWheld))]
 get
 {
 return this.DocBal - this.TaxWheld;
 }
}

The property getter involves two fields, DocBal and TaxWheld. These two fields should be specified as
parameters of the PXDependsOnFields attribute.

Attributes on DACs
You can place the following attributes on the data access class (DAC) declaration:

• PXPrimaryGraph Attribute

Sets the graph that is used by default to edit a data record.

• PXCacheName Attribute

Sets the user-friendly name of the DAC. The name is displayed in the user interface.

• PXTable

Binds a DAC that derives from another DAC to the table having the name of the derived table.
Without the attribute, the derived DAC will be bound to the same table as the DAC that starts the
inheritance hierarchy.

• PXAccumulator Attribute

Updates values of a data record in the database according to specified policies.

• PXHidden Attribute

Allows the developer to hide a DAC, a graph, or a view from the selectors of DACs and graphs and
the Web Service API (in particular, from reports).

• PXEMailSource Attribute

The PXProjection and PXTable attributes can also mark a DAC. See Data Projection for more details.

PXPrimaryGraph Attribute

Sets the primary graph for the DAC. The primary graph determines the default page where a user is
redirected for editing a data record.

Inheritance Hierarchy

PXPrimaryGraphBaseAttribute

Syntax

public class PXPrimaryGraphAttribute : PXPrimaryGraphBaseAttribute

 | API Reference | 572

Constructors

Constructor Description

PXPrimaryGraphAttribute(Type) Initializes a new instance that will use the provided
graph to edit a data record

PXPrimaryGraphAttribute(Type[], Type[]) Initializes a new instance that will use the graph
corresponding to the first satisfied condition

Static Methods

Method Description

FindPrimaryGraph(PXCache, out) Finds the primary graph of the DAC the cache object
corresponds to

Remarks

The attribute can be placed on the following declarations:

• On the DAC to specify the primary graph for this DAC.

• On the graph to indicate that it is the primary graph for the specified DACs.

The second methods overrides the primary graph set by the first method.

You can specify several graphs and a set of the correspond conditions. In this case, the first graph for
which the condition holds true at run time is considered the primary graph. A condition is a BQL query
based on either the Where class or the Select class.

Examples

In the example below, the attribute specifies the primary graph for a DAC.

[PXPrimaryGraph(typeof(SalesPersonMaint))]
public partial class SalesPerson : PX.Data.IBqlTable
{
 ...
}

In the example below, the attribute specifies the graph that is used as the primary graph for a DAC if
the condition holds true for the data in the cache.

[PXPrimaryGraph(
 new Type[] { typeof(ShipTermsMaint)},
 new Type[] { typeof(Select<ShipTerms,
 Where<ShipTerms.shipTermsID, Equal<Current<ShipTerms.shipTermsID>>>>)
 })]
public partial class ShipTerms : PX.Data.IBqlTable
{
 ...
}

In the example below, the attribute specifies the graph that is used as the primary graph for a DAC if
the Select statement retrieves a non-empty data set.

[PXPrimaryGraph(
 new Type[] { typeof(CountryMaint)},
 new Type[] { typeof(Select<State,
 Where<State.countryID, Equal<Current<State.countryID>>,
 And<State.stateID, Equal<Current<State.stateID>>>>>)
 })]
public partial class State : PX.Data.IBqlTable

 | API Reference | 573

{
 ...
}

In the example below, the attribute specifies two graphs and the corresponding Select statements. The
first graph for which the Select statement returns a non-empty data set is used as the primary graph
for the DAC.

[PXPrimaryGraph(
 new Type[] {
 typeof(APQuickCheckEntry),
 typeof(APPaymentEntry)
 },
 new Type[] {
 typeof(Select<APQuickCheck,
 Where<APQuickCheck.docType, Equal<Current<APPayment.docType>>,
 And<APQuickCheck.refNbr, Equal<Current<APPayment.refNbr>>>>>),
 typeof(Select<APPayment,
 Where<APPayment.docType, Equal<Current<APPayment.docType>>,
 And<APPayment.refNbr, Equal<Current<APPayment.refNbr>>>>>)
 })]
public partial class APPayment : APRegister, IInvoice
{
 ...
}

PXPrimaryGraph Attribute Constructors

The PXPrimaryGraph attribute exposes the following constructors.

PXPrimaryGraphAttribute(Type)

Initializes a new instance that will use the provided graph to edit a data record.

Syntax:

public PXPrimaryGraphAttribute(Type type)

Parameters:

• type

The business logic controller (graph) or the DAC. The graph should derive from PXGraph. The DAC
should implement IBqlTable.

PXPrimaryGraphAttribute(Type[], Type[])

Initializes a new instance that will use the graph corresponding to the first satisfied condition. Provide
the array of graphs and the array of corresponding conditions.

Syntax:

public PXPrimaryGraphAttribute(Type[] types, Type[] conditions)

Parameters:

• type

The array of business logic controllers (graphs) or DACs. A graph should derive from PXGraph. A
DAC should implement IBqlTable.

• conditions

The array of conditions that correspond to the graphs or DACs specified in the first parameter.
Specify BQL queries, either Where expressions or Select commands.

 | API Reference | 574

PXPrimaryGraph Attribute Methods

The PXPrimaryGraph attribute exposes the following static methods.

FindPrimaryGraph(PXCache, out)

Finds the primary graph of the DAC the cache object corresponds to. Sets the discovered graph type to
the out parameter and returns the attribute instance.

Syntax:

public static PXPrimaryGraphBaseAttribute FindPrimaryGraph(PXCache cache, out
 Type graphType)

Parameters:

• cache

The cache object to search for the attributes of PXPrimaryGraph type.

• (out) graphType

The discovered primary graph type.

PXCacheName Attribute

Sets the user-friendly name of the data access class (DAC).

Inheritance Hierarchy

Attribute
 PXNameAttribute

Syntax

public class PXCacheNameAttribute : PXNameAttribute

Constructors

• public PXCacheNameAttribute(string name) : base(name)

Initializes a new instance that assigns the specified name to the DAC.

Remarks

The attribute is added to the DAC declaration. The name can be obtained at run time through the
GetItemName(PXCache) static method of the PXUIField attribute.

Examples

[PXCacheName("Currency Info")]
public partial class CurrencyInfo : PX.Data.IBqlTable
{
 ...
}

PXTable Attribute

Binds a DAC that derives from another DAC to the table having the name of the derived DAC. Without
the attribute, the derived DAC will be bound to the same table as the DAC that starts the inheritance
hierarchy.

 | API Reference | 575

Inheritance Hierarchy

Attribute
 PXDBInterceptorAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXTableAttribute : PXDBInterceptorAttribute

Properties

• public bool IsOptional

Gets or sets the value that indicates whether the base DAC data record can exist without the
extension DAC data record. This situation corresponds to the use of the attribute on the extension
DAC that is bound to a separate database table. By default, the value is false, and the data
record in the extension table is always created for a data record of the base table.

Constructors

Constructor Description

PXTableAttribute() Initializes a new instance of the attribute

PXTableAttribute(params Type[]) Initializes a new instance of the attribute when the
base DAC has a pair of surrogate and natural keys

Remarks

The attribute is placed on the declaration of a DAC.

The attribute can be used in customizations. You place it on the declaration of a DAC extension to
indicate that the extension fields are bound to a separate table.

Examples

The PXTable attribute below indicates that the APInvoice DAC is bound to the APInvoice table.
Without the attribute, it would be bound to the APRegister table.

[System.SerializableAttribute()]
[PXTable()]
public partial class APInvoice : APRegister, IInvoice
{
 ...
}

The PXTable attribute below indicates that the FSxLocation extension of the Location DAC is bound
to a separate table and the Location DAC can include data records that do not have the corresponding
data records in the extension table.

[PXTable(typeof(Location.bAccountID),
 typeof(Location.locationID),
 IsOptional = true)]
public class FSxLocation : PXCacheExtension<Location>
{
 ...
}

 | API Reference | 576

Here, you specify the key fields of the Location DAC, because it includes a surrogate-natural pair of
key fields, LocationID (which is the database key as well) and LocationCD (human-readable value). In
the PXTable attribute, you specify the surrogate LocationID field.

PXTable Attribute Constructors

The PXTable attribute exposes the following constructors.

PXTableAttribute()

Initializes a new instance of the attribute.

Syntax:

public PXTableAttribute()

PXTableAttribute(params Type[])

Initializes a new instance of the attribute when the base DAC has a pair of surrogate and natural keys.
In this case, in the parameters, you should specify all key fields of the base DAC. From the pair of the
surrogate and natural keys, you include only the surrogate key.

Syntax:

public PXTableAttribute(params Type[] links) : this()

Parameters:

• links

The list of key fields of the base DAC.

PXAccumulator Attribute

Updates values of a data record in the database according to specified policies. You can derive a
custom attribute from this attribute and override the PrepareInsert() method to set other assignment
behavior for target values (such as taking the maximum instead of summarizing).

Inheritance Hierarchy

Attribute
 PXDBInterceptorAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXAccumulatorAttribute : PXDBInterceptorAttribute

Properties

• public virtual bool SingleRecord

Gets or sets the value that indicates whether the attribute always updates only a single data
record.

Constructors

Constructor Description

PXAccumulatorAttribute() Empty default constructor

 | API Reference | 577

Constructor Description

PXAccumulatorAttribute(Type[], Type[]) Initializes an instance of the attribute with the source
fields and destination fields

PrepareInsert(PXCache, object, PXAccumulatorCollection)

The method to override in a successor of the PXAccumulator attribute and set policies for fields.

The method is invoked by the PersistInserted() method of the PXAccumulator attribute.

Typically, when you override this method, you call the base version of the method and set the policies
for fields by calling the Update<>() method of the columns parameter.

Syntax:

protected virtual bool PrepareInsert(PXCache sender, object row,
 PXAccumulatorCollection columns)

Parameters:

• sender

The cache object into which the data record is inserted.

• row

The data record to insert into the cache.

• columns

The object representing columns.

PersistInserted(PXCache, object)

The method that will be executed by the cache instead of the standard PersistInserted(object) method.
If the attribute is attached to the cache, the cache will discover that a successor of the PXInterceptor
attribute is attached, invoke the attribute's method from the standard method, and quit the standard
method.

If you only need to set insertion policies for some DAC field, you should override only the
PrepareInsert() method. Overriding the PersistInserted() method is needed to tweak the persist
operation—for example, to catch and process errors.

Syntax:

public override bool PersistInserted(PXCache sender, object row)

Parameters:

• sender

The cache object into which the data record is inserted.

• row

The inserted data record to be saved to the database.

Remarks

You can use the attribute on its own or derive a custom attribute. Both a successor of PXAccumulator
and the PXAccumulator attribute itself should be placed on the definition of a DAC.

To define custom policy for fields of the specified DAC, you should derive a custom class from
this attribute and override the PrepareInsert() method. The method is called within the

 | API Reference | 578

PersistInserted() method of the PXAccumulator. You can override the PersistInserted() method
as well.

With default settings, the attribute doesn't work with tables that contain an identity column. To use the
attribute on these tables, you should set to true the UpdateOnly property of the columns parameter in
the PrepareInsert() method.

The logic of the PXAccumulator attribute works on saving of the inserted data records to the database.
This process is implemented in the PersistInserted() method of the cache. This methods detects the
PXAccumulator-derived attribute and calls the PersistInserted() method defined in this attribute.

When you update a data record using the attribute, you typically initialize a new instance of the DAC,
set the key fields to the key values of the data record you need to update, and insert it into the cache.
When a user saves changes on the webpage, or you save changes from code, your custom attribute
processes these inserted data records in its own way, updating database records instead of inserting
new redords and applying the policies you specify.

By deriving from this attribute, you can implement an attribute that will prevent certain fields from
further updates once they are initialized with values.

Examples

The code below shows how the attribute can be used directly. When a data record is saved, value of
every field from the first array will be added to the previously saved value of the corresponding field
from the second array. That is, FinYtdBalance values will be accumulated in the FinBegBalance value,
TranYtdBalance values in the TranBegBalance value, and so on.

[PXAccumulator(
 new Type[] {
 typeof(CuryAPHistory.finYtdBalance),
 typeof(CuryAPHistory.tranYtdBalance),
 typeof(CuryAPHistory.curyFinYtdBalance),
 typeof(CuryAPHistory.curyTranYtdBalance)
 },
 new Type[] {
 typeof(CuryAPHistory.finBegBalance),
 typeof(CuryAPHistory.tranBegBalance),
 typeof(CuryAPHistory.curyFinBegBalance),
 typeof(CuryAPHistory.curyTranBegBalance)
 }
)]
[Serializable]
public partial class CuryAPHist : CuryAPHistory
{ ... }

In the following example, the class derived from PXAccumulatorAttribute overrides the
PrepareInsert() method and specifies the assignment behavior for several fields.

public class SupplierDataAccumulatorAttribute : PXAccumulatorAttribute
{
 public SupplierDataAccumulatorAttribute()
 {
 base._SingleRecord = true;
 }

 protected override bool PrepareInsert(PXCache sender, object row,
 PXAccumulatorCollection columns)
 {
 if (!base.PrepareInsert(sender, row, columns))
 return false;

 SupplierData bal = (SupplierData)row;
 columns.Update<SupplierData.supplierPrice>(
 bal.SupplierPrice, PXDataFieldAssign.AssignBehavior.Initialize);
 columns.Update<SupplierData.supplierUnit>(
 bal.SupplierUnit, PXDataFieldAssign.AssignBehavior.Initialize);

 | API Reference | 579

 columns.Update<SupplierData.conversionFactor>(
 bal.ConversionFactor, PXDataFieldAssign.AssignBehavior.Initialize);
 columns.Update<SupplierData.lastSupplierPrice>(
 bal.LastSupplierPrice, PXDataFieldAssign.AssignBehavior.Replace);
 columns.Update<SupplierData.lastPurchaseDate>(
 bal.LastPurchaseDate, PXDataFieldAssign.AssignBehavior.Replace);

 return true;
 }
}

The custom attribute is then applied to a DAC as follows.

[System.SerializableAttribute()]
[SupplierDataAccumulator]
public class SupplierData : PX.Data.IBqlTable
{ ... }

Related Types

• PXDataFieldAssign.AssignBehavior Enumeration

PXAccumulator Attribute Constructors

The PXAccumulator attribute exposes the following constructors.

PXAccumulatorAttribute()

Empty default constructor.

Syntax:

public PXAccumulatorAttribute()

PXAccumulatorAttribute(Type[], Type[])

Initializes an instance of the attribute with the source fields and destination fields.

For example, a source field may be the transaction amount and the destination field the current
balance.

Syntax:

public PXAccumulatorAttribute(Type[] source, Type[] destination)

Parameters:

• source

Fields whose values are summarized in the corresponding destination fields.

• destination

Fields that store sums of source fields from the data records inserted into the database previously
to the current data record.

PXDataFieldAssign.AssignBehavior Enumeration

Defines possible policies of assigning a value to a DAC field. The enumeration declaration nests in the
PXDataFieldAssign class.

Syntax

public class PXDataFieldAssign : PXDataFieldParam
{

 | API Reference | 580

 public enum AssignBehavior {...}
}

Members

• Replace

The new value is inserted into the data field, and the previous value is overwritten.

• Summarize

The new value is added to the value stored in the database.

• Maximize

The maximum of the new value and the value from the database is saved in the database.

• Minimize

The minimum of the new value and the value from the database is saved in the database.

• Initialize

The new value is saved in the database as the value if the field does not have a value in the
database. If the data field is not null, the new value is discarded.

Remarks

The enumeration is typically used in the methods of the PXAccumulator attribute and its successors.

PXHidden Attribute

Hides the data access class (DAC), the business logic controller (graph), or the view from the selectors
of DACs and graphs and from the Web Service API clients.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Field |
 AttributeTargets.Assembly, AllowMultiple = true)]
public sealed class PXHiddenAttribute : Attribute

Properties

• public bool ServiceVisible

Gets or sets the value that indicates whether the object marked with the attribute is visible to the
Web Service API (in particular, to the Report Designer). By default, default the property equals
false, and the object is hidden from all selectors.

Remarks

You can the attribute either on the declaration of a DAC, a graph, or a view. You can hide the object
from everything but the Web Service API by placing the attribute on the object declaration and setting
the ServiceVisible property to true.

 | API Reference | 581

Examples

In the example below, the attribute is placed on the DAC declaration.

[Serializable]
[PXHidden]
public partial class ActivitySource : IBqlTable { ... }

In the example below, the attribute is placed on the graph declaration.

[PXHidden()]
public class CAReleaseProcess : PXGraph<CAReleaseProcess> { ... }

In the example below, the attribute is placed on the view declaration in some graph.

[PXHidden]
public PXSelect<CurrencyInfo> CurrencyInfoSelect;

Attributes on Actions
The following attributes set up the button that will represent an action in the user interface:

• PXButton

The base attribute for all other attributes that configure buttons. The successor attributes only set
base class properties to specific values.

• PXSaveButton

• PXSaveCloseButton

• PXCancelButton

• PXCancelCloseButton

• PXInsertButton

• PXDeleteButton

• PXFirstButton

• PXPreviousButton

• PXNextButton

• PXLastButton

• PXSendMailButton

• PXReplyMailButton

• PXForwardMailButton

• PXTemplateMailButton

• PXLookupButton

• PXProcessButton

Also, you can use the PXUIField attribute to configure the button layout and set access rights.

PXButton Attribute

Sets up a button that is used to initiate the action in the user interface.

 | API Reference | 582

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

public class PXButtonAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

Properties

• public bool ShortcutCtrl

Gets or sets the value that indicates whether the keyboard shortcut for the button includes the
Ctrl key.

• public bool ShortcutShift

Gets or sets the value that indicates whether the keyboard shortcut for the button includes the
Shift key.

• public char ShortcutChar

Gets or sets the character that is used as the keyboard shorcut for the button. Setting additionally
the ShortcutCtrl and ShortcutShift properties adds or removes Ctrl and Shift keys to and from
the shortcut.

• public PXSpecialButtonType SpecialType

Gets or sets the PXSpecialButtonType value that indicates whether a button has a special type,
such as Save, Cancel, or Refresh, or does not have. A button of a special type may be searched,
for instance, by graph methods in special occassions (the PressSave() method searches
visible buttons of Save type and selects the first of them). By default, the property is set to
PXSpecialButtonType.Default.

• public PXSpecialButtonType OnClosingPopup

Gets or sets the special type of the button that will be triggerred on closing of an application
webpage that is opened in popup mode.

• public bool ClosePopup

Gets or sets the value that indicates whether the enclosing popup is closed once the button logic
is executed.

• public bool PopupVisible

Gets or sets the value that indicates whether the button is visible when the enclosing webpage is
opened in popup mode.

• public bool CommitChanges

Gets or sets the value that indicates whether a button press posts modifications to the server.

• public string ImageSet

Gets or sets the value that identifies the image set. Forms the first part of the button image URL.

• public string ImageKey

 | API Reference | 583

Gets or sets the value that identifies the button image within the set specified by ImageSet.
Forms the second part of the button image URL.

• public string ImageUrl

Gets or sets the URL of the image displayed on the button when it is enabled.

• public string DisabledImageUrl

Gets or sets the URL of the image displayed on the button when it is disabled.

• public string HoverImageUrl

Gets or sets the URL of the image displayed on the enabled button on hover.

• public string Tooltip

Gets or sets the string displayed as a tooltip for the button.

• public PXConfirmationType ConfirmationType

Gets or sets the PXConfirmationType value that indicates in what cases the confirmation
message is shown to a user on a button press. By default, the property is set to
PXConfirmationType.Unspecified.

• public string ConfirmationMessage

Gets or sets the confirmation message that can be shown to a user on a button press. The cases
when the configramtion message is shown depend on ConfirmationType.

• public bool MenuAutoOpen

Gets or sets the value that indicates whether a button press only expands the menu with other
buttons. If true, the button press opens the menu and does not trigger button's action.

Constructors

• public PXButtonAttribute() : base()

Create an instance of the attribute.

Remarks

This attribute should be placed on the declaration of the method that implements the action.

Through attribute's parameters, you can configure some properties of the button, such ImageUrl,
ShortcutChar, and Tooltip. To configure other layout properties, use the PXUIField attribute, such as
DisplayName, Visible, or Enabled. Still some other properties can be set only on an ASPX page.

A number of other attributes derive from the PXButton attributes. These attribute do not implement
additional logic and only set certain properties to specific values.

Examples

An example of using the attribute without parameters is given below.

// Action declaration in a graph
public PXAction<ApproveBillsFilter> ViewDocument;

// Action implementation in a graph
[PXUIField(DisplayName = "View Document",
 MapEnableRights = PXCacheRights.Update,
 MapViewRights = PXCacheRights.Update)]
[PXButton]
public virtual IEnumerable viewDocument(PXAdapter adapter) { ... }

 | API Reference | 584

In the example below the button is disabled by default (it can be enabled in code). Also, the ImageKey
property sets a specific image to be displayed on the button.

public PXAction<VendorR> viewCustomer;

[PXUIField(DisplayName = Messages.ViewCustomer,
 Enabled = false, Visible = true,
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXButton(ImageKey = PX.Web.UI.Sprite.Main.Process)]
public virtual IEnumerable ViewCustomer(PXAdapter adapter) { ... }

In the example below, the attribute provides specific URLs of the images displayed on the button by
default (ImageUrl) when it is disabled (DisabledImageUrl). The tooltip is also set.

public PXAction<EPActivity> CancelSending;

[PXUIField(DisplayName = EP.Messages.CancelSending, MapEnableRights =
 PXCacheRights.Select)]
[PXButton(ImageUrl = "~/Icons/Cancel_Active.gif",
 DisabledImageUrl = "~/Icons/Cancel_NotActive.gif",
 Tooltip = EP.Messages.CancelSendingTooltip)]
public virtual void cancelSending() { ... }

Related Types

• PXSpecialButtonType Enumeration

• PXConfirmationType Enumeration

PXSpecialButtonType Enumeration

Defines possible special types of a button. The enumeration is used to set PXButton attribute
properties.

Members

• Default

The button does not have a special type.

• Save

The button has the Save button type. In particular, a graph searches buttons of this type when
the graph'sActions.PressSave() method is invoked.

• Cancel

The button has the Cancel button type. In particular, a graph searches buttons of this type when
the graph's Actions.PressCancel() method is invoked.

• Refresh

The button has the Refresh button type.

PXConfirmationType Enumeration

Defines values that indicate cases when the confirmation message is shown on a button press. The
message box typically asks a user to confirm the action.

Members

• Always

Always show the message box.

• IfDirty

 | API Reference | 585

Show the message box when there are unsaved changes on the webpage.

• Unspecified

Whether to show the message box is not specified.

PXSaveButton Attribute

Sets up a button with the properties of the Save button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXSaveButtonAttribute : PXButtonAttribute

Constructors

• public PXSaveButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute.

• CommitChanges to true

• SpecialType to PXSpecialButtonType.Save

• Ctrl + S as the keyboard shortcut

Also sets the image and the tooltip.

Examples

public PXAction<INPIHeader> save;

[PXSaveButton]
protected virtual IEnumerable Save(PXAdapter adapter) { ... }

PXSaveCloseButton Attribute

Sets up a button with the properties of the Save and Close button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute
 PXSaveButtonAttribute

Syntax

public class PXSaveCloseButtonAttribute : PXSaveButtonAttribute

Constructors

• public PXSaveCloseButtonAttribute()

Create an instance of the attribute. In addition to properties that are set by the base
PXSaveButton attribute, extends the keyboard shortcut with Shift ans sets the different tooltip.

 | API Reference | 586

PXInsertButton Attribute

Sets up a button with the properties of the Add New Record button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXInsertButtonAttribute : PXButtonAttribute

Constructors

• public PXInsertButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute.

• PopupVisible to false

• Ctrl + - as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<INPIHeader> Insert;

[PXInsertButton]
protected virtual IEnumerable insert(PXAdapter adapter) { ... }

PXCancelButton Attribute

Sets up a button with the properties of the Cancel button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXCancelButtonAttribute : PXButtonAttribute

Constructors

• public PXCancelButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• ClosePopup to false

• SpecialType to PXSpecialButtonType.Cancel

• ConfirmationType to PXConfirmationType.IfDirty

• Ctrl + - as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

 | API Reference | 587

Examples

public PXAction<CashAccount> cancel;

[PXUIField(DisplayName = ActionsMessages.Cancel, MapEnableRights =
 PXCacheRights.Select)]
[PXCancelButton]
protected virtual IEnumerable Cancel(PXAdapter adapter) { ... }

PXCancelCloseButton Attribute

Sets up a button with the properties of the Cancel and Close button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute
 PXCancelButtonAttribute

Syntax

public class PXCancelCloseButtonAttribute : PXCancelButtonAttribute

Constructors

• public PXCancelCloseButtonAttribute() : base()

Create an instance of the attribute. In addition to properties that are set by the base
PXCancelButton attribute, sets the different tooltip.

PXDeleteButton Attribute

Sets up a button with the properties of the Delete button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXDeleteButtonAttribute : PXButtonAttribute

Constructors

• public PXDeleteButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• ClosePopup to true

• ConfirmationType to PXConfirmationType.Always

• Ctrl + . as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<CARecon> delete;

 | API Reference | 588

[PXDeleteButton]
[PXUIField]
protected virtual IEnumerable Delete(PXAdapter a) { ... }

PXFirstButton Attribute

Sets up a button with the properties of the Go to First Record button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXFirstButtonAttribute : PXButtonAttribute

Constructors

• public PXFirstButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• PopupVisible to false

• Ctrl + ! as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<CuryRateFilter> first;

[PXFirstButton]
[PXUIField]
protected virtual IEnumerable First(PXAdapter a) { ... }

PXPreviousButton Attribute

Sets up a button with the properties of the Go to Previous Record button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXPreviousButtonAttribute : PXButtonAttribute

Constructors

• public PXPreviousButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• PopupVisible to false

• ! as the keyboard shortcut

 | API Reference | 589

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<APDocumentFilter> previousPeriod;

[PXUIField(DisplayName = "Prev",
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXPreviousButton]
public virtual IEnumerable PreviousPeriod(PXAdapter adapter) { ... }

PXNextButton Attribute

Sets up a button with the properties of the Go to Next Record button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXNextButtonAttribute : PXButtonAttribute

Constructors

• public PXNextButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• PopupVisible to false

• " as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<APDocumentFilter> nextPeriod;

[PXUIField(DisplayName = "Next",
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXNextButton]
public virtual IEnumerable NextPeriod(PXAdapter adapter) { ... }

PXLastButton Attribute

Sets up a button with the properties of the Go to Last Record button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXLastButtonAttribute : PXButtonAttribute

 | API Reference | 590

Constructors

• public PXLastButtonAttribute() : base()

Create an instance of the attribute, setting the properties of the PXButton attribute:

• PopupVisible to false

• Ctrl + " as the keyboard shortcut

Also sets the image, the tooltip, and the confirmation message.

Examples

public PXAction<AP1099YearMaster> lastVendor;

[PXUIField(DisplayName = "Last",
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXLastButton]
public virtual IEnumerable LastVendor(PXAdapter adapter) { ... }

PXSendMailButton Attribute

Sets up a button with the properties of the button that sends an email.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXSendMailButtonAttribute : PXButtonAttribute

Constructors

• public PXSendMailButtonAttribute() : base()

Create an instance of the attribute, setting the specific tooltip.

Examples

public PXAction<EPActivity> Send;

[PXUIField(DisplayName = Messages.Send,
 MapEnableRights = PXCacheRights.Select)]
[PXSendMailButton]
protected virtual IEnumerable send(PXAdapter adapter) { ... }

PXReplyMailButton Attribute

Sets up a button with the properties of the button that replies to an email.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

 | API Reference | 591

Syntax

public class PXReplyMailButtonAttribute : PXButtonAttribute

Constructors

• public PXReplyMailButtonAttribute() : base()

Create an instance of the attribute, setting the specific tooltip.

Examples

public PXAction<EmailFilter> Reply;

[PXUIField(DisplayName = Messages.Reply)]
[PXReplyMailButton]
protected void reply() { ... }

PXForwardMailButton Attribute

Sets up a button with the properties of the button that forwards an email.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXForwardMailButtonAttribute : PXButtonAttribute

Constructors

• public PXForwardMailButtonAttribute() : base()

Create an instance of the attribute, setting the specific tooltip.

Examples

public PXAction<EmailFilter> Forward;

[PXUIField(DisplayName = Messages.Forward)]
[PXForwardMailButton]
protected void forward() { ... }

PXTemplateMailButton Attribute

Sets up a button with the specific properties.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXTemplateMailButtonAttribute : PXButtonAttribute

 | API Reference | 592

Constructors

• public PXTemplateMailButtonAttribute()

Create an instance of the attribute, setting the image and the tooltip.

PXLookupButton Attribute

Sets up a button with the properties of the lookup button.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXLookupButtonAttribute : PXButtonAttribute

Constructors

• public PXLookupButtonAttribute() : base()

Create an instance of the attribute, setting the image.

Examples

public PXAction<APInvoice> newVendor;

[PXUIField(DisplayName = "New Vendor",
 MapEnableRights = PXCacheRights.Select,
 MapViewRights = PXCacheRights.Select)]
[PXLookupButton]
public virtual IEnumerable NewVendor(PXAdapter adapter) { ... }

PXProcessButton Attribute

Sets up a button with the properties of buttons that are used on processing screens.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXButtonAttribute

Syntax

public class PXProcessButtonAttribute : PXButtonAttribute

Constructors

• public PXProcessButtonAttribute() : base()

Create an instance of the attribute, setting the CommitChanges property of the PXButton attribute
to true.

Examples

public PXAction<APInvoice> createSchedule;

[PXUIField(DisplayName = "Assign to Schedule",

 | API Reference | 593

 MapEnableRights = PXCacheRights.Update,
 MapViewRights = PXCacheRights.Update)]
[PXProcessButton(ImageKey = PX.Web.UI.Sprite.Main.Shedule)]
public virtual IEnumerable CreateSchedule(PXAdapter adapter) { ... }

Attributes on Data Views
You can place the following attributes on the declaration of a data view in a graph:

• PXFilterable

Adds the control that lets a user create filters and save them in the database. The control is
added to the grid that uses the data view to retrieve data.

• PXImport

Adds the grid toobar button that allows the user to load data from the file to the grid. The
attribute is placed on the data view the grid uses to retrieve the data.

• PXPreview

• PXEmailLoadTemplate

• PXHidden

Hides the data view from the selectors of DACs and graphs and from the Web Service API clients.

• PXCopyPasteHiddenView

Indicates that the cache corresponding to the primary DAC of the data view is not copied when
the copy-paste feature is utilized on the webpage.

• PXCopyPasteHiddenFields

Indicates that the specific fields of the primary DAC of the data view are not copied when the
copy-paste feature is utilized on the webpage.

PXFilterable Attribute

Placed on the view declaration, adds the control that lets a user create filters and save them in the
database. The control is added to the grid that uses the view to retrieve data.

Inheritance Hierarchy

PXViewExtensionAttribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXFilterableAttribute : PXViewExtensionAttribute

Constructors

• public PXFilterableAttribute(params Type[] autoFill)

Initializes a new instance of the attribute. The parameters are optional and are not used in most
cases (you can specify the DACs whose Current objects will be used to fill the filter parameters
before showing it to the user).

Remarks

The attribute is placed on the view declaration.

 | API Reference | 594

If you specify this view as the data member of a grid control, the grid will include a control which can
be used to create filters and save them in the database. A filter is a set of conditions checked for the
fields selected by the view. When a grid applies a filter it displays only the data records that satisfy the
filter's conditions.

Examples

[PXFilterable]
public PXSelect<APInvoice> APDocumentList;

PXViewName Attribute

Defines the user-friendly name of the view.

Inheritance Hierarchy

Attribute
 PXNameAttribute

Syntax

public class PXViewNameAttribute : PXNameAttribute

Constructors

• public PXViewNameAttribute(string name) : base(name)

Initializes a new instance of the attribute that sets the provided string as the view name.

Parameters:

• name

The string used as the user-friendly name of the view.

Remarks

The attribute is added to the view declaration.

Examples

[PXViewName(Messages.Orders)]
public PXSelectReadonly<SOOrder,
 Where<SOOrder.customerID, Equal<Current<BAccount.bAccountID>>>>
 Orders;

Here Messages.Orders is a constant defined by the application.

PXImport Attribute

Adds the grid toobar button that allows the user to load data from the file to the grid. The attribute is
placed on the view the grid uses to retrieve the data.

Inheritance Hierarchy

PXViewExtensionAttribute

 | API Reference | 595

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXImportAttribute : PXViewExtensionAttribute

Constructors

Constructor Description

PXImportAttribute(Type) Initializes a new instance of the attribute

PXImportAttribute(Type, IPXImportWizard) Initializes a new instance of the attribute

Static Methods

Method Description

SetEnabled(PXGraph, string, bool) Enables or disables the control which the attribute
adds to the grid

IPXPrepareItems Interface

Defines methods that can be implemented by the graph to control the data import.

Syntax:

public interface IPXPrepareItems

Methods:

• bool PrepareImportRow(string viewName, IDictionary keys, IDictionary
values)

Prepares a record from the imported file for convertion into a DAC instance.

Parameters:

• viewName

The name of the view that is marked with the attribute.

• keys

The keys of the data to import.

• values

The values corresponding to the keys.

• bool RowImporting(string viewName, object row)

Implements the logic executed before the insertion of a data record into the cache.

Parameters:

• viewName

The name of the view that is marked with the attribute.

• row

The record to import as a DAC instance.

• bool RowImported(string viewName, object row, object oldRow)

Implements the logic executed after the insertion of a data record into the cache.

 | API Reference | 596

Parameters:

• viewName

The name of the view that is marked with the attribute.

• row

The imported record as a DAC instance.

• void PrepareItems(string viewName, IEnumerable items)

Verifying the imported items before they are saved in the database.

Parameters:

• viewName

The name of the view that is marked with the attribute.

• items

The collection of objects to import as instances of the DAC.

Remarks

The attribute placed on the view declaration in the graph. As a result, a grid that uses the view as a
data provider will include a button that opens the data import wizard. Using this wizard, the user can
load data from an Excel or .cvs file to the grid.

You can control all steps of data import by having the graph implement the
PXImportAttribute.IPXPrepareItems interface.

Examples

The attibute below adds the upload button to the toolbar of the grid that will use the Transactions
view as a data provider.

// Primary view declaration
public PXSelect<INRegister,
 Where<INRegister.docType, Equal<INDocType.adjustment>>> adjustment;
...

[PXImport(typeof(INRegister))]
public PXSelect<INTran,
 Where<INTran.docType, Equal<Current<INRegister.docType>>,
 And<INTran.refNbr, Equal<Current<INRegister.refNbr>>>>>
 Transactions;

In this example, the primary view DAC is INRegister, and it is passed to the attribute as a parameter.

In the following example, the graph implements the PXImportAttribute.IPXPrepareItems interface to
control the data import.

public class APInvoiceEntry : APDataEntryGraph<APInvoiceEntry, APInvoice>,
 PXImportAttribute.IPXPrepareItems
{
 ...
 // The attribute is placed on the view declaration
 [PXImport(typeof(APInvoice))]
 public PXSelectJoin<APTran,
 LeftJoin<POReceiptLine,
 On<POReceiptLine.receiptNbr, Equal<APTran.receiptNbr>,
 And<POReceiptLine.lineNbr, Equal<APTran.receiptLineNbr>>>>,
 Where<APTran.tranType, Equal<Current<APInvoice.docType>>,
 And<APTran.refNbr, Equal<Current<APInvoice.refNbr>>>>,
 OrderBy<Asc<APTran.tranType,
 Asc<APTran.refNbr, Asc<APTran.lineNbr>>>>>

 | API Reference | 597

 Transactions;
 ...

 // Implementation of the IPXPrepareItems methods
 public virtual bool PrepareImportRow(
 string viewName, IDictionary keys, IDictionary values)
 {
 if (string.Compare(viewName, "Transactions", true) == 0)
 {
 if (values.Contains("tranType")) values["tranType"] =
 Document.Current.DocType;
 else values.Add("tranType", Document.Current.DocType);
 if (values.Contains("tranType")) values["refNbr"] =
 Document.Current.RefNbr;
 else values.Add("refNbr", Document.Current.RefNbr);
 }
 return true;
 }

 public bool RowImporting(string viewName, object row)
 {
 return row == null;
 }

 public bool RowImported(string viewName, object row, object oldRow)
 {
 return oldRow == null;
 }

 public virtual void PrepareItems(string viewName, IEnumerable items) { }
 ...
}

PXImport Attribute Constructors

The PXImport attribute exposes the following constructors.

PXImportAttribute(Type)

Initializes a new instance of the attribute. The parameter is set the primary view DAC.

Syntax:

public PXImportAttribute(Type primaryTable)

Parameters:

• primaryTable

The first DAC that is referenced by the primary view of the graph where the current view is
declared.

PXImportAttribute(Type, IPXImportWizard)

Initializes a new instance of the attribute. The first parameter is the primary table of the view the
attribute is attached to.

Syntax:

public PXImportAttribute(Type primaryTable, IPXImportWizard importer) :
 this(primaryTable)

Parameters:

• primaryTable

The first table that is referenced in the view (primary table).

 | API Reference | 598

• importer

The object implementing the IPXImportWizard interface.

PXImport Attribute Methods

The PXImport attribute exposes the following static methods.

SetEnabled(PXGraph, string, bool)

Enables or disables the control which the attribute adds to the grid.

Syntax:

public static void SetEnabled(PXGraph graph, string viewName, bool isEnabled)

Parameters:

• graph

The graph where the view marked with the attribute is defined.

• viewName

The name of the view that is marked with the attribute.

• isEnabled

The value that indicates whether the method enables or disables the control.

PXPreview Attribute

Inheritance Hierarchy

PXViewExtensionAttribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXPreviewAttribute : PXViewExtensionAttribute

Constructors

Constructor Description

PXPreviewAttribute(Type)

PXPreviewAttribute(Type, Type)

PXPreview Attribute Constructors

The PXPreview attribute exposes the following constructors.

PXPreviewAttribute(Type)

Syntax:

public PXPreviewAttribute(Type primaryViewType) : this(primaryViewType, null) { }

PXPreviewAttribute(Type, Type)

 | API Reference | 599

Syntax:

public PXPreviewAttribute(Type primaryViewType, Type previewType)

PXEmailLoadTemplate Attribute

Inheritance Hierarchy

PXViewExtensionAttribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXEmailLoadTemplateAttribute : PXViewExtensionAttribute

Properties

• public Type ContentField

Get, set.

• public Type ReferenceField

Get, set.

• public Type PrimaryView

Get.

Constructors

• public PXEmailLoadTemplateAttribute(Type primaryView)

Miscellaneous
This chapter includes the following attributes, which are not related to other groups of attributes:

• PXDisableCloneAttributes

• PXDynamicAggregate

• PXDynamicMask

• CloseBrackets

• DashboardType

• DashboardVisible

• IncomingMailProtocols

• OpenBrackets

• OperationList

• PXAggregate

• PXAttributeFamily

• PXAutomationMenu

• PXAutoSave

• PXBreakInheritance

 | API Reference | 600

• PXCheckUnique

• PXCompositeKey

• PXCopyPasteHiddenFields

• PXCopyPasteHiddenView

• PXCultureSelector

• PXCustomization

• PXCustomStringList

• PXDACDescription

• PXDBDataLength

• RowCondition

• RowNbr

• SSlRequest

• TypeDelete

• PXEMailAccountIDSelector

• PXEMailSource

• PXEntityName

• PXEnumDescription

• PXExtension

• PXFeature

• PXFontList

• PXFontSizeList

• PXFontSizeStrList

• PXLineNbrMarker

• PXName

• PXNotCleanable

• PXNoteText

• PXNotPersistable

• PXNoUpdate

• PXNubmerSeparatorListAttribure

• PXOffline

• PXOverride

• PXPhoneValidation

• PXRefNote

• PXRefNoteSelector

• PXRateSync

• PXShortCut

• PXSplitRow

 | API Reference | 601

• PXStandartDateTimeFormatSelector

• PXSubstitute

• PXSuppressEventValidation

• PXSurrogate

• PXTableName

• PXTimeZone

• PXVirtual

• PXVirtualDAC

• PXZipValidation

• ReportView

PXDisableCloneAttributes Attribute

Inheritance Hierarchy

Attribute
 PXClassAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXDisableCloneAttributesAttribute : PXClassAttribute

PXDynamicAggregate Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowSelectingSubscriber

• IPXRowSelectedSubscriber

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public sealed class PXDynamicAggregateAttribute :
 PXEventSubscriberAttribute,
 IPXRowSelectingSubscriber,
 IPXRowSelectedSubscriber,

PXDynamicMask Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 602

Interfaces

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method)]
public class PXDynamicMaskAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

Properties

• public virtual string DefaultMask

Get, set.

Constructors

• public PXDynamicMaskAttribute(Type maskSearch)

CloseBrackets Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public sealed class CloseBracketsAttribute : PXIntListAttribute

Properties

• public static string[] Labels

Get.

• public static int[] Values

Get.

Constructors

• public CloseBracketsAttribute() : base(Values, Labels)

DashboardType Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]

 | API Reference | 603

public class DashboardTypeAttribute : Attribute

Properties

• public enum Type

Constructors

• public DashboardTypeAttribute(params int[] type)

DashboardVisible Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Syntax

[AttributeUsage(AttributeTargets.Property, AllowMultiple = false)]
public sealed class DashboardVisibleAttribute : PXEventSubscriberAttribute

Properties

• public bool Visible

Get.

Constructors

Constructor Description

DashboardVisibleAttribute()

DashboardVisibleAttribute(bool)

DashboardVisible Attribute Constructors

The DashboardVisible attribute exposes the following constructors.

DashboardVisibleAttribute()

Syntax:

public DashboardVisibleAttribute() : this(true) { }

DashboardVisibleAttribute(bool)

Syntax:

public DashboardVisibleAttribute(bool visible)

IncomingMailProtocols Attribute

 | API Reference | 604

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public class IncomingMailProtocolsAttribute : PXIntListAttribute

Constructors

• public IncomingMailProtocolsAttribute() : base(

OpenBrackets Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public sealed class OpenBracketsAttribute : PXIntListAttribute

Properties

• public static string[] Labels

Get.

• public static int[] Values

Get.

Constructors

• public OpenBracketsAttribute() : base(Values, Labels)

OperationList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public class OperationListAttribute: PXIntListAttribute

Constructors

• public OperationListAttribute(): base

 | API Reference | 605

PXAggregate Attribute

The type used to combine multiple attributes in one, which is derived from this attribute.

Inheritance Hierarchy

PXEventSubscriberAttribute

Syntax

public class PXAggregateAttribute : PXEventSubscriberAttribute

Properties

• public override Type BqlTable

Gets or sets the DAC associated with the attribute. The setter also sets the provided value as
BqlTable in all attributes combined in the current attribute.

• public override string FieldName

Gets or sets the name of the field associtated with the attribute. The setter also sets the provided
value as FieldName in all attributes combined in the current attribute.

• public override int FieldOrdinal

Gets or sets the index of the field associtated with the attribute. The setter also sets the provided
value as FieldOrdinal in all attributes combined in the current attribute.

Fields

• protected List<PXEventSubscriberAttribute> _Attributes

The collection of the attributes combined in the current attribute.

Constructors

• public PXAggregateAttribute()

Initializes a new instance of the attribute; pulls the PXEventSubscriberAttribute-derived
attributes placed on the current attribute and adds them to the collection of aggregated
attributes.

PXAttributeFamily Attribute

Allows to specify rules, which attributes can not be combined together.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true, Inherited = false)]
public class PXAttributeFamilyAttribute: Attribute

 | API Reference | 606

Constructors

Constructor Description

FromType(Type)

PXAttributeFamilyAttribute(Type)

Static Methods

Method Description

CheckAttributes(PropertyInfo,
PXEventSubscriberAttribute[])

GetRoots(Type)

PXAttributeFamily Attribute Constructors

The PXAttributeFamily attribute exposes the following constructors.

FromType(Type)

Syntax:

public static PXAttributeFamilyAttribute FromType(Type t)

PXAttributeFamilyAttribute(Type)

Syntax:

public PXAttributeFamilyAttribute(Type rootType)

PXAttributeFamily Attribute Methods

The PXAttributeFamily attribute exposes the following static methods.

CheckAttributes(PropertyInfo, PXEventSubscriberAttribute[])

Syntax:

public static void CheckAttributes(PropertyInfo prop, PXEventSubscriberAttribute[]
 attributes)

GetRoots(Type)

Syntax:

public static Type[] GetRoots(Type t)

PXAutomationMenu Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXAggregateAttribute

 | API Reference | 607

Interfaces

• IPXRowSelectedSubscriber

Syntax

[PXDBString]
[PXDefault(Undefined)]
[PXUIField(DisplayName = "Action")]
[PXStringList(new string[]
{ Undefined }, new string[]
{ Undefined })]
public class PXAutomationMenuAttribute : PXAggregateAttribute,
 IPXRowSelectedSubscriber

Properties

• public string DisplayName

Get, set.

• public bool Visible

Get, set.

Constructors

• public PXAutomationMenuAttribute() : base()

Nested Classes

• public class undefinded : Constant<string> : base(Undefined)

Constructors

• public undefinded()

PXAutoSave Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public sealed class PXAutoSaveAttribute : Attribute

PXBreakInheritance Attribute

When placed on a derived data access class (DAC), indicates that the cache objects corresponding to
the base DACs should not be instantiated.

Inheritance Hierarchy

Attribute

 | API Reference | 608

Syntax

public sealed class PXBreakInheritanceAttribute : Attribute

Examples

In the example below, the attribute prevents instantiation of the INItemStats cache during
instantiation of the INItemStatsTotal cache.

[PXBreakInheritance]
[Serializable]
public partial class INItemStatsTotal : INItemStats
{
 ...
}

PXCheckUnique Attribute

Ensures that a DAC field has distinct values in all data records in a given context.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowInsertingSubscriber

• IPXRowUpdatingSubscriber

• IPXRowPersistingSubscriber

Syntax

public class PXCheckUnique : PXEventSubscriberAttribute,
 IPXRowInsertingSubscriber,
 IPXRowUpdatingSubscriber,
 IPXRowPersistingSubscriber

Constructors

• public PXCheckUnique(params Type[] fields)

Initializes a new instance of the attribute. The parameter is optional.

Remarks

The attribute is placed on the declaration of a DAC field, and ensures that this field has a unique value
within the current context.

The functionality of the attribute can be implemented through other ways. The use of the attribute
for imposing constraint of a key field is obsolete. You should use the IsKey property of the data type
attribute for this purpose.

Examples

[PXDBString(30, IsKey = true)]
[PXUIField(DisplayName = "Mailing ID")]
[PXCheckUnique]
public override string NotificationCD { get; set; }

 | API Reference | 609

PXCompositeKey Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowSelectingSubscriber//

• IPXFieldVerifyingSubscriber

Syntax

public class PXCompositeKeyAttribute : PXEventSubscriberAttribute,
 IPXRowSelectingSubscriber//,
 IPXFieldVerifyingSubscriber

PXCopyPasteHiddenFields Attribute

Indicates that the specific fields of the primary DAC of the data view are not copied when the copy-
paste feature is utilized on the webpage.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXCopyPasteHiddenFieldsAttribute: Attribute

Constructors

• public PXCopyPasteHiddenFieldsAttribute(params Type[] fields)

Initializes a new instance of the attribute that prevent the specified DAC fields from

Static Methods

Method Description

IsDefined(PXGraph, string, string) Determines whether the provided graph defines a
data view with the given name and this data view is
marked with the PXCopyPasteHiddenFields attribute
referencing the field.

Remarks

See the PXCopyPasteHiddenView attribute for more detail.

Examples

The code below prevents only the InvoiceNbr field of the APInvoice DAC from copying when a user
clicks Copy on the webpage.

[PXCopyPasteHiddenFields(typeof(APInvoice.invoiceNbr))]
public PXSelectJoin<APInvoice,

 | API Reference | 610

 LeftJoin<Vendor, On<Vendor.bAccountID, Equal<APInvoice.vendorID>>>>
 Document;

Multiple fields can be listed, as the following code shows.

[PXCopyPasteHiddenFields(typeof(GLTranDoc.parentLineNbr),
 typeof(GLTranDoc.curyDiscAmt),
 typeof(GLTranDoc.extRefNbr))]
public PXSelect<GLTranDoc,
 Where<GLTranDoc.module, Equal<Current<GLDocBatch.module>>,
 And<GLTranDoc.batchNbr, Equal<Current<GLDocBatch.batchNbr>>>>,
 OrderBy<Asc<GLTranDoc.groupTranID, Asc<GLTranDoc.lineNbr>>>>
 GLTranModuleBatNbr;

PXCopyPasteHiddenFields Attribute Methods

The PXCopyPasteHiddenFields attribute exposes the following static methods.

IsDefined(PXGraph, string, string)

Determines whether the provided graph defines a data view with the given name and this data view is
marked with the PXCopyPasteHiddenFields attribute referencing the field.

Syntax:

public static bool IsDefined(PXGraph g, string viewName, string fieldName)

Parameters:

• g

The graph object to check.

• viewName

The name of the data view to check.

• fieldName

The name of the field to search.

PXCopyPasteHiddenView Attribute

Indicates that the cache corresponding to the primary DAC of the data view is not copied when the
copy-paste feature is utilized on the webpage.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXCopyPasteHiddenViewAttribute: Attribute

Static Methods

Method Description

IsDefined(PXGraph, string) Returns the value indicating whether the attribute is
attached to the specified data view in the graph

 | API Reference | 611

Remarks

The attribute is placed on the definition of a data view in a graph to prevent the cache of the first DAC
type referenced by the data view to be copied and pasted. The copy-paste feature allows a user to copy
all caches related to the graph of the current webpage, add a new data record, and paste all copied
caches to the new data record. The PXCopyPasteHiddenView attribute hides a cache from this feature.

To hide only a specific field from the copy-paste feature, use the PXCopyPasteHiddenFields attribute.

Examples

The code below shows the use of the attribute on the definition of a data view in a graph.

[PXCopyPasteHiddenView()]
public PXSelectJoin<APAdjust,
 InnerJoin<APPayment, On<APPayment.docType, Equal<APAdjust.adjgDocType>,
 And<APPayment.refNbr, Equal<APAdjust.adjgRefNbr>>>>> Adjustments;

As a result, the APAdjust cache is not copied when the user clicks Copy on the webpage bound to the
graph where the data view is defined.

PXCopyPasteHiddenView Attribute Methods

The PXCopyPasteHiddenView attribute exposes the following static methods.

IsDefined(PXGraph, string)

Returns the value indicating whether the attribute is attached to the specified data view in the graph.

Syntax:

public static bool IsDefined(PXGraph g, string viewName)

Parameters:

• g

The graph where the data view is defined.

• viewName

The name of the data view.

PXCultureSelector Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXSelectorAttribute
 PXCustomSelectorAttribute

Syntax

public class PXCultureSelectorAttribute : PXCustomSelectorAttribute

Constructors

• public PXCultureSelectorAttribute() :
base(typeof(PX.SM.Locale.localeName),

PXCustomization Attribute

 | API Reference | 612

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXCustomizationAttribute : Attribute

PXCustomStringList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

Syntax

public class PXCustomStringListAttribute : PXStringListAttribute

Properties

• public string[] AllowedValues

Get.

• public string[] AllowedLabels

Get.

Constructors

• public PXCustomStringListAttribute(string[] AllowedValues, string[]
AllowedLabels) : base(AllowedValues, AllowedLabels)

PXDACDescription Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Assembly, AllowMultiple = true)]
public class PXDACDescriptionAttribute : Attribute

Properties

• public Type Target

Get.

• public Attribute Attribute

Get.

 | API Reference | 613

Constructors

• public PXDACDescriptionAttribute(Type target, Attribute attribute)

PXDBDataLength Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXCommandPreparingSubscriber

• IPXRowSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXDBDataLengthAttribute : PXEventSubscriberAttribute,
 IPXCommandPreparingSubscriber,
 IPXRowSelectingSubscriber

Constructors

Constructor Description

PXDBDataLengthAttribute(Type)

PXDBDataLengthAttribute(string)

PXDBDataLength Attribute Constructors

The PXDBDataLength attribute exposes the following constructors.

PXDBDataLengthAttribute(Type)

Syntax:

public PXDBDataLengthAttribute(Type targetField)

PXDBDataLengthAttribute(string)

Syntax:

public PXDBDataLengthAttribute(string targetFieldName)

RowCondition Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBByteAttribute

 | API Reference | 614

Syntax

[AttributeUsage(AttributeTargets.Property)]
public sealed class RowConditionAttribute : PXDBByteAttribute

RowNbr Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldDefaultingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property)]
public sealed class RowNbrAttribute : PXEventSubscriberAttribute,
 IPXFieldDefaultingSubscriber

SSlRequest Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public class SSlRequestAttribute : PXIntListAttribute

Constructors

• public SSlRequestAttribute() : base(

TypeDelete Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public class TypeDeleteAttribute : PXIntListAttribute

Constructors

• public TypeDeleteAttribute() : base(

PXEMailAccountIDSelector Attribute

 | API Reference | 615

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXSelectorAttribute
 PXCustomSelectorAttribute

Syntax

public class PXEMailAccountIDSelectorAttribute : PXCustomSelectorAttribute

Properties

• public override Type DescriptionField

Get, set.

Constructors

Constructor Description

PXEMailAccountIDSelectorAttribute()

PXEMailAccountIDSelectorAttribute(Boolean)

PXEMailAccountIDSelectorAttribute(Boolean,
Boolean)

Static Methods

Method Description

GetRecords(PXGraph)

PXEMailAccountIDSelector Attribute Constructors

The PXEMailAccountIDSelector attribute exposes the following constructors.

PXEMailAccountIDSelectorAttribute()

Syntax:

public PXEMailAccountIDSelectorAttribute() :
 base(typeof(EMailAccount.emailAccountID))

PXEMailAccountIDSelectorAttribute(Boolean)

Syntax:

public PXEMailAccountIDSelectorAttribute(Boolean _needOwner) :
 base(typeof(EMailAccount.emailAccountID))

PXEMailAccountIDSelectorAttribute(Boolean, Boolean)

Syntax:

public PXEMailAccountIDSelectorAttribute(Boolean _needOwner, Boolean
 _onlyremoveempty) : base(typeof(EMailAccount.emailAccountID))

 | API Reference | 616

PXEMailAccountIDSelector Attribute Methods

The PXEMailAccountIDSelector attribute exposes the following static methods.

GetRecords(PXGraph)

Syntax:

public static IEnumerable GetRecords(PXGraph graph)

PXEMailSource Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXEMailSourceAttribute : Attribute

Properties

• public Type[] Types

Get.

Constructors

Constructor Description

PXEMailSourceAttribute()

PXEMailSourceAttribute(params Type[])

Remarks

The attribute is placed on the declaration of a DAC.

Examples

The code below shows the use of the attribute on the declaration of a DAC.

[System.SerializableAttribute()]
[PXPrimaryGraph(typeof(ARStatementUpdate))]
[PXEMailSource]
public partial class ARStatement : PX.Data.IBqlTable
{ ... }

PXEMailSource Attribute Constructors

The PXEMailSource attribute exposes the following constructors.

PXEMailSourceAttribute()

Syntax:

public PXEMailSourceAttribute() { }

 | API Reference | 617

PXEMailSourceAttribute(params Type[])

Syntax:

public PXEMailSourceAttribute(params Type[] types)

PXEntityName Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

Syntax

public class PXEntityNameAttribute : PXStringListAttribute

Constructors

• public PXEntityNameAttribute(Type refNoteID)

PXEnumDescription Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Field)]
public sealed class PXEnumDescriptionAttribute : Attribute

Properties

• public string Category

Get, set.

• public Type EnumType

Get, set.

• public string Field

Get, set.

• public string DisplayName

Get.

Constructors

• public PXEnumDescriptionAttribute(string displayName, Type keyType) :
base()

 | API Reference | 618

Static Methods

Method Description

GetFullInfo(Type, bool)

GetInfo(Type, object)

GetNames(Type)

GetValueNamePairs(Type, bool)

GetValueNamePairs(Type, string, bool)

PXEnumDescription Attribute Methods

The PXEnumDescription attribute exposes the following static methods.

GetFullInfo(Type, bool)

Syntax:

public static IDictionary<object, KeyValuePair<string, string>> GetFullInfo(Type
 @enum, bool localize = false)

GetInfo(Type, object)

Syntax:

public static KeyValuePair<string, string> GetInfo(Type @enum, object value)

GetNames(Type)

Syntax:

public static string[] GetNames(Type @enum)

GetValueNamePairs(Type, bool)

Syntax:

public static IDictionary<object, string> GetValueNamePairs(Type @enum, bool
 localize = true)

GetValueNamePairs(Type, string, bool)

Syntax:

public static IDictionary<object, string> GetValueNamePairs(Type @enum, string
 categoryName, bool localize = true)

PXExtension Attribute

Not used.

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 619

 PXSelectorAttribute

Syntax

public class PXExtensionAttribute : PXSelectorAttribute

Constructors

• public PXExtensionAttribute(Type type) : base(type)

Creates an extension.

Parameters:

• type

Referenced table. Should be either IBqlField or IBqlSearch.

PXFeature Attribute

Inheritance Hierarchy

Attribute

Syntax

public class PXFeatureAttribute : Attribute

Constructors

• public PXFeatureAttribute(Type feature)

PXFontList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

Syntax

public sealed class PXFontListAttribute : PXStringListAttribute

Constructors

• public PXFontListAttribute() : base(_values, _labels)

PXFontSizeList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

 | API Reference | 620

Syntax

public sealed class PXFontSizeListAttribute : PXIntListAttribute

Constructors

• public PXFontSizeListAttribute() : base(_values, _labels)

PXFontSizeStrList Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXIntListAttribute

Syntax

public sealed class PXFontSizeStrListAttribute : PXIntListAttribute

Constructors

• public PXFontSizeStrListAttribute() :
base(PX.Common.FontFamilyEx.FontSizes,
PX.Common.FontFamilyEx.FontSizesStr)

PXLineNbrMarker Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Method, AllowMultiple = false)]
public class PXLineNbrMarkerAttribute : PXEventSubscriberAttribute

PXName Attribute

The base class for PXCacheName and PXViewName attributes. Do not use this attribute directly.

Inheritance Hierarchy

Attribute

Syntax

public class PXNameAttribute : Attribute

Properties

• public string Name

Gets the value specified as the name in the constructor.

 | API Reference | 621

Constructors

• public PXNameAttribute(string name)

Initializes a new instance of the attribute that assigns the provided name to the object.

Parameters:

• name

The value used as the name of the object.

PXNotCleanable Attribute

Inheritance Hierarchy

PXCacheExtensionAttribute

Syntax

public sealed class PXNotCleanableAttribute : PXCacheExtensionAttribute

PXNoteText Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

public class PXNoteTextAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

PXNotPersistable Attribute

Inheritance Hierarchy

PXCacheExtensionAttribute

Syntax

public sealed class PXNotPersistableAttribute : PXCacheExtensionAttribute

PXNoUpdate Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

 | API Reference | 622

Syntax

[AttributeUsage(AttributeTargets.Property)]
public class PXNoUpdateAttribute : PXEventSubscriberAttribute

PXNubmerSeparatorListAttribure Attribute

Inheritance Hierarchy

Syntax

PXOffline Attribute

Inheritance Hierarchy

PXDBInterceptorAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXOfflineAttribute : PXDBInterceptorAttribute

PXOverride Attribute

Indicates that the method defined in a graph extension overrides a virtual method defined in the graph.
The attribute is used in the scope of the Acumatica Extensibility Framework.

Inheritance Hierarchy

Attribute

Syntax

public class PXOverrideAttribute: Attribute

Remarks

The attribute is placed on the declaration of a method in a graph extension. As a result, the method
overrides the graph method with the same signature—that is, the method is executed instead of the
graph method whenever the graph method is invoked. The graph extension is a class that derives from
the PXGraphExtension generic class, where the type parameter is set to the graph to extend.

Examples

The example below shows the declaration of a graph extension and the method that overrides the graph
method.

// The definition of the JournalWithSubEntry graph extension
public class JournalWithSubEntryExtension :
 PXGraphExtension<JournalWithSubEntry>
{
 [PXOverride]
 public void PrepareItems(string viewName, IEnumerable items)

 | API Reference | 623

 {
 ...
 }
}

PXPhoneValidation Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class)]
public class PXPhoneValidationAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

Properties

• public virtual Type PhoneValidationField

Get, set.

• public virtual string PhoneMask

Get, set.

• public virtual Type CountryIdField

Get, set.

Constructors

• public PXPhoneValidationAttribute(Type phoneValidationField)

Static Methods

Method Description

Clear<Table>()

PXPhoneValidation Attribute Methods

The PXPhoneValidation attribute exposes the following static methods.

Clear<Table>()

Syntax:

public static void Clear<Table>() where Table : IBqlTable

PXRefNote Attribute

 | API Reference | 624

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXDBFieldAttribute
 PXDBLongAttribute

Syntax

public class PXRefNoteAttribute : PXDBLongAttribute

Properties

• public bool FullDescription

Get, set.

Remarks

PXRefNoteSelector Attribute

Inheritance Hierarchy

PXViewExtensionAttribute

Syntax

[AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public class PXRefNoteSelectorAttribute : PXViewExtensionAttribute

Constructors

• public PXRefNoteSelectorAttribute(Type primaryViewType, Type
refNoteIDField)

Static Methods

Method Description

SetEnabled(PXView, bool)

PXRefNoteSelector Attribute Methods

The PXRefNoteSelector attribute exposes the following static methods.

SetEnabled(PXView, bool)

Syntax:

public static void SetEnabled(PXView view, bool enabled)

PXRateSync Attribute

Synchronizes CuryRateID with the field to which this attribute is applied.

 | API Reference | 625

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXRowInsertingSubscriber

• IPXRowSelectedSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Parameter |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXRateSyncAttribute : PXEventSubscriberAttribute,
 IPXRowInsertingSubscriber,
 IPXRowSelectedSubscriber

PXRestrictor Attribute

Adds a restriction to a BQL command that selects data for a lookup control and displays the error
message when the value entered does not fit the restriction.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldVerifyingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Parameter |
 AttributeTargets.Method, AllowMultiple = true)]
public class PXRestrictorAttribute : PXEventSubscriberAttribute,
 IPXFieldVerifyingSubscriber

Properties

• public bool ReplaceInherited

Gets or sets the value indicating whether the current PXRestrictor attribute should override the
inherited PXRestrictor attributes.

Constructors

• public PXRestrictorAttribute(Type where, string message, params Type[]
pars)

Initializes a new instance of the attribute.

The message string

Parameters:

• where

 | API Reference | 626

The Where<> BQL clause used as the additional restriction for a BQL command.

• message

The error message that is displayed when a value violating the restriction is entered. The
error message can reference the fields specified in the third parameter, as {0}–{N}. The
attribute will take the values of these fields from the data record whose identifier was
entered as the value of the current field.

• pars

The types of fields that are referenced by the error message.

Remarks

The attribute is used on DAC fields represented by lookup controls in the user interface. For example,
such fields can have the PXSelector attribute attached to them. The attribute adds the Where<> clause
to the BQL command that selects data for the control. As a result, the control lists the data records that
satisfy the BQL command and the new restriction. If the user enters a value that is not in the list, the
error message configured by the attribute is displayed.

A typical example of attribute's usage is specifiying condition that checks whether a referenced data
record is active. This condition could be specified in the PXSelector attribute. But in this case, if
an active data record once selected through the lookup control becomes inactive, saving the data
record that includes this lookup field will result in an error. Adding the condition through PXRestrictor
attribute prevents this error. The lookup field can still hold a reference to the inactive data record.
However, the new value can be selected only among the active data records.

Examples

The code below shows the use of the attribute on a lookup field.

[PXDBString(10, IsUnicode = true)]
[PXUIField(DisplayName = "Tax Category")]
[PXSelector(typeof(TaxCategory.taxCategoryID),
 DescriptionField = typeof(TaxCategory.descr))]
[PXRestrictor(typeof(Where<TaxCategory.active, Equal<True>>),
 "Tax Category '{0}' is inactive",
 typeof(TaxCategory.taxCategoryID))]
public virtual string TaxCategoryID { get; set; }

Note that the error message includes {0}, which will be replaced with the value of the TaxCategoryID
field when the error message is displayed.

PXShortCut Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
public sealed class PXShortCutAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

 | API Reference | 627

Properties

• public HotKeyInfo HotKey

Get.

Constructors

Constructor Description

PXShortCutAttribute(bool, bool, bool,
PX.Export.KeyCodes)

PXShortCutAttribute(bool, bool, bool, params
char[])

PXShortCut Attribute Constructors

The PXShortCut attribute exposes the following constructors.

PXShortCutAttribute(bool, bool, bool, PX.Export.KeyCodes)

Syntax:

public PXShortCutAttribute(bool ctrl, bool shift, bool alt, PX.Export.KeyCodes
 key) : this(ctrl, shift, alt, (int)key, null) { }

PXShortCutAttribute(bool, bool, bool, params char[])

Syntax:

public PXShortCutAttribute(bool ctrl, bool shift, bool alt, params char[] chars) :
 this(ctrl, shift, alt, 0, HotKeyInfo.ConvertChars(chars)) { }

PXSplitRow Attribute

Inheritance Hierarchy

PXDBInterceptorAttribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXSplitRowAttribute : PXDBInterceptorAttribute

Constructors

• public PXSplitRowAttribute(params Type[] fields)

PXStandartDateTimeFormatSelector Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXSelectorAttribute
 PXCustomSelectorAttribute

 | API Reference | 628

Syntax

public class PXStandartDateTimeFormatSelectorAttribute : PXCustomSelectorAttribute

Constructors

• public PXStandartDateTimeFormatSelectorAttribute(Char code) :
base(typeof(PX.SM.StandartDateTimeFormat.pattern))

PXSubstitute Attribute

Indicates that the derived DAC should replace its base DACs in a specific graph or all graphs.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class PXSubstituteAttribute: Attribute

Properties

• public Type GraphType

Gets or sets the specific graph in which the derived DAC replaces base DACs.

• public Type ParentType

Gets or sets the base DAC type up to which all types in the inheritance hierarchy are substituted
with the derived DAC. By default, the property has the null value, which means that all base DACs
are substituted with the derived DAC.

Constructors

• public PXSubstituteAttribute()

Initializes a new instance of the attribute. Without explicitly set properties, the attribute will cause
all base DACs to be replaced with the derived DAC in all graphs.

Remarks

The attribute is placed on the definition of a DAC that is derived from another DAC. The attribute is
used primarily to make the declarative references of the base DAC in definitions of calculations and
links from child objects to parent objects be interpreted as the references of the derived DAC.

Examples

The code below shows the use of the PXSubstitute attributes on the APInvoice DAC.

[System.SerializableAttribute()]
[PXSubstitute(GraphType = typeof(APInvoiceEntry))]
[PXSubstitute(GraphType = typeof(TX.TXInvoiceEntry))]
[PXPrimaryGraph(typeof(APInvoiceEntry))]
public partial class APInvoice : APRegister, IInvoice
{ ... }

PXSuppressEventValidation Attribute

 | API Reference | 629

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Method)]
public class PXSuppressEventValidationAttribute : Attribute

PXSurrogate Attribute

Inheritance Hierarchy

Attribute

Syntax

public class PXSurrogateAttribute: Attribute

PXTableName Attribute

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class)]
public class PXTableNameAttribute : Attribute

PXTimeZone Attribute

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXStringListAttribute

Syntax

[AttributeUsage(AttributeTargets.Property, AllowMultiple = false)]
public sealed class PXTimeZoneAttribute : PXStringListAttribute

Properties

• public override bool IsLocalizable

Constructors

• public PXTimeZoneAttribute() : base(_values, _labels) { }

PXUnboundKey Attribute

Marks the property as a key one.

 | API Reference | 630

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class)]
public class PXUnboundKeyAttribute : PXEventSubscriberAttribute,
 IPXFieldSelectingSubscriber

PXVirtual Attribute

Prevents the data records of a specific DAC from saving to the database. The attribute is placed on the
definition of this DAC.

Inheritance Hierarchy

Attribute

Syntax

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public sealed class PXVirtualAttribute : Attribute

Examples

[PXVirtual]
[PXCacheName(Messages.TimeCardDetail)]
[Serializable]
public partial class EPTimeCardSummary : IBqlTable
{ ... }

PXVirtualDAC Attribute

Prevents the data view from selecting data records from the database.

Inheritance Hierarchy

Attribute
 PXViewExtensionAttribute
 PXCacheExtensionAttribute

Syntax

public sealed class PXVirtualDACAttribute : PXCacheExtensionAttribute

Remarks

The attribute can be placed on data views defined in a graph. The data view will not try to select
data records from the database. You should define the optional method for this data view to form the
resultset which the data view will return.

 | API Reference | 631

Examples

[PXVirtualDAC]
public PXSelect<PMProjectBalanceRecord,
 Where<PMProjectBalanceRecord.recordID, IsNotNull>,
 OrderBy<Asc<PMProjectBalanceRecord.sortOrder>>> BalanceRecords;

PXVirtualSelector Attribute

Suppress GUI selector, used in formula.

Inheritance Hierarchy

PXEventSubscriberAttribute
 PXSelectorAttribute

Syntax

public class PXVirtualSelectorAttribute : PXSelectorAttribute

Constructors

• public PXVirtualSelectorAttribute(Type type) : base(type)

Creates an virtual selector.

Parameters:

• type

Referenced table. Should be either IBqlField or IBqlSearch.

PXZipValidation Attribute

Implements validation of a value for DAC fields that hold a ZIP postal code.

Inheritance Hierarchy

PXEventSubscriberAttribute

Interfaces

• IPXFieldVerifyingSubscriber

• IPXFieldSelectingSubscriber

Syntax

[AttributeUsage(AttributeTargets.Property |
 AttributeTargets.Class |
 AttributeTargets.Method)]
public class PXZipValidationAttribute : PXEventSubscriberAttribute,
 IPXFieldVerifyingSubscriber,
 IPXFieldSelectingSubscriber

Properties

• public virtual Type ZipValidationField

Gets or sets the DAC field that holds the ZIP validation information in a country data record.

 | API Reference | 632

• public virtual Type CountryIdField

Gets or sets the DAC field that holds the identifier of a country data record.

Constructors

Constructor Description

PXZipValidationAttribute(Type) Initializes a new instance of the attribute that does not
know the field holding the ZIP mask.

PXZipValidationAttribute(Type, Type) Initializes a new instance of the attribute that uses
the specified fields to retrieve the ZIP validation
information and ZIP masks per country.

Static Methods

Method Description

Clear<Table>() Clears the internal slots that ara used to keep ZIP
definitions and ZIP mask definitions.

Examples

The code below shows a typical usage of the attribute. The constructor with two parameters, which are
set to the fields from the Country DAC, is used. The CountryIdField property is set to a field from the
ARAddress DAC where the PostalCode is defined.

[PXDBString(20)]
[PXUIField(DisplayName = "Postal Code")]
[PXZipValidation(typeof(Country.zipCodeRegexp),
 typeof(Country.zipCodeMask),
 CountryIdField = typeof(ARAddress.countryID))]
public virtual string PostalCode { ... }

PXZipValidation Attribute Constructors

The PXZipValidation attribute exposes the following constructors.

PXZipValidationAttribute(Type)

Initializes a new instance of the attribute that does not know the field holding the ZIP mask.

Syntax:

public PXZipValidationAttribute(Type zipValidationField)
 : this(zipValidationField, null)

PXZipValidationAttribute(Type, Type)

Initializes a new instance of the attribute that uses the specified fields to retrieve the ZIP validation
information and ZIP masks per country.

Syntax:

public PXZipValidationAttribute(Type zipValidationField, Type zipMaskField)

PXZipValidation Attribute Methods

The PXZipValidation attribute exposes the following static methods.

 | API Reference | 633

Clear<Table>()

Clears the internal slots that ara used to keep ZIP definitions and ZIP mask definitions.

Syntax:

public static void Clear<Table>()
 where Table : IBqlTable

ReportView Attribute

Inheritance Hierarchy

Attribute

Syntax

public sealed class ReportViewAttribute : Attribute

Alphabetical Index
The list below contains all PX.Data attributes described in this reference:

• CloseBrackets

• DashboardType

• DashboardVisible

• IncomingMailProtocols

• OpenBrackets

• OperationList

• PXAccumulator

• PXAggregate

• PXAttributeFamily

• PXAutoSave

• PXAutomationMenu

• PXBool

• PXBreakInheritance

• PXButton

• PXByte

• PXCacheName

• PXCancelButton

• PXCancelCloseButton

• PXCheckUnique

• PXCompositeKey

• PXCopyPasteHiddenFields

• PXCopyPasteHiddenView

 | API Reference | 634

• PXCultureSelector

• PXCustomSelector

• PXCustomStringList

• PXCustomization

• PXDACDescription

• PXDB3DesCryphString

• PXDBBinary

• PXDBBool

• PXDBByte

• PXDBCalced

• PXDBChildIdentity

• PXDBCreatedByID

• PXDBCreatedByScreenID

• PXDBCreatedDateTime

• PXDBCreatedDateTimeUtc

• PXDBCryptString

• PXDBDataLength

• PXDBDate

• PXDBDateAndTime

• PXDBDecimal

• PXDBDecimalString

• PXDBDefault

• PXDBDouble

• PXDBEmail

• PXDBField

• PXDBFloat

• PXDBGroupMask

• PXDBGuid

• PXDBIdentity

• PXDBInt

• PXDBIntList

• PXDBLastModifiedByID

• PXDBLastModifiedByScreenID

• PXDBLastModifiedDateTime

• PXDBLastModifiedDateTimeUtc

• PXDBLocalString

• PXDBLong

 | API Reference | 635

• PXDBLongIdentity

• PXDBScalar

• PXDBShort

• PXDBString

• PXDBStringList

• PXDBText

• PXDBTime

• PXDBTimeSpan

• PXDBTimeSpanLong

• PXDBTimestamp

• PXDBUserPassword

• PXDBVariant

• PXDate

• PXDateAndTime

• PXDecimal

• PXDecimalList

• PXDefault

• PXDefaultValidate

• PXDeleteButton

• PXDependsOnFields

• PXDimension

• PXDimensionSelector

• PXDimensionWildcard

• PXDisableCloneAttributes

• PXDouble

• PXDynamicAggregate

• PXDynamicMask

• PXEMailAccountIDSelector

• PXEMailSource

• PXEmailLoadTemplate

• PXEntityName

• PXEnumDescription

• PXExtension

• PXExtraKey

• PXFeature

• PXFilterable

• PXFirstButton

 | API Reference | 636

• PXFloat

• PXFontList

• PXFontSizeList

• PXFontSizeStrList

• PXFormula

• PXForwardMailButton

• PXGuid

• PXHidden

• PXImport

• PXInsertButton

• PXInt

• PXIntList

• PXLastButton

• PXLineNbr

• PXLineNbrMarker

• PXLong

• PXLookupButton

• PXName

• PXNextButton

• PXNoUpdate

• PXNotCleanable

• PXNotPersistable

• PXNote

• PXNoteText

• PXNubmerSeparatorListAttribure

• PXOffline

• PXOverride

• PXParent

• PXPhoneValidation

• PXPreview

• PXPreviousButton

• PXPrimaryGraph

• PXProcessButton

• PXProjection

• PXRSACryptString

• PXRateSync

• PXRefNote

 | API Reference | 637

• PXRefNoteSelector

• PXReplyMailButton

• PXRestrictor

• PXSaveButton

• PXSaveCloseButton

• PXSelector

• PXSendMailButton

• PXShort

• PXShortCut

• PXSplitRow

• PXStandartDateTimeFormatSelector

• PXString

• PXStringList

• PXSubstitute

• PXSuppressEventValidation

• PXSurrogate

• PXTable

• PXTableName

• PXTemplateMailButton

• PXTimeSpan

• PXTimeSpanLong

• PXTimeZone

• PXUIField

• PXUnboundDefault

• PXUnboundFormula

• PXVariant

• PXViewName

• PXVirtual

• PXVirtualDAC

• PXZipValidation

• ReportView

• RowCondition

• RowNbr

• SSlRequest

• TypeDelete

 | API Reference | 638

Common Types
This chapter describes the common types that are used in more than one component of the Acumatica
Framework.

The following types are described:

• PXEntryStatus Enumeration

• PXErrorHandling Enumeration

• PXDbType Enumeration

• PXDBOperation Enumeration

PXEntryStatus Enumeration
This enumeration specifies the status of a data record. The status of a data record changes as a result
of manipulations with the data record: inserting, updating, or deleting.

Syntax

public enum PXEntryStatus

Members

• Notchanged

The data record has not been modified since it was placed in the PXCache object or since the last
time the Save action was invoked (triggering execution of BLC's Actions.PressSave()).

• Updated

The data record has been modified, and the Save action has not been invoked. After the changes
are saved to the database, the data record status changes to Notchanged.

• Inserted

The data record is new and has been added to the PXCache object, and the Save action has not
been invoked. After the changes are saved to the database, the data record status changes to
Notchanged.

• Deleted

The data record is not new and has been marked as Deleted within the PXCache object. After the
changes are saved, the data record is deleted from the database and removed from the PXCache
object.

• InsertedDeleted

The data record is new and has been added to the PXCache object and then marked as Deleted
within the PXCache object. After the changes are saved, the data record is removed from the
PXCache object.

• Held

An Unchanged data record can be marked as Held within the PXCache object to avoid being
collected during memory cleanup. Updated, Inserted, Deleted, InsertedDeleted, or Held data
records are never collected during memory cleanup. Any Notchanged data record can be removed
from the PXCache object during memory cleanup.

 | API Reference | 639

Transitions Between Statuses

The table below shows how the status of the data record changes on invocation of different PXCache
methods.

Original Status Status Before PXCache Method Invoked Status After

- - Insert() / Insert(object) Inserted

- Inserted Update(object) Inserted

- Inserted Delete(object) InsertedDeleted

Inserted InsertedDeleted Insert(object) / Update(object) Inserted

- Notchanged Update(object) Updated

- Notchanged Delete(object) Deleted

Notchanged Deleted Insert(object) / Update(object) Updated

- Updated Delete(object) Deleted

Updated Deleted Insert(object) / Update(object) Updated

PXErrorHandling Enumeration
This enumeration is used in the PXUIField attribute to specify when to handle the
PXSetPropertyException exception related to the field. If the exception is handled, the user gets a
message box with the error description, and the field input control is marked as causing an error.

Syntax

public enum PXErrorHandling

Members

• WhenVisible

The exception is reported only when the PXUIField attribute with the Visible property set to
true is attached to a DAC field.

• Always

The exception is always reported by the PXUIField attribute attached to a DAC field.

• Never

The exception is never reported by the PXUIField attribute attached to a DAC field.

PXDbType Enumeration
This enumeration specifies the SQL Server-specific data type of a field property for use in
System.Data.SqlClient.SqlParameter.

Syntax

public enum PXDbType

Members

• BigInt = 0

System.Int64. A 64-bit signed integer.

 | API Reference | 640

• Binary = 1

System.Array of type System.Byte. A fixed-length stream of binary data ranging between 1 and
8000 bytes.

• Bit = 2

System.Boolean. An unsigned numeric value that can be 0, 1, or null.

• Char = 3

System.String. A fixed-length stream of non-Unicode characters ranging between 1 and 8000
characters.

• DateTime = 4

System.DateTime. Date and time data ranging in value from January 1, 1753 to December 31,
9999 to an accuracy of 3.33 milliseconds.

• Decimal = 5

System.Decimal. A fixed precision and scale numeric value between -1038-1 and 1038-1.

• Float = 6

System.Double. A floating point number within the range of -1.79E+308 through 1.79E+308.

• Image = 7

System.Array of type System.Byte. A variable-length stream of binary data ranging from 0 to
231-1 (or 2,147,483,647) bytes.

• Int = 8

System.Int32. A 32-bit signed integer.

• Money = 9

System.Decimal. A currency value ranging from -263 (or -922,337,203,685,477.5808) to 263-1
(or +922,337,203,685,477.5807) with an accuracy to a ten-thousandth of a currency unit.

• NChar = 10

System.String. A fixed-length stream of Unicode characters ranging between 1 and 4000
characters.

• NText = 11

System.String. A variable-length stream of Unicode data with a maximum length of 230-1 (or
1,073,741,823) characters.

• NVarChar = 12

System.String. A variable-length stream of Unicode characters ranging between 1 and 4000
characters. Implicit conversion fails if the string is greater than 4000 characters. Explicitly set the
object when you're working with strings longer than 4000 characters.

• Real = 13

System.Single. A floating point number within the range of -3.40E+38 through 3.40E+38.

• UniqueIdentifier = 14

System.Guid. A globally unique identifier (GUID).

• SmallDateTime = 15

System.DateTime. Date and time data ranging in value from January 1, 1900 to June 6, 2079 to
an accuracy of one minute.

• SmallInt = 16

 | API Reference | 641

System.Int16. A 16-bit signed integer.

• SmallMoney = 17

System.Decimal. A currency value ranging from -214,748.3648 to +214,748.3647 with an
accuracy to a ten-thousandth of a currency unit.

• Text = 18

System.String. A variable-length stream of non-Unicode data with a maximum length of 231-1
(or 2,147,483,647) characters.

• Timestamp = 19

System.Array of type System.Byte. Automatically generated binary numbers, which are
guaranteed to be unique within a database. The timestamp is typically used as a mechanism for
version-stamping table rows. The storage size is 8 bytes.

• TinyInt = 20

System.Byte. An 8-bit unsigned integer.

• VarBinary = 21

System.Array of type System.Byte. A variable-length stream of binary data ranging between 1
and 8000 bytes. Implicit conversion fails if the byte array is greater than 8000 bytes. Explicitly set
the object when you are working with byte arrays larger than 8000 bytes.

• VarChar = 22

System.String. A variable-length stream of non-Unicode characters ranging between 1 and 8000
characters.

• Variant = 23

System.Object. A special data type that can contain numeric, string, binary, or date data, as well
as the SQL Server values EMPTY and NULL, which is assumed if no other type is declared.

• Xml = 25

An XML value. Obtain the XML as a string by using the
System.Data.SqlClient.SqlDataReader.GetValue(System.Int32) method or the
System.Data.SqlTypes.SqlXml.Value property, or as System.Xml.XmlReader—by
calling the System.Data.SqlTypes.SqlXml.CreateReader() method.

• Udt = 29

An SQL Server user-defined type (UDT).

• Unspecified = 100

Unspecified value type that is implicitly converted by SQL Server into an appropriate database
column type.

• DirectExpression = 200

A string constant containing a T-SQL statement being embedded into the final statement.

PXDBOperation Enumeration
This enumeration specifies the type of a T-SQL statement generated by the Acumatica Data Access
Layer.

The enumeration is used to indicate the type of the operation and the option set for the operation.
PXDBOperation supports the FlagsAttribute attribute, which allows PXDBOperation members to be
represented as bit fields in the enumeration value.

 | API Reference | 642

Syntax

public enum PXDBOperation

Members

PXDBOperation members can be divided into two groups:

Command

Member Value Description

Select 0 SELECT operation

Update 1 UPDATE operation

Insert 2 INSERT operation

Delete 3 DELETE operation

Option

Member Value Description

Normal 0 The operation has no options set.

GroupBy 4 This specifies an aggregate operation.

Internal 8 The result of the operation cannot be used to prepare the external
representation.

External 12 The operation contains a sorting, filter, or search query across any
DAC field visible in the UI.

Second 16 The operation is changing system data visibility and transferring it
from the system data segment to the customer data segment.

Examples

Getting the type of an operation:

protected virtual void DACName_FieldName_CommandPreparing(
 PXCache sender,
 PXCommandPreparingEventArgs e)
{
 PXDBOperation operationKind = e.Operation & PXDBOperation.Command;
}

Getting the option set for an operation:

protected virtual void DACName_FieldName_CommandPreparing(
 PXCache sender,
 PXCommandPreparingEventArgs e)
{
 PXDBOperation operationOptions = e.Operation & PXDBOperation.Option;
}

 | Report Designer | 643

Report Designer

This section provides the information on how to create report forms and printed pages by using the
Report Designer tool.

• Acumatica Report Designer Report Designer User Interface

• Creating and Modifying the Reports

• Selecting Data for the Report

• Data Grouping and Sorting

• Using Expressions

• Creating the Report Content

• Using Variables

• Using the External Parameter Collection Editor

• Saving and Publishing the Reports

Acumatica Report Designer Report Designer User Interface
The Acumatica Report Designer provides visual tools that you can use to design custom reports. From
the Acumatica Report Designer screen, you can select the report data from the Acumatica ERP system
database, create the report content, and save the report in a detached file with the .rpx format. This file
stores the report description as XML data.

Accessing the Report Designer

To view the Acumatica Report Designer main window, navigate as follows: Start > Programs >
Acumatica > Report Designer.

 | Report Designer | 644

Figure: Report Designer Main Window

The main window of the Acumatica Report Designer includes three areas:

• The Design area displays the report layout, which users can change.

• The Tools area provides access to the tools that can be used to design the report layout and add
the report content.

• The Tabs area includes the following tabs:

• Properties: Displays the properties of the report element selected in the Design area.

• Fields: Lists the names of all data access class (DAC) fields selected as the source of data
for the report.

Main Window Menu

The Main Window menu of the Acumatica Report Designer includes the commands described below.

Main Window Menu Commands

Command Description

The commands under the File menu, listed below, provide access to the main
operations with the report file and allow you to access the database schema:

New: Creates a new report file.

Open: Opens an existing report file.

Open From Server: Opens an existing report file located on the Acumatica ERP
application server.

File

Save: Saves the current report file.

 | Report Designer | 645

Command Description

Save As: Saves the current report in a new file. This command can be used to
rename a report file or to save it to a new location.

Save On Server: Saves the report on the Acumatica ERP application server.

Build Schema: Runs the Schema Builder wizard.

Exit: Closes the Report Designer main window.

The commands under the Edit menu, listed below, allow you to perform basic
editing operations with the objects placed in the Design area.

Cut: Removes the selected items from the Design area and places a copy of them
on the clipboard.

Copy: Places a copy of the selected items on the clipboard.

Paste: Places the items from the clipboard in the Design area.

Edit

Delete: Completely removes the selected items from the Design area.

The commands under the Format menu, listed below, let you perform basic
formatting operations on the objects placed in the Design area.

Bring To Front: Changes the layering of the objects placed in the Design area,
placing the selected items in front of all the other items in the area.

Send To Back: Changes the layering of the objects placed in the Design area,
placing the selected items behind all the other items in the area.

Align: Aligns the selected objects as follows:

• Left, Center, and Right dictate how the selected items in the Design area will
be horizontally aligned.

• Top, Middle, and Bottom determine how the selected items in the Design
area will be vertically aligned.

• To Grid snaps the selected items in the Design area to the grid.

Make Same Size: Adjusts the size of the selected items in the Design area as
follows:

• Width: Makes the selected objects the same width.

• Height: Makes the selected objects the same height.

• Both: Makes the selected objects the same width and height.

Horizontal Spacing: Changes the horizontal spacing between the selected items in
the Design area as follows:

• Make Equal: Sets equal horizontal spacing between the selected objects.

• Increase: Increases the horizontal spacing between the selected objects.

• Decrease: Decreases the horizontal spacing between the selected objects.

• Remove: Sets a zero horizontal spacing between the selected objects.

Format

Vertical Spacing: Changes the vertical spacing between the selected items in the
Design area as follows:

• Make Equal: Sets equal vertical spacing between the selected objects.

 | Report Designer | 646

Command Description

• Increase: Increases the vertical spacing between the selected objects.

• Decrease: Decreases the vertical spacing between the selected objects.

• Remove: Sets a zero vertical spacing between the selected objects.

Main Window Toolbar

The Main Window toolbar of the Acumatica Report Designer provides single-click access to the menu
buttons, as shown and described described below.

Main Window Toolbar Buttons

Number Button Name Description

1 New Report Invokes the New command from the File menu

2 Open Report Invokes the Open command from the File menu

3 Save Report Invokes the Save command from the File menu

4 Save Report As Invokes the Save As command from the File menu

5 Cut Invokes the Cut command from the Edit menu

6 Copy Invokes the Copy command from the Edit menu

7 Paste Invokes the Paste command from the Edit menu

8 Delete Invokes the Delete command from the Edit menu

9 Bring To Front Invokes the Bring To Front command from the Format menu

10 Send To Back Invokes the Send To Back command from the Format menu

11 Align Left Invokes the Align > Left command from the Format menu

12 Align Center Invokes the Align > Center command from the Format menu

13 Align Right Invokes the Align > Rights menu command from the Format
menu

14 Align Top Invokes the Align > Top command from the Format menu

15 Align Middle Invokes the Align > Middle command from the Format menu

16 Align Bottom Invokes the Align > Bottom command from the Format
menu

17 Align To Grid Invokes the Align > To Grid command from the Format
menu

18 Make Same Width Invokes the Make Same Size > Width command from the
Format menu

 | Report Designer | 647

Number Button Name Description

19 Make Same Height Invokes the Make Same Size > Height command from the
Format menu

20 Make Same Size Invokes the Make Same Size > Both command from the
Format menu

21 Make Horizontal
Spacing Equal

Invokes the Horizontal Spacing > Make Equal command from
the Format menu

22 Increase Horizontal
Spacing

Invokes the Horizontal Spacing > Increase command from
the Format menu

23 Decrease Horizontal
Spacing

Invokes the Horizontal Spacing > Decrease command from
the Format menu

24 Make Vertical
Spacing Equal

Invokes the Vertical Spacing > Make Equal command from
the Format menu

25 Increase Vertical
Spacing

Invokes the Vertical Spacing > Increase command from the
Format menu

26 Decrease Vertical
Spacing

Invokes the Vertical Spacing > Decrease command from the
Format menu

Creating and Modifying the Reports
By using the Acumatica Report Designer, you can create new reports or modify existing ones. Both
options are briefly described below.

Creating a New Report

To create a new report, on the File menu, select New. The Report Designer creates a new report file
that includes the page header section, the page footer section, and the detail section. You can then
create the layout or add content, as described in the Composing the Report Layout and Creating the
Report Content sections of this guide. After modification, the report file can be saved in a local folder or
saved to the Web server.

Modifying an Existing Report

To modify an existing report, you can open a locally stored file or load the file from the Acumatica ERP
website.

To open a locally stored file, on the File menu, select Open, and then select the report file to be
modified. The selected file is displayed in the Design area of the Report Designer. Once you modify it,
you can save it locally or on the server.

To open a report file located on the Acumatica ERP website, on the File menu of the Report Designer,
select Open.

Selecting Data for the Report
When you create a report, you define the rules used to select the necessary data to be displayed in the
report. This data is retrieved from the system database via an appropriate data access class (DAC).

To define what data is selected from the database, the Report Designer provides the Schema Builder
wizard. Using this wizard, users can load the database schema, set the report parameters, and define
the data selection criteria, data filtering, and sorting and grouping rules.

 | Report Designer | 648

In This Section

This section contains the following articles:

• Loading the Database Schema

• Building the Database Request

Loading the Database Schema
The Acumatica Report Designer accesses the database through the data access classes (DACs) defined
in Acumatica ERP. To select the necessary data for the report, you need to load the WSDL file generated
by the Acumatica ERP application server. The WSDL file contains the definition of all available DACs.

Connecting to the Application Server

To connect to the Application Server, perform the following steps:

1. Start the Report Designer: Start > All Programs > Acumatica > Report Designer.

2. Create a new blank report form by clicking New Report on the toolbar (or by accessing this
option on the File menu).

When you open the Report Designer for the first time, the blank report form is displayed by
default.

3. On the File menu, select Build schema, as shown on the screenshot below. The Schema Builder
wizard appears.

Figure: Accessing the Schema Builder

 | Report Designer | 649

4. To load the Acumatica ERP WSDL definition file, enter the connection string (as shown in the
second screenshot below, in the area left of the red 1):

http://{domain}

Here, you must replace with the actual URL to your application; you may also need to replace
http with https. If access to the WSDL definition is restricted, provide the user ID and password
(see item 2 in the screenshot below). A typical connection string for an application launched
from Microsoft Visual Studio on a local computer looks like the following:

http://localhost:64971/Site

5. Click the Load schema button (item 3). The Report Designer connects to the application server
and loads the Acumatica ERP schema definition. When the WSDL file is retrieved, notice the list
of all data access classes (DACs) defined in your application, as shown in the screenshot below.

Figure: Loading the DAC schema

When you load the schema definition from the application in Visual Studio, make sure that the
application has been started and is accessible through the Web browser.

The Acumatica Report Designer receives all the meta information required for report creation from
the Acumatica ERP WSDL file. You don't need to install Acumatica ERP locally to develop the report,
instead you can just connect to the remote server by using the appropriate URL.

Building the Database Request
Data access classes (DACs), which are used to access the data in the system database from the report
engine, must be defined for each report. To specify what data will be displayed in the designed report,
you should perform the following steps, each of which is described in detail below:

• Select the DACs from the list of available ones displayed on the Tables tab of the Schema Builder
wizard. The selected DACs specify the tables in the system database from which the data will be
selected.

 | Report Designer | 650

• Specify the relations between the selected DACs on the Relations tab of the Schema Builder
wizard. The DAC relations provide the necessary information to build the SQL request to the
database.

Selecting the DACs for the Report

To select the DACs to be included in the report, perform the following steps:

1. In the list of available DACs on the Tables tab of the Schema Builder wizard, select the DAC
name to select the data from the database table related to this DAC.

2. Click the button to move the DAC to the list of the selected DACs.

3. Repeat Steps 1 and 2 for each DAC to be selected. The selected DACs will appear in the list of
the selected DACs in the right side of the Tables tab.

To remove a DAC from the list of selected DACs, select the DAC by name and click the button
(see screenshot). To remove all the DACs from the list of selected DACs, click the button.

Figure: Selecting DACs

The list of the selected DACs displays the DACs and their attributes, which match the fields in the
database table related to the DAC.

Specifying the Relations Between DACs

The Relations tab of the Schema Builder wizard allows you to specify the relations between DACs.
The relations between the DACs specify how the relevant tables will be joined in the generated SQL
request.

To define a relation between two DACs, you must specify the DAC related to the parent table and the
DAC related to the child table in the relation, and specify the DAC attributes related to the data fields to
be used as the relevant table joining criteria. Any report can include one or multiple relations between
the two DACs.

To set the relations between DACs, repeat the following steps for each relation to be used in the report:

1. Click the empty line in the grid Enter the report table relations here.

2. In the Parent Table box, select the name of the parent table in the relation.

3. In the Join Type box, select the type of table join: Left, Right, Inner, Full, or Cross.

 | Report Designer | 651

4. In the Child Table box, select the name of the child table in the relation.

5. Enter the aliases for the parent and child tables (Parent Alias and Child Alias), if required.

For each relation between the DACs, you should also specify the data field links. Repeat the following
steps for each data link to be used in the relation between the tables:

1. Click the empty line in the grid Enter the data field links for active relation.

2. In the Parent Field box, select the name of the parent field for the data link.

3. In the Link Condition box, select the condition for linking the fields: Equal, NotEqual, Greater,
GreaterOrEqual, Less, or LessOrEqual. You can also select the IsNull or IsNotNull items; in such
a case, you should not add a child field.

4. In the Child Field box, select the name of the child field for the data link.

5. If more than one relation expression will be used for joining the data tables, select the operator:
And or Or.

6. Select the Braces if they are required in the data link expressions.

Figure: Configuring Relation 1

 | Report Designer | 652

Figure: Configuring Relation 2

The DACs relations and data field links you defined can be deleted: Simply click the relevant line in the
grid, and press the DELETE key.

Composing the Report Layout
The report layout determines the visual presentation of the data. To design the report layout, you
should perform the following tasks:

• Define what sections will be included in the report

• Set up the headers and footers for the report and each report section

• Set the appearance parameters for each report section

• Define the behavior parameters for each report section

• Add visual elements to the report

In This Section

This section includes the following articles:

• Adding and Removing Report Sections

• Defining the Appearance of a Report Section

• Defining the Behavior Settings of a Report Section

• Adding and Removing Visual Elements in the Report

Adding and Removing Report Sections
By default, when you create a new report, it includes three sections: the page header section, one page
detail section (others can be added), and the page footer section. The sections can display various

 | Report Designer | 653

content, and the values of variables used to calculate and display report values can be reset in each
new section.

You can add a new report section or delete any section. You can also copy the style of one section and
apply it to another.

Adding a Report Section

To add a report section by duplicating an existing one, proceed as follows:

1. Select the report section you wish to duplicate, and right-click it.

2. Choose Duplicate Section in the pop-up menu, and the new section will be added to the report.
The new section will have the same type as the parent section (header of the relevant group,
footer of the relevant group, detail section, page footer).

Figure: Duplicating a report section

Removing a Report Section

To remove an existing section from a report, do the following steps:

1. Right-click the section.

2. Choose Delete in the pop-up menu. The selected section will be removed from the report.

 | Report Designer | 654

Figure: Deleting a report section

Copying the Style Between the Report Sections

The style defined for one report section can be applied to another section. To copy the style between
the sections, perform the following steps:

1. Right-click the report section from which the style should be copied, and choose Style Copy
from the pop-up menu.

 | Report Designer | 655

Figure: Copying the style from a section

2. Right-click the report section to which the style should be applied, and choose Style Paste from
the pop-up menu. The selected style will be applied to this section.

 | Report Designer | 656

Figure: Applying the copied style to another section

We recommend that you use a special report template instead of defining styles—see the Defining the
Behavior Settings of a Report Section article.

Defining the Appearance of a Report Section
Acumatica Framework supports report styling with two files: TemplateReport.rpx (for preparation
of common reports) and TemplateForm.rpx (for preparation of printing Web pages). Using report
templates enables users to print reports and documents that share a uniform style. You can create
report and document templates yourself or edit existing Acumatica Framework templates through
Microsoft Visual Studio. (Template files are XML files that define a set of styles.) Using style templates is
the most sensible way to prepare well-styled reports and documents.

If you decide not to use templates, programmers can manually adjust for a group of users font types,
font colors, font sizes, and other settings for each field and label. (In the second screenshot below, you
can see the Style group of parameters, which can be adjusted for fields and labels.) This method is
labor-consuming, however; that's why using report and document templates is recommended.

Using Template Files

To use a template file, proceed as follows:

1. In Acumatica Report Designer, select the top level of the report. On the Properties tab, locate
the Styles Template. Open the list of report files, choose the TemplateReport.rpx file, and click
the Open button, as shown in the first screenshot below.

 | Report Designer | 657

Figure: Selecting the template report

2. Select any report field and set the required StyleName property. (The second screenshot below
illustrates this with the Contact data field.)

3. Try to set appropriate StyleName properties for the most fields and labels, save the report, and
then open and execute the Product Replenishment report. The report will change its appearance
according to the styles predefined for the fields and labels.

 | Report Designer | 658

Figure: Setting a style parameter for a field

Defining a Report Section's Appearance Settings

You can define the appearance settings of each report section, which determine how the report section
will be printed. Appearance settings include the following:

• The number of columns

• The space between the columns

• The style of the section, which includes its text properties, border settings, and background color
and image

To define the appearance settings for a report section, perform the following steps:

1. Click the section within the report to select it, as shown in the screenshot below.

 | Report Designer | 659

Figure: Styling adjustment

2. On the Properties tab, in the Appearance group, choose settings for the fields described
below.

Appearance Settings

Field Description

ColumnCount The number of columns within the report section.

ColumnSpacing The spacing between the columns (in pixels).

Height The height of the section (in centimeters).

The printing style for the report section, set by the values in the following
fields.

BackColor The background color for the report section.

Style

BackImage The background image parameters for the report section. Enter
desired values in the following fields:

• Source - Specify the source of the image.

• Image - Define the image to be used as the background:

• For an embedded image, select the image name.

• For an external image, enter the path to the image file.

• For an image retrieved from the database, enter the name of the
data field where the image is stored.

 | Report Designer | 660

Field Description

• Repeat - Select the appropriate value specifying the repeating pattern
for the chosen image:

• NoRepeat - Adds the specified image with no repeating

• RepeatX - Repeats the image horizontally to fill the width of the
report section

• RepeatY - Repeats the image vertically to fill the height of the
report section

• Repeat - Repeats the image horizontally and vertically to fill both
the width and height of the report section

BorderColor The border color for the report section. You can define the color
for the bottom, left, right, and top border of the section, and set the default
border color, which will be applied if no special settings are defined for the
specific borders.

BorderStyle The border line style. You can define the style for the bottom,
left, right, and top border of the section, and set the default border style,
which will be applied if no special settings are defined for the specific
borders.

BorderWidth The border line width for the report section (in pixels). You
can define the width of the bottom, left, right, and top border of the section,
and set the default border width, which will be applied if no special settings
are defined for the specific borders.

Font The font settings for the report section. You can select the font name
and size and specify whether the following font attributes are applied: bold,
italic, strikeout, and underline.

Padding The padding setting for the report section, which you can specify in
pixels for the left side, right side, top, and bottom of the report section.

TextAlign The text alignment for the report section: Left, Center, Right, or
Not Set.

VerticalAlign The content vertical alignment for the report section: Not Set,
Top, Middle, or Bottom.

StyleName The name of the style defined for the report section. To assign a descriptive
name to a style you have defined for a report section, enter the name. To
apply an existing style to the report section, select its style name.

Defining the Behavior Settings of a Report Section
Each section has its own behavior settings that define the following:

• How the section data is processed

• How the section position on the page is controlled

• How the section's data is displayed in the report

• What variables are defined within the report section

Defining Behavior Settings for Section

To define the behavior settings for a report section, perform the following steps:

 | Report Designer | 661

1. Click the section within the report to select it, as shown in the screenshot below (one of the
header groups had been selected).

Figure: Defining the Behavior Settings of a Report Section

2. On the Properties tab, in the Behaviors group, specify the appropriate settings. The properties
are listed and described below based on the section type.

Behavior Settings of the Report Header and Report Footer Sections

Property Description

KeepTogether A setting that defines whether the lines in this section should be printed on
the same page.

PageBreak A specification of where in this section the page break should be added:
Before, After, or BeforeAndAfter.

PrintAtBottom A setting that defines whether the lines in this report section are printed at
the bottom of the page.

PrintEmpty A setting that specifies whether empty lines are printed in this report section.

ProcessOrder The processing order of the data within the section.

ResetPageNumber A setting specifying whether page numbering is reset when a new section
starts.

Variables A listing of the variables defined for the section. These variables are visible
within the whole report, but are calculated within the sections where they are
defined.

 | Report Designer | 662

Property Description

Visible The report section's visibility property (False or True). The invisible (hidden)
sections are not printed in the report.

VisibleExpr The expression that calculates the report section visibility property. This value
overrides the Visible property value if it was set explicitly.

Behavior Settings of the Page Header and Page Footer Sections

Property Description

PrintAtBottom A setting that defines whether the lines in the report section are printed at
the bottom of the page.

PrintEmpty A setting that specifies whether empty lines are printed in this report
section.

PrintOnFirstPage A setting that defines whether the page header data is printed on the first
page of the report.

PrintOnLastPage A setting determining whether the page header data is printed on the last
page of the report.

ProcessOrder The processing order of the data within the section.

ResetPageNumber A setting specifying whether page numbering is reset when a new section
starts.

Variables A listing of the variables defined for the section. These variables are visible
within the whole report, but are calculated within the sections where they
are defined.

Visible The report section's visibility property (False or True). The invisible (hidden)
sections are not printed in the report.

VisibleExpr The expression that calculates the report section visibility property. This
value overrides the Visible property value if it was set explicitly.

Behavior Settings of the Group Header and Group Footer Sections

Property Description

KeepTogether A setting that defines whether the lines in this section should be
printed on the same page.

PageBreak A specification of where in this section the page break should be
added: Before, After, or BeforeAndAfter.

PrintAtBottom A setting that defines whether the lines in the report section are
printed at the bottom of the page.

PrintEmpty A setting that specifies whether empty lines are printed in this report
section.

PrintForEmptyGroup A setting defining whether empty data groups are printed in the report
section.

PrintOnEveryPage A setting determining whether the section data is printed on every
page of the report.

ProcessOrder The processing order of the data within the section.

 | Report Designer | 663

Property Description

ResetPageNumber A setting specifying whether page numbering is reset when a new
section starts.

Variables A listing of the variables defined for the section. These variables are
visible within the whole report, but are calculated within the sections
where they are defined.

Visible The report section's visibility property (False or True). The invisible
(hidden) sections are not printed in the report.

VisibleExpr The expression that calculates the report section visibility property.
This value overrides the Visible property value if it was set explicitly.

Behavior Settings of the Detail Section

Property Description

KeepTogether A setting that defines whether the lines in this section should be printed on
the same page.

PageBreak A specification of where in this section the page break should be added:
Before, After, or BeforeAndAfter.

PrintAtBottom A setting that defines whether the lines in the report section are printed at
the bottom of the page.

PrintEmpty A setting that specifies whether empty lines are printed in this report
section.

ProcessOrder The processing order of the data within the section.

ResetPageNumber A setting specifying whether page numbering is reset when a new section
starts.

Variables A listing of the variables defined for the section. These variables are visible
within the whole report, but are calculated within the sections where they
are defined.

Visible The report section's visibility property (False or True). The invisible
(hidden) sections are not printed in the report.

VisibleExpr The expression that calculates the report section visibility property. This
value overrides the Visible property value if it was set explicitly.

References

• Using Variables

Adding and Removing Visual Elements in the Report
The Tools area on the Acumatica Report Designer form (in the upper right) displays the visual elements
that can be added to the report. You can add any of these visual elements to a report section or remove
it from the section.

Adding a Visual Element

To add a visual elements to a report section, select the element in the Tools area, and place it in the
desired position within the report by dragging and dropping it. You can resize the element by dragging
its borders.

 | Report Designer | 664

After a visual element is added on the screen, you can do the following actions to it:

• Define the style of the element, and reset the style if desired

• Copy and paste the style between visual elements

• Define the order of visual elements on the screen by bringing them to the front or sending them
to the back

• Cut, copy, and paste visual elements and their content to other areas within the report

To perform these actions with a visual element, use the commands available in the Report Designer
toolbar, or right-click the visual element and select the relevant command from the pop-up menu.

Removing a Visual Element

To remove a visual element, you select the element in the report section by clicking it, and press the
DELETE key.

Data Grouping and Sorting
The data in reports can be divided into several groups, each of which displays the data sorted in the
order selected for the group. The sorting criteria are defined separately for every report group and for
the report as a whole.

To set up the data grouping and sorting rules, you should define the following:

• The data groups to be included in the report and their grouping rules

• The data sorting rules for the report

• The report's parameters

In This Section

This section includes the following articles:

• Defining the Data Groups and Grouping and Sorting Rules for a Report

• Defining Parameters for a Report

• Using Filters

Defining the Data Groups and Grouping and Sorting Rules for a Report
Data groups are used to structure and logically group data in a report. You can add new data groups to
the report and define the behavior properties for each group. The groups' data will be displayed on the
pages of the generated report.

To define the data groups in a report, perform the following steps:

1. Select the whole report as an object for which properties will be set by clicking the icon in the
top left corner of the Report Designer screen.

2. On the Properties tab, click the button next to the Groups collection. The Group Collection
Editor dialog appears; using the dialog, you can add, remove, or modify the data groups.

3. Select the top level of the report (click the icon left of the red 1 in the screenshot below). On
the Properties tab, locate the Groups property under the Data section (see item 2). Open the
GroupExp Collection Editor window by clicking the button next to the Groups (Collection)
property.

 | Report Designer | 665

Figure: Adding the Suppliers group

4. Click the Add button (item 3) to create the new group section.

5. Change the group name to required (item 4), set the PrintEmpty property (item 5), and the
KeepTogether property (item 6) as you need.

6. To specify the group description, enter the Description value in the Behavior set of group
properties. The description will be displayed in the group header. To define the group description,
you can use the Expression Editor dialog, as documented in the Using the Expression Editor
article.

7. Locate the Grouping property and click the button (item 7) to open the GroupExp
Collection Editor window.

8. Click the Add button to create a new grouping expression (see item 1 in the screenshot below).
Specify the appropriate DataField property (item 2) and its SortOrder property as Ascending
or Descending.

 | Report Designer | 666

Figure: Configuring the Suppliers group

9. Click OK (item 3) to close the GroupExp Collection Editor window.

10. If it's required, repeat the appropriate actions above to add the second group section with
grouping on another field (see the screenshots below).

11. Click OK to close the GroupExp Collection Editor window. Both group sections have been
added to the report page.

12. Click Save.

 | Report Designer | 667

Figure: Adding the Categories group

Figure: Configuring the Categories group

 | Report Designer | 668

By defining groups, you specify sorting conditions for the SQL that is generated by the report, as well as
adding the group footer and header section onto the report form in the designer.

References

• Using the Expression Editor

Defining Parameters for a Report
You can use parameters to share values between two or more reports, or in expressions and formulas
to calculate values for multiple fields within the same report. Parameters are variables that are
requested from the user before the report is executed. Based on the parameter, the report engine
creates a variable within the report, which can be referred to as a database field can. When referred to
from code, a parameter starts with the @ symbol.

To define a parameter for a report, perform the following steps:

1. Start the Schema Builder wizard by selecting the Build Schema command from the File menu.

2. Open the Parameters tab. The list of parameters defined for the report is displayed in the left
area of the tab.

3. Click Add (see the item with the red 1 in the first screenshot below) to add a new parameter to
the parameters list.Alternatively, to change properties of an existing parameter, click its name in
the parameters list.

4. In the Name box, enter the parameter name (item 2).

5. In the Input Mask box, define the input mask for the parameter, if necessary.

6. In the Data Type box, select the data type for the parameter (item 3).

7. In the Prompt box, enter the prompt for the parameter (the label to be displayed on the screen
—see item 4).

8. In the Default Value box, enter the default value for the parameter. You can use expressions
and formulas to define parameters' default values.

9. In the Column Span box, set the column span to display the parameter.

10. Set the appropriate check boxes for the parameter (item 5):

• Allow Null - To indicate that the parameter can have Null values

• Visible - To display the parameter on the screen

• Required - To indicate that the parameter is required for the report

11. In the View Name box, enter the view formula used to retrieve data for the parameter (item
6). The View name property specifies the lookup window that will open to help the user select
the parameter. The Report.GetView() function creates the lookup field by using the PXSelector
attribute declared on the DAC field; the DAC field is passed as a function parameter.

You can also use any field of any existing outside DAC, if it has an attribute with appropriate lookup
columns for the report parameter being adjusted. You can create a special DAC with needed lookup
fields if you haven't found the appropriate field or fields in the existing DACs.

12. In the Value column of the Available Values table, you can enter the value of the expression.
If more than one value may be used for the parameter, add another value to the list of available
values in a separate row.

13. Add the label that will be displayed when the parameter has the corresponding value.

 | Report Designer | 669

Figure: Adding the first parameter

Figure: Adding the second parameter

14. To apply the changes, click the Apply button.

15. To save the parameters defined for the report, and their values, click OK; otherwise, click
Cancel.

 | Report Designer | 670

Using Filters
Filters allow you to limit the volume of data selected for the reports, set more specific criteria for
selecting data from data tables, and remove unnecessary data as a result of the table joining. The
Filters tab of the Schema Builder wizard lists the data filtering rules defined for the current report,
which you can modify. Data filtering rules can also be set on the Properties tab.

Using the Schema Builder Wizard

Filter expressions use the data field names and parameters to set the criteria for data processing. To set
a filter using the Schema Builder wizard, perform the following steps:

1. In the grid on the Filters tab, click the empty line to add a new expression to the filter.

2. In the Data Field field, select a data field or parameter name.

3. In the Condition field, select the appropriate condition for the expression: Equal, NotEqual,
Greater, GreaterOrEqual, Less, LessOrEqual, Like, RLike, LLike, Between, IsNull, or IsNotNull.

4. In the Value1 and Value2 fields, enter the value or values for the expression.

5. If more than one data filtering expression will be used for filtering data, in the Operator field,
select the operator: And or Or.

6. Select the braces in the Braces column if they are required in the data filtering expressions.

7. Repeat these steps for each expression to be used in the data filtering rule.

Figure: Configuring the filter

8. Click Apply to apply the changes.

9. Click OK to save the changes and close the Schema Builder wizard, or Cancel to discard the
changes.

Any defined expressions can be deleted. To delete an expression, click the relevant line in the grid, and
press the DELETE key. On the Filters tab, you can add additional filtering conditions to be transformed
to the SQL Where condition.

 | Report Designer | 671

Using the Properties Tab

The Properties tab allows you to define the data filters as well. To set a filter and define the data
filtering criteria, perform the following steps:

1.
Select the whole report as an object for which the properties will be set by clicking the icon
in the top left corner of the Report Designer window. The Properties tab displays the report
properties.

2.
On the Properties tab, click the button next to the Filters collection. The FilterExp
Collection Editor dialog appears, allowing you to edit the filter expressions.

Figure: Select Filters

3. To add a new expression to the filter, click the Add button under the Members list. The new
expression will be added to the list of filter expressions and selected for editing.

4. In the Data Field field, select the data field or parameter name.

5. In the Condition field, select the condition for the expression: Equal, NotEqual, Greater,
GreaterOrEqual, Less, LessOrEqual, Like, RLike, LLike, Between, IsNull, or IsNotNull.

6. In the Value and Value2 fields, enter the value or values for the expression.

7. If more than one data filtering expression will be used for filtering data, in the Operator field,
select the operator: And or Or.

8. In the Open Braces field, enter the number of the opening braces to be added before the new
expression.

9. In the Close Braces field, enter the number of the closing braces to be added after the new
expression.

10. Repeat Steps 3–9 for each expression to be used in the data filtering rule.

 | Report Designer | 672

11. Click OK to save the changes and close the FilterExp Collection Editor dialog, or Cancel to
discard the changes.

Figure: Define the filtering rules

The defined expressions can be deleted. To delete an expression, click the relevant item in the
Members list, and click the Remove button.

Using Expressions
Expressions are used to define the data values to be displayed in the report or the internal variables
used to set the report properties, including report visibility, the group description, and the parameter
determining whether the empty lines will be printed in the report.

To help you define expressions, the Report Designer provides the Expression Editor dialog.

In This Section

This section includes the following articles:

• Using the Expression Editor

• Using Globals, Parameters, and Local Variables

• Using Operators in Expressions

• Using Functions in Expressions

Using the Expression Editor
To define an expression for a report parameter, you use the Expression Editor dialog, which you
invoke by clicking the button on the Properties tab for a property, as shown in the screenshot
below. (The most common example is setting the Value property for a text box inserted in the report.)

 | Report Designer | 673

Using the Expression Editor dialog, you can enter the expression directly or compose it by selecting
the appropriate values, global variables, report variables, parameters, operators, and functions.

Figure: Invoking the Expression Editor dialog

The Expression Editor dialog consists of four areas:

• Report Attributes area (left area of the dialog) - This area displays the list of the attributes defined
for this report by the data schema it uses.

• Parameters, Variables, Operators, and Functions area (middle area of the dialog) - This area lists
the parameters, operators, functions, and variables available in the report.

• Parameter, Variable, Operator, and Function Selection area (right area of the dialog) - This area
allows selecting the specific parameters, operators, and functions to be used in expressions.

• Expression Editing area (bottom area of the dialog) - This area displays the expression you have
composed and allows you to edit it.

 | Report Designer | 674

Figure: The Expression Editor window

To enter the expression using the Expression Editor dialog, use the following steps:

1. In the Parameters, Variables, Operators, and Functions area, expand the hierarchical structure
of the existing entities, and click the link of the group of parameters, variables, functions, or
operators to display the list of available items in the selection area.

2. In the Parameter, Variable, Operator, and Function Selection area, select the required item and
double-click it to insert the item into the report.

3. In the Expression Editing area, edit the expression.

4. To validate the expression, click the Validate button in the lower left.

5. Click OK to save the expression or Cancel to discard the changes.

Using Globals, Parameters, and Local Variables
Expressions can use global variables, parameters, and local variables to define the data that will be
used to calculate the values displayed in the report. These variables and parameters are links to the
calculated data, selected from the available data set or defined in the report.

Globals

Global variables (sometimes referred to as globals) are available in all reports. Globals can be inserted
into a report as values or included in expressions.

Globals

Global Description

PageIndex Substitutes into the expression the page index value selected in the current report
data source definition.

 | Report Designer | 675

Global Description

PageCount Substitutes into the expression the page count value for the current report.

PageOf Substitutes into the expression the page number and total page count values for the
current report.

Parameters

The parameters defined in the report can be used to substitute values into the expression. Every report
has its own set of parameters defined by the user creating or modifying the report. The parameters,
defined on the report level, can be modified using the Schema Builder wizard.

Parameters have the @param_name format, where param_name is the name of the parameter defined in
the report.

Here is an example of expressions that use the report parameters.

([Categories.CategoryName]=[@CategoryName])

In the above example, Categories.CategoryName is an attribute available from the data schema,
and @CategoryName is a report parameter; this is the example of a simple condition. } Here,
ARStatementCycle.AgeDays02 is an attribute available from the data schema, and @AgeDate is a
report parameter; this is the example of an arithmetic operation.

Variables

The local variables you define for a report can be used to substitute values into the expression. Local
variables are defined separately for each report data group, but the visibility of the variables is not
limited by the group where the variable is defined. To define a new variable, use the Properties page
of the report data group.

The variables have the $variable_name format, where variable_name is the name of the variable
defined in the report.

Examples

See below for examples of expressions using local variables:

=$Age02

Here, $Age02 is a local report variable.

=Assign('$RowNumber', $RowNumber + 1)

In this example, the row number is calculated; $RowNumber is a local report variable.

Using Operators in Expressions
Operators are used to perform certain operations with the data attributes, globals, parameters, and
variables or to modify the data before it is inserted into the report.

To add operators in the expressions, you can enter them directly in the expression editing area or select
them from the list of operators provided by the Expression Editor, described in the Using the Expression
Editor article.

You can use the following groups of operators in the expressions.

Arithmetic Operators

Arithmetic operators are used to perform familiar arithmetic operations that involve the calculation of
numeric values. The arithmetic operators group includes the following operators.

 | Report Designer | 676

Arithmetic Operators

Operator Description and Examples

+ (addition) Adds the operands and returns the result. Example:
Sum([OrderDetails.ExPrice]+[Orders.Freight] Here,
OrderDetails.ExPrice and Orders.Freight are attributes from the database
scheme.

- (subtraction) Subtracts the second operand from the first and returns the result. Example:
[ARPayment.UnappliedBal]-$AgeBal00 Here, ARPayment.UnappliedBal is
an attribute from the database scheme, and $AgeBal00 is a report variable.

*
(multiplication)

Multiplies the two operands and returns the result. Example:
[OrderDetails.Quantity]*[OrderDetails.UnitPrice] In this example,
OrderDetails.Quantity and OrderDetails.UnitPrice are attributes from the
database scheme.

/ (division) Yields the quotient of the operands, which is the first operand divided by
the second. Example: StCycCustomerTot/$CustomerTot*100}} Here,
$StCycCustomerTot and $CustomerTot are the report variables.

Mod
(modulus)

Divides the first integer operand by the second integer operand and
returns the remainder, rounded to the nearest integer. Example:
[ARStatementCycle.AgeDays02]Mod(7) In this example,
ARStatementCycle.AgeDays02 is the attribute from the database scheme.

Logical operators

Logical operators evaluate one or two Boolean expressions and return a Boolean result (True or False).
Because these operators evaluate only Boolean expressions, you must use fields whose only values are
True and False (typically check boxes and radio buttons). The logical operators are listed below.

Logical Operators

Operator Description and Examples

And Performs logical conjunction on two Boolean expressions: returns True if and only
if both expressions evaluate to True; in other cases, returns False. Example:
([ARStatementCycle.Day00]<>0)And([ARStatementCycle.Day01]<>0))
In this example, ARStatementCycle.Day00 and ARStatementCycle.Day01 are
attributes from the database scheme.

Or Performs logical disjunction on two Boolean expressions: returns True if at least one
expression evaluates to True; returns False if neither expression evaluates to True.
Example: ($CurrBal=0)Or([Terms.DayDue00]<[@AgeDate]) Here, $CurrBal is
the report variable and Terms.DayDue00 is an attribute from the database scheme.

Not Performs logical negation on a Boolean expression: returns True if and only if the
operand is False. Logical negation is an unary operator. Example: }} In this example,
$CurrBal is a report variable.

Comparison Operators

Comparison operators compare two expressions and return a Boolean value (True or False) that
represents the result of the comparison. This group of operators includes the following operators.

 | Report Designer | 677

Comparison operators

Operator Description and Examples

= Returns True if operands are equal. Example: ([Terms.DayDue00]=$DueDate))
In this example, Terms.DayDue00 is an attribute from the database scheme, and
$DueDate is a report variable.

<> Returns True if operands are not equal. Example:
([RowTerms.CreatedDateTime]<>DueDate) Here,
RowTerms.CreatedDateTime is an attribute from the database scheme, and
$DueDate is a report variable.

< Returns True if the first operand is less than the second one. Example:
([Terms.CreatedDateTime]<$DueDate) Here, Terms.CreatedDateTime is an
attribute from the database scheme, and $DueDate is a report variable.

> Returns True if the first operand is greater than the second one.
Example: ([Terms.CreatedDateTime]>$DueDate) In this example,
Terms.CreatedDateTime is an attribute from the database scheme, and $DueDate is a
report variable.

<= Returns True if the first operand is less than or equal to the second operand. Example:
([Terms.CreatedDateTime]<=$DueDate) Here, Terms.CreatedDateTime is an
attribute from the database scheme, and $DueDate is a report variable.

>= Returns True if the first operand is greater than or equal to the second
operand. Example: ([Terms.CreatedDateTime]>=$DueDate) Here,
Terms.CreatedDateTime is an attribute from the database scheme, and $DueDate is
the report variable.

Other Operators

This miscellaneous group of operators includes the following operators and constants.

Other Operators

Operator Description and Examples

In A binary operator that returns True if the second operand (a string) contains the first
operand (which is also a string). Example $AgeTot01 In (100, 501, 579) In this
example, $AgeTot01 is a report variable.

True A binary constant used as an operand in logical expressions. Example $AgeTot01
<>0=True Here, $AgeTot01 is a report variable.

False A binary constant used as an operand in logical expressions. Example: $AgeTot01
<>0=False Here, $AgeTot01 is the report variable.

Null A special value, used as an operand in logical expressions, that designates an undefined
value. Example: ([Terms.Descr]=Null In this example, Terms.Descr is an attribute
from the database scheme.

References

• Using Globals, Parameters, and Variables

• Using the Expression Editor

 | Report Designer | 678

Using Functions in Expressions
Functions enable you to perform specific tasks that facilitate the processing of data for the reports.
Many functions available in the Expression Editor window process the data and return the values you
can use in reports.

To use functions in expressions, you can enter them manually in the expression editing area or select
them from the list of functions provided by Expression Editor. You can use the following groups of
functions in expressions.

Type Conversion Functions

The type conversion functions enable you to convert data from one data type to another. Listed
below are the type conversion functions available in the Conversion subnode of the Functions node in
Expression Editor.

Function Description and Examples

CBool(x) Converts the expression used as the function argument into a Boolean expression.
Returns False if the Boolean value is 0; otherwise, returns True.

Example: CBool($CurrCompanyTot - $CompanyTot)

In this example, CurrCompanyTot and CompanyTot are report variables.

CDate(x) Converts the expression used as the function argument into a value of the Date type.
The argument should be a valid date expression according to the locale selected for the
import or export scenario.

Example: CDate($DueDate - 1)

In this example, DueDate is a report variable.

CStr(x) Converts the expression used as the function argument into a string. If the argument is
Null, the function returns a run-time error; otherwise, it returns a string.

Example: CStr($PrintDoc)

Here, PrintDoc is a report variable.

CDbl(x) Converts the expression defined in the function argument into a value of the Double
type.

Example: CDbl($CurrBal/$CurrTot)

Here, CurrBal and CurrTot are report variables.

CSng(x) Converts the expression used as the function argument into a value of the Single type. If
the expression has a value outside the acceptable range for the Single type, this function
returns an error.

Example: CSng($StCycCurrTot/$CompanyTot)

In this example, StCycCurrTot and CompanyTot are report variables.

CDec(x) Converts the expression used as the function argument into a value of the Decimal type.

Example: CDec($CompanyTot)

In this example, CompanyTot is a report variable.

CInt(x) Converts the expression used as the function argument into a value of the Integer type.

Example: CInt([ARPayment.ExtRefNbr])

 | Report Designer | 679

Function Description and Examples

In this example, ARPayment.ExtRefNbr is an attribute from the database scheme.

CShort(x) Converts a numeric value to a value of the Short type.

Example: CShort([ARPayment.ImpRefNbr])

ARPayment.ImpRefNbr is an attribute from the database scheme.

CLong(x) Converts a numeric value to a value of the Long type.

Example: CLong($CurrTot)

In this example, CurrTot is a report variable.

Aggregate Functions

Aggregate functions perform a calculation on a set of values and return a single value. Listed below are
the aggregate functions available in the Aggregates subnode of the Functions node in Expression Editor.

Function Description and Examples

Avg(expression) Returns the average of all non-null values of the specified expression.

Example: Avg($StCycAgeTot00, $StCycAgeTot01)

In this example, StCycAgeTot00 and StCycAgeTot01 are report variables.

Sum(expression) Returns a sum of the values of the specified expression.

Example: Sum([ARInvoice.TaxTotal], $CurrTot)

In this example, ARInvoice.TaxTotal is an attribute from the database
scheme, and CurrTot is a report variable.

Count(expression)Returns a count of the values from the specified expression.

Example: Count($AgeBal00, $AgeBal01)

In this example, AgeBal00 and AgeBal01 are report variables.

Max(expression) Returns the maximum value from all non-null values of the specified expression.

Example: Max($CurrCompanyTot, $CompanyTot)

In this example, CurrCompanyTot and CompanyTot are report variables.

Min(expression) Returns the minimum value from all non-null values of the specified expression.

Example: Min($CurrCompanyTot, $CompanyTot)

In this example, CurrCompanyTot and CompanyTot are report variables.

Next(expression)Returns the next value (from the current one) in the specified expression.

Example: Next([ARInvoice.LineTotal],[ARInvoice.TaxTotal])

In this example, ARInvoice.LineTotal and ARInvoice.TaxTotal are
attributes from the database scheme.

Prev(expression) Returns the previous value (from the current one) in the specified expression.

Example: Prev([ARInvoice.LineTotal],[ARInvoice.TaxTotal])
ARInvoice.LineTotal and ARInvoice.TaxTotal are attributes from the
database scheme.

 | Report Designer | 680

Function Description and Examples

First(expression) Returns the first value in the specified expression.

Example: First([ARInvoice.LineTotal],[ARInvoice.TaxTotal])

In this example, ARInvoice.LineTotal and ARInvoice.TaxTotal are
attributes from the database scheme.

Last(expression) Returns the last value in the specified expression.

Example: Last([ARInvoice.LineTotal],[ARInvoice.TaxTotal])

In this example, ARInvoice.LineTotal and ARInvoice.TaxTotal are
attributes from the database scheme.

String Functions

String functions, perform an operation on a string input value and return a string or numeric value.
Listed below are the string functions available in the Text subnode of the Functions node in Expression
Editor.

Function Description and Examples

LTrim(string) Removes all leading spaces or parsing characters from the specified character
expression, or all leading 0 bytes from the specified binary expression.

Example: LTrim(CStr([Contact.LastName]))

In this example, Contact.LastName is an attribute from the database
scheme.

RTrim(string) Removes all trailing spaces or parsing characters from the specified character
expression, or all trailing 0 bytes from the specified binary expression.

Example: RTrim(CStr([Contact.LastName]))

In this example, Contact.LastName is an attribute from the database
scheme.

Trim(string) Removes all trailing spaces or parsing characters from the specified character
expression, or all trailing 0 bytes from the specified binary expression.

Example:
Trim(CStr([Contact.FirstName]+[Contact.MidName]+[Contact.LastName]))

In this example, Contact.FirstName, Contact.MidName, and
Contact.LastName are attributes from the database scheme.

Format(format,
argument(s))

Replaces the format item in a specified formatting string (format) with the
text equivalent of the arguments (arguments).

Example: Format('Curr. Balance: {0:N};
Total Amount: {1:N}', $CurrBal, $CurrTot)

In this example, CurrBal and CurrBal are report variables; 0 and 1 are
specifiers indicating where the arguments will be inserted; C is the currency
format specifier; and N is the number format specifier.

UCase(string) Returns a string that has been converted to uppercase. The string argument is
any valid string expression. If string contains Null, Null is returned.

Example: UCase(CStr([RowContact.MidName]))

 | Report Designer | 681

Function Description and Examples

In this example, RowContact.MidName is an attribute from the database
scheme.

LCase(string) Returns a string that has been converted to lowercase. The string argument is
any valid string expression. If string contains Null, Null is returned.

Example: LCase(CStr([Contact.Email]))

In this example, Contact.Email is an attribute from the database scheme.

InStr(string,
findString)

Returns the position of the first occurrence of one string (findString) within
another (string).

Example: InStr(CStr([Contact.Email]), '@')

In this example, Contact.Email is an attribute from the database scheme.

InStrRev(string,
findString)

Returns the position of the last occurrence of one string (findString) within
another (string), starting from the right side of the string.

Example: InStrRev(CStr([Contact.Email]), '@')

In this example, Contact.Email is an attribute from the database scheme.

Len(string) Returns an integer containing either the number of characters in a string or
the nominal number of bytes required to store a variable.

Example: Len(CStr([Contact.Email]))

In this example, Contact.Email is an attribute from the database scheme.

Left(string, length) Returns a string containing a specified number of characters from the left side
of a string. If string contains Null, Null is returned.

Example: Left(CStr([Contact.Email]), 7)

In this example, Contact.Email is an attribute from the database scheme.

Right(string,
length)

Returns a string containing a specified number of characters from the right
side of a string. If string contains Null, Null is returned.

Example: Right(CStr([Contact.Email]), 10)

In this example, Contact.Email is an attribute from the database scheme.

Replace(string,
oldValue,
newValue)

Returns a string in which a specified substring (oldValue) has been replaced
with another substring (newValue).

Example: Replace(CStr([Contact.Email]), '@.', '@')

In this example, Contact.Email is an attribute from the database scheme.

PadLeft(string,
width,
paddingChar)

Right-aligns the characters in a specified string (string), padding with the
specified characters (paddingChar) on the left for a specified total width
(width).

Example: PadLeft(CStr([Contact.Email]), 7, '@')

In this example, Contact.Email is an attribute from the database scheme.

PadRight(string,
width,
paddingChar)

Left-aligns the characters in a specified string (string), padding with the
specified characters (paddingChar) on the right for a specified total width
(width).

 | Report Designer | 682

Function Description and Examples

Example: PadRight(CStr([Contact.Email]), 10, '@')

In this example, Contact.Email is an attribute from the data scheme.

Mathematical Functions

Mathematical functions perform calculations, usually based on input values provided as arguments, and
return numeric values. Listed below are the mathematical functions available in the Math subnode of
the Functions node in Expression Editor.

Function Description and Examples

Abs(x) Returns the absolute value of a number.

Example: Abs($CurrBal - $CurrTot)

In this example, CurrBal and CurrTot are the report variables.

Floor(x) Returns the largest integer that is not greater than the argument.

Example: Floor([Contact.NoteID])

In this example, Contact.NoteID is an attribute from the database scheme.

Ceiling(x) Returns the smallest integer that is not less than the argument.

Example: Ceiling([Contact.NoteID])

In this example, Contact.NoteID is an attribute from the database scheme.

Round(x,
decimals)

Returns a numeric expression, rounded to the specified precision (decimals).

Example: Round($CurrTot, 2)

In this example, CurrTot is a report variable.

Min(x, y) Returns the smaller of two values.

Example: Min($CurrTot, $CurrCompanyTot)

In this example, CurrTot and CurrCompanyTot are report variables.

Max(x, y) Returns the greater of two values.

Example: Max($CurrTot, $CurrCompanyTot)

In this example, CurrTot and CurrCompanyTot are report variables

Pow(x, power) Computes the value of x raised to the specified power (power).

Example: Pow(([Contact.NoteID], 2))

In this example, Contact.NoteID is an attribute from the database scheme.

Date and Time Functions

The date and time functions perform operations on system-generated values and return values of the
following types: string, numeric, or Date/Time. Listed below are the string functions available in the
DateTime subnode of the Functions node in Expression Editor.

 | Report Designer | 683

Function Description and Examples

Now() Returns the current date and time according to the system date and time
settings on the local computer.

Example: Now()

Today() Returns the current date according to the system date and time settings
on the local computer.

Example: Today()

DateAdd(date, interval,
number)

Returns a new date calculated by adding the specified number (nbr) of
time intervals (int) to the date (dt). The int argument specifies the
type of time interval, and is one of the following options:

• yyyy - A number (nbr) of years will be added to the specified date
(dt).

• q - A number (nbr) of quarters will be added to the specified date
(dt).

• m - A number (nbr) of months will be added to the specified date
(dt).

• y - Same as d; see below.

• d - A number (nbr) of days will be added to the specified date
(dt).

• w - A number (nbr) of weekdays will be added to the specified date
(dt).

• ww - A number (nbr) of weeks will be added to the specified date
(dt).

• h - A number (nbr) of hours will be added to the specified date
(dt).

• n - A number (nbr) of minutes will be added to the specified date
(dt).

• s - A number (nbr) of seconds will be added to the specified date
(dt).

Examples:

DateAdd($DueDate, 'm', -2)

DateAdd(CDate('31/01/1995'), 'm', -2)

DateAdd($DueDate, 'y', -2) DateAdd(Cdate($DueDate),
'd', -2)

In these examples, DueDate is a report variable.

Year(date) Returns the year, as an integer, extracted from the specified date (date).

Examples:

Year([ARPayment.ClearDate])

Year(Cdate($DueDate)) Year($DueDate)

Year(CDate('31/01/1995'))

 | Report Designer | 684

Function Description and Examples

In these examples, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

Month(date) Returns the month, as an integer, extracted from the specified date
(date).

Examples:

=Month([ARPayment.ClearDate])

=Month($DueDate) =Month(Cdate($DueDate))

=Month(CDate('31/01/1995'))

In this example, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

Day(date) Returns the day (as an integer) extracted from the specified date (date).

Examples:

Day([ARPayment.ClearDate])

Day($DueDate) Day(Cdate($DueDate))

Day(CDate('31/01/1995'))

In these examples, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

DayOfWeek(date) Returns the day of the week associated with the specified date (date) as
an integer.

Examples:

DayOfWeek([ARPayment.ClearDate])

DayOfWeek($DueDate)

DayOfWeek(Cdate($DueDate))

DayOfWeek(CDate('31/01/1995'))

In this example, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

DayOfYear(date) Returns the day of the year calculated for the specified date (date).

Examples:

DayOfYear([ARPayment.ClearDate])

DayOfYear($DueDate)

DayOfYear(Cdate($DueDate))

DayOfYear(CDate('31/01/1995'))

In these examples, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

Minute(date) Returns the number of minutes extracted from the specified date (date).

Examples:

Minute([ARPayment.ClearDate])

Minute($DueDate)

 | Report Designer | 685

Function Description and Examples

Minute(Cdate($DueDate))

Minute(CDate('31/01/1995'))

In this example, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

Second(date) Returns the seconds extracted from the specified date (date) as an
integer.

Examples:

Second([ARPayment.ClearDate])

Second($DueDate) Second(Cdate($DueDate))

Second(CDate('31/01/1995'))

In this example, DueDate is a report variable, and
ARPayment.ClearDate is an attribute from the database scheme.

Shortcut Functions

The shortcut functions perform miscellaneous operations. Listed below are the string functions available
in the Math subnode of the Program Shortcut node in Expression Editor.

Function Description and Examples

IIf(expression, truePart,
falsePart)

Returns one of two values, depending on the evaluation of the
expression: If the expression evaluates to True, the function returns the
truePart value; otherwise, it returns the falsePart value.

Example: IIf(($CurrTot-$CurrBal)<>0),
CStr([ARRegister.DocBal]), 'No data available')

In this example, CurrTot and CurrBal are report variables, and
ARRegister.DocBal is an attribute from the database scheme.

Switch(expression_1,
value_1, expression_2,
value_2, ...)

Returns the value value_n that corresponds to the first expression
expression_n that evaluates to True. expression_1, expression_2, and
so on are Boolean expressions.

Example: Switch((($CurrTot-$CurrBal)<0), $CurrBal,
(($CurrTot-$CurrBal)>0), $CurrTot)

In this example, CurrTot and CurrBal are report variables.

IsNull(value, nullValue) Replaces NULL with the specified replacement value. The value argument
is checked for NULL.

Example: IsNull($PrintDoc, 'NULL')

In this example, PrintDoc is a report variable.

Assign('$name',
expression)

Assigns the result of the expression calculation to the variable specified
as the parameter. The function can be used to assign a value to an
existing variable, or a new variable can be created with the expression
calculation value assigned to it.

Example: Assign(PrintDoc,
(IsNull([RowARRegister.CustomerID])))

 | Report Designer | 686

Function Description and Examples

In this example, PrintDoc is a report variable, and
ARRegister.CustomerID is an attribute from the data scheme).

Assign('$name',
expression,
resetExpression)

Assigns the result of the expression calculation to the variable specified
as the parameter. The expression value is assigned to the variable when
the variable is set, and the resetExpression defines when the variable
value should be reset. The function can be used to assign a value to an
existing variable, or a new variable can be created and the expression
calculation value is assigned to it.

Example: Assign(<nowiki>'PrintDoc'</
nowiki>, (IsNull([ARRegister.CustomerID])),
IsNull([APPayment.AdjFinPeriodID]))

In this example, PrintDoc is a report variable, and
ARRegister.CustomerID is an attribute from the database scheme).

Application-Specific Functions

The application-specific functions are specific for the application in which you will run the report. That is
why these functions are not listed the Expression Editor windows. You will need to enter these functions
manually.

The following table includes the application-specific functions available in Acumatica Report Designer.

Function Description and Examples

GetAPPaymentInfo(accountCD,
paymentMethodID,
detailID, acctCD)

Returns the value of the specified AP payment attribute (detailID)
for specific cash account (accountCD), payment method
(paymentMethodID), and vendor (acctCD). The function returns the
attribute value as it is specified in the Payment Instructions section on
the Payment Settings tab of the Vendors (AP.30.30.00) form.

If the specified record is not available, the function returns an empty
string.

Example:
Payments.GetAPPaymentInfo('102000','FEDWIRE','INSTRUCTIONS','V000213')

GetARPaymentInfo(accountCD,
paymentMethodID,
detailID, pMInstanceID)

Returns the value of the specified AR payment attribute (detailID)
for specific cash account (accountCD), payment method
(paymentMethodID), and customer (acctCD). The function returns the
attribute value as it is specified on the Payment Method Details tab of
the Customer Payment Methods (AR.30.30.10) form.

If the specified record is not available, the function returns an empty
string.

Example:
Payments.GetARPaymentInfo('102000','FEDWIRE','ACCOUNTNO','C0003163')

GetRemitPaymentInfo(accountCD,
paymentMethodID,
detailID)

Returns the value of the specified payment attribute (detailID)
for specific cash account (accountCD), payment method
(paymentMethodID), and vendor or customer (acctCD). The function
returns the attribute value as it is specified on the Remittance Settings
tab of the Cash Accounts (CA.20.20.00) form.

If the specified record is not available, the function returns an empty
string.

 | Report Designer | 687

Function Description and Examples

Example:
Payments.GetRemitPaymentInfo('102000','FEDWIRE','ACCOUNTNO')

Creating the Report Content
The report content includes visual elements that can contain text, data, and graphics. The visual
elements are placed within the report sections, and their appearance and behavior properties are
determined by both the properties of the visual elements themselves and the properties of their
report section. Adding content to the report generally involves three steps: adding visual elements to
the report, linking them with the data to be displayed in the report, and setting the visual elements'
properties.

In This Section

The following articles cover the types of content you can add:

• Adding a Text Box to the Report Section

• Adding a Picture Box to the Report Section

• Adding a Panel to the Report Section

• Adding a Line to the Report Section

• Adding Graphics on the Report

• Adding a Subreport to the Report

Adding a Text Box to the Report Section
Text boxes are used to display text or data in the report. Descriptive captions (labels) and data items
are placed within the text boxes. The text to be displayed on the label and the data to be displayed in
the text box are defined by the Value property of the TextBox visual element. To display a label in the
text box, enter the label text in the Value property on the Properties tab. To retrieve data from the
database, the text boxes use expressions that include the links to the data from the data scheme. (For
more details, see Using Expressions.)

To add a text box to the report section and define it appropriately, perform the following steps:

1. Add the TextBox visual element to the report section, and position it in the desired location.
Adding and Removing Visual Elements in the Report describes how to add visual elements.

2. Change the name of the text box if necessary (Name on the Properties tab).

3. Define the text box's properties on the Properties tab, as described in the remainder of this
article.

Defining the Appearance Properties of the Text Box

Use the following properties, found in the Appearance group on the Properties tab, to define the
appearance of the text box.

Appearance Properties

Property Description

Format The format of the data in the text box. You can use the Expression Editor dialog to
define the data format; for more information, see Using the Expression Editor.

Style The printing style for the text box, set by the the following values:

 | Report Designer | 688

Property Description

BackColor: The background color for the text box.

BackImage: The background image settings for the text box. Enter desired values
for the following:

• BarCode Type: The required bar code type, selected from the drop-down list
with a restricted quantity of bar code types.

• Source - The source of the image.

• Image: The specific image to be used as the background:

• For an embedded image, select the image name.

• For an external image, enter the path to the image file.

• For an image retrieved from the database, enter the name of the data
field where the image is stored.

• Repeat: The appropriate value specifying the repeating pattern for the chosen
image:

• NoRepeat: Adds the specified image with no repeating

• RepeatX: Repeats the image horizontally to fill the width of the report
section

• RepeatY: Repeats the image vertically to fill the height of the report
section

• Repeat: Repeats the image horizontally and vertically to fill both the
width and height of the report section

BorderColor: The border color of the text box. You can define the color for the
bottom, left, right, and top border, and set the default border color, which will be
applied if no special settings are defined for the specific borders.

BorderStyle: The border line style for the text box. You can define the style for the
bottom, left, right, and top border of the text box, and set the default border style,
which will be applied if no special settings are defined for the specific borders.

BorderWidth: The border line width for the text box (in pixels). You can define the
width of the bottom, left, right, and top border of the text box, and set the default
border width, which will be applied if no special settings are defined for the specific
borders.

Font: The font settings for the text box. You can select the font name and size and
specify whether the following font attributes are applied: bold, italic, strikeout, and
underline.

Padding: The padding setting for the text box, which you can specify in pixels for
the left side, right side, top, and bottom of the text box.

TextAlign: The text alignment for the text box: Left, Center, Right, or Not Set.

VerticalAlign: The content vertical alignment for the text box: Not Set, Top, Middle,
or Bottom.

StyleName The name of the style defined for the text box. To assign a descriptive name to a
style you have defined for a text box, enter the name. To apply an existing style to
the text box, select its name.

 | Report Designer | 689

Property Description

Value The value to be displayed in the text box. Enter the text here if the text box will
display a data label in the report, or use the Expression Editor dialog to define the
value to be displayed in the text box.

WrapText The text wrapping for the text box. To wrap the text across a text box, set this value
to True.

Defining the Behavior Properties of the Text Box

The following properties, found in the Behavior group on the Properties tab, let you define the data
processing order, navigation settings, and visibility settings of the text box.

Behavior Properties

Property Description

ConvertHtmlToText A setting that defines whether the data within the text box must be
converted to the plain text format. This property is used if a field value may
contain formulas with tags.

ExcelCaption A setting that is used to export a report to Excel when an original report's
structure is rather complicated. In such cases, distortions of the Excel format
report can take place. Export to Excel becomes simpler if both this and the
ExcelColumn property is defined (see the next item below) for each data
field that is to be exported; the other data fields are not exported to Excel.
The ExcelCaption property defines column's caption.

ExcelColumn A setting that is used to export a report to Excel when an original report's
structure is rather complicated. Export to Excel becomes simpler if both this
and the ExcelCaption property is defined (see the previous item) for each
data field that is to be exported; the other data fields are not exported to
Excel. The ExcelColumn property defines the Excel column to which data
from the field is to be entered after the export process is done.

Multiline A setting that defines whether the data within the text box can be displayed
in multiple lines.

NavigateMethod The navigation method for the text box. This setting is used if navigation to
a URL should be performed when the user clicks the value displayed in the
text box. To use the client for navigation, select Client. To use the server for
navigation, select Server.

NavigateParams The navigation parameters for the text box, which are used if navigation
to a different URL should be performed. To define these parameters, click
the button in the box displaying the parameter collection name, and use
the External Parameter Collection Editor to define the set of parameters and
their values. (For more details, see Using the External Parameter Collection
Editor.)

NavigateURL The URL for navigation, used if navigation should be performed when the
user clicks the value displayed in the text box.

ProcessOrder The processing order for the data associated with the text box, which defines
when the expression value is calculated:

• To process the data while reading, select WhileRead.

• To process the data while printing, select WhilePrint.

 | Report Designer | 690

Property Description

• To process the data while reading and printing, select Always.

Target The command or application to be invoked when the user clicks the value
within the text box.

Visible The text box's visibility property (False or True). The invisible (hidden) visual
elements are not printed in the report.

VisibleExpr The expression that calculates the text box visibility property. This value
overrides the Visible property value if it was set explicitly.

Defining the Layout Properties of the Text Box

Use the following group of properties to define the position of the text box on the report page.

Layout Properties

Property Description

CanGrow An option that defines whether the text box size can grow if the text or data does not
fit into its current size.

CanShrink An option that defines whether the text box size can shrink to fit the size of the text
box content.

Location The position of the text box on the report page (in pixels). The Location values
include the horizontal (x) and vertical (y) coordinates of the text box on the page.

Size The size of the text box (in pixels). The Size values include the width and height of
the text box.

Adding a Picture Box to the Report Section
Picture boxes are used to display graphical elements in the report. These graphics can be selected from
the set of embedded images, retrieved from the external sources, or selected from the database.

To add a picture box to the report section and define it appropriately, proceed as follows:

1. Add the PictureBox visual element to the report section, and position it in the desired location.
The Adding and Removing Visual Elements in the Report article describes how to add visual
elements.

2. Change the name of the picture box if necessary (Name on the Properties tab).

3. Define the picture box's properties on the Properties tab, as described in this article.

Defining the Appearance Properties of a Picture Box

Use the following properties, found in the Appearance group on the Properties tab, to define the
appearance of the picture box.

Appearance Properties

Property Description

The printing style for the picture box, set by the following values:

BackColor: The background color for the picture box.

Style

BackImage: The background image settings for the picture box. Enter desired values
for:

 | Report Designer | 691

Property Description

• Source: The source of the image.

• Image: The specific image to be used as the background:

• For an embedded image, select the image name.

• For an external image, enter the path to the image file.

• For an image retrieved from the database, enter the name of the data field
where the image is stored.

• Repeat: The appropriate value specifying the repeating pattern for the chosen
image:

• NoRepeat: Adds the specified image with no repeating

• RepeatX: Repeats the image horizontally to fill the width of the report section

• RepeatY: Repeats the image vertically to fill the height of the report section

• Repeat: Repeats the image horizontally and vertically to fill both the width and
height of the report section

BorderColor: The border color for the picture box. You can define the color for the
bottom, left, right, and top border of the section, and set the default border color, which
will be applied if no special settings are defined for the specific borders.

BorderStyle: The border line style for the picture box. You can define the style for the
bottom, left, right, and top border of the picture box, and set the default border style,
which will be applied if no special settings are defined for the specific borders.

BorderWidth: The border line width for the picture box (in pixels). You can define the
width of the bottom, left, right, and top border of the picture box, and set the default
border width, which will be applied if no special settings are defined for the specific
borders.

Font: The font settings of the picture box. You can select the font name and size and
specify whether the following font attributes are applied: bold, italic, strikeout, and
underline.

Padding: The padding setting for the picture box, which you can specify in pixels for the
left side, right side, top, and bottom of the report section.

TextAlign: The text alignment for the picture box: Left, Center, Right, or Not Set.

VerticalAlign: The content vertical alignment for the picture box: Not Set, Top, Middle,
or Bottom.

StyleName The name of the style defined for the picture box. To assign a descriptive name to a style
you have defined, enter the name. To apply an existing style, select its name.

Defining the Behavior Properties of the Picture Box

The following properties, found in the Behavior group on the Properties tab, let you define the data
processing order, navigation settings, and visibility settings of the picture box.

Behavior Properties

Property Description

BarcodeSettings The barcode settings for the picture box. Enter desired values for the following:

 | Report Designer | 692

Property Description

• AddCheckDigit: By setting this property to True, you allow to print the
check digit for the barcode.

• BarHeight: The barcode height.

• BarWidth: The barcode width.

• LeftMargin: The barcode left margin.

• TextMargin: The barcode text margin.

• TopMargin:The barcode top margin.

• With ratio: The value of a bar code ration.

ProcessOrder The processing order for the data associated with the picture box, which
defines when the expression value is calculated:

• To process the data while reading, select WhileRead.

• To process the data while printing, select WhilePrint.

• To process the data while reading and printing, select Always.

Visible The picture box's visibility property (False or True). The invisible (hidden)
visual elements are not printed in the report.

VisibleExpr The expression that calculates the picture box visibility property. This value
overrides the Visible property value if it was set explicitly.

Defining the Data Properties of the Picture Box

These properties allow you to define the source and type of the data for the picture box and to select
what image will be displayed.

Data Properties

Property Description

BarCode
Type

The required barcode type, selected from the drop-down list with a restricted quantity
of types.

MimeType The type of media data for the picture box.

Source The type of data source of the image to be displayed in the picture box. Select one of
the available values:

• Embedded: An embedded image

• External: An external image

• Database: A data field

Value The actual source of data for the picture box:

• To define the source of data for an embedded image, select the embedded
image name.

• To define the source of data for an external image, enter the path to the
external image file (with the file name included).

• To define the source of data for an image stored in the database, enter the data
field name.

 | Report Designer | 693

Defining the Layout Properties of the Picture Box

Use these properties to define the size and location of the picture box.

Layout Properties

Property Description

Location The position of the picture box on the report page (in pixels). The Location values
include the horizontal (x) and vertical (y) coordinates of the picture box on the page.

Size The size of the picture box (in pixels). The Size values include the width and height of
the picture box.

Sizing The method of placing and fitting the selected image in the picture box. Select one of the
available options:

• AutoSize: Automatically selects the image size as the size of the picture to be
placed in the picture box

• Center: Places the image in the center of the picture box

• Normal: Places the image in the left top corner of the picture box

• Fit: Stretches or shrinks the image to completely fit into the picture box size

• Scale: Scales the image to fit the picture box size

Adding a Panel to the Report Section
Visual elements are placed on a panel to make a new group of elements located and processed
together.

To add a panel to a report section and define it appropriately, proceed as follows:

1. Add the Panel visual element, and position it in the desired location. The Adding and Removing
Visual Elements in the Report article describes how to add visual elements.

2. Change the name of the panel if necessary (Name on the Properties tab).

3. Define the panel's properties on the Properties tab, as described in the rest of this article.

Defining the Appearance Properties of the Panel

Use the following properties, found in the Appearance group on the Properties tab, to define the
appearance of the panel.

Appearance Properties

Property Description

The printing style for the panel, set by the following values:

BackColor: The background color for the panel.

Style

BackImage: The background image settings for the panel. Enter desired values for
the following:

• Source: The source of the image.

• Image: The image to be used as the background:

• For an embedded image, select the image name.

• For an external image, enter the path to the image file.

 | Report Designer | 694

Property Description

• For an image retrieved from the database, enter the name of the data field
where the image is stored.

• Repeat: The appropriate value specifying the repeating pattern for the chosen
image:

• NoRepeat: Adds the specified image with no repeating

• RepeatX: Repeats the image horizontally to fill the width of the report
section

• RepeatY: Repeats the image vertically to fill the height of the report section

• Repeat: Repeats the image horizontally and vertically to fill both the width
and height of the report section

BorderColor: The border color of the panel. You can define the color for the bottom,
left, right, and top border, and set the default border color, which will be applied if no
special settings are defined for the specific borders.

BorderStyle: The border line style for the panel. You can define the style for the
bottom, left, right, and top border of the panel, and set the default border style, which
will be applied if no special settings are defined for the specific borders.

BorderWidth: The border line width for the panel (in pixels). You can define the
width of the bottom, left, right, and top border of the panel, and set the default border
width, which will be applied if no special settings are defined for the specific borders.

Font: The font settings of the panel; definition of this setting does not change the
panel.

Padding: The padding setting for the panel, which you can specify in pixels for the left
side, right side, top, and bottom of the panel.

TextAlign: The text alignment of the panel; definition of this setting does not affect
the panel.

VerticalAlign: The text alignment of the panel; defining this setting does not affect
the panel.

StyleName The name of the style defined for the panel. To assign a descriptive name to a style
you have defined for a text, enter the name. To apply an existing style to the panel,
select its name.

Defining the Behavior Properties of the Panel

These properties, found under the Behavior group on the Properties tab, let you define the data
processing order and visibility properties of the panel.

Behavior Properties

Property Description

ProcessOrder The processing order for the data associated with the panel, which defines when the
expression value is calculated:

• To process the data while reading, select WhileRead.

• To process the data while printing, select WhilePrint.

 | Report Designer | 695

Property Description

• To process the data while reading and printing, select Always.

Visible The panel's visibility property (False or True). The invisible (hidden) visual elements
are not printed in the report.

VisibleExpr The expression that calculates the panel's visibility property. This value overrides the
Visible property value if it was set explicitly.

Defining the Layout Properties of the Panel

Use these properties to define the panel's size and location properties.

Layout Properties

Property Description

Location The position of the panel on the report page (in pixels). The Location values include the
horizontal (x) and vertical (y) coordinates of the panel on the page.

Size The size of the panel (in pixels). The Size values include the width and height of the
panel.

Adding a Line to the Report Section
Lines are used to divide the report space, direct the eye, or visually separate elements in the report.
You can add lines to improve the look and readability of the report.

To add a line to a report section, perform the following steps:

1. Add the Line visual element, and position it in the desired location. The Adding and Removing
Visual Elements in the Report article describes how to add visual elements.

2. Change the name of the line if necessary: Enter it as the Name on the Properties tab.

3. Define the line's properties, described in this article, on the Properties tab.

Defining the Appearance Properties of the Line

Use the following properties, found in the Appearance section on the Properties tab, to define the
appearance of the line.

Appearance Properties

Property Description

Direction The direction of the line on the screen: Horizontal, Vertical, or Diagonal.

LineColor The color of the line.

LineStyle The style of the line: Solid, Dashed, or Dotted.

LineWidth The width of the line (in pixels).

The printing style for the line, set by the following:

BackColor The background color; this setting does not apply to the line.

BackImage The background image; this setting does not affect the line.

BorderColor The border color; this setting does not apply to the line.

Style

BorderStyle The border style; this setting does not affect the line.

 | Report Designer | 696

Property Description

BorderWidth The border width; this setting does not apply to the line.

Font The font; this setting does not affect the line.

Padding The padding setting for the line, which you can specify in pixels for the left
side, right side, top, and bottom of the line.

TextAlign The text alignment; this setting does not apply to the line.

VerticalAlign The vertical alignment; this setting does not apply to the line.

StyleName The name of the style defined for the line. To assign a descriptive name to a style you
have defined for a line, enter the name. To apply an existing style to the line, select its
name.

Defining the Behavior Properties of the Line

The following properties, found in the Behavior section on the Properties tab, let you define the data
processing order and visibility properties of the line.

Behavior Properties

Property Description

ProcessOrder The processing order for the data associated with the line, which defines when
the expression value is calculated:

• To process the data while reading, select WhileRead.

• To process the data while printing, select WhilePrint.

• To process the data while reading and printing, select Always.

Visible The line's visibility property (False or True). The invisible (hidden) visual
elements are not printed in the report.

VisibleExpr The expression that calculates the line's visibility property. This value overrides
the Visible property value if it was set explicitly.

Defining the Layout Properties of the Line

Use these properties to define the line's size and location.

Layout Properties

Property Description

Location The position of the line on the report page (in pixels). The Location
parameter values include the horizontal (x) and vertical (y) coordinates
of the line on the page.

Size The size of the line (in pixels). The Size parameter values include the
width and height of the line.

Adding Graphics to a Report
The graphics in the report can be used as background images or illustrations to catch the user's
attention or organize information.

To add a graphic to an Acumatica ERP report, you can embed the image file into the report, select the
image from an external file, or select a data field and load an image from it. External files are stored on

 | Report Designer | 697

external resources, such as websites or local hosts, accessible from the Acumatica ERP application site
where the reports are published; the report stores only the link to the external file where the image file
is located. Embedded images, conversely, are stored together with the report file, and are included in
the report as its inner elements.

Embedding an Image in the Report

To embed an image in the report, perform the following steps:

1. Select the whole report as an object for which the properties will be set by clicking the icon in
the left top corner of the Acumatica Report Designer window.

2. On the Properties tab, which displays the report properties, click the button next to the
EmbeddedImages collection. The Embedded Images dialog box appears, which you can use
to add or remove the embedded images for the report.

Figure: Embedding a new image

 | Report Designer | 698

Figure: Saving the embedded images

3. To add a new image, on the Embedded Images dialog, click the New Image button, or click
the button in the empty line of the embedded images list. Select the image to be imported
into the report, and add it to the report. To replace the existing image in the report with a
new one, click the button next to the image to be replaced, and select a new image to be
embedded into the report.

4. To delete an embedded image from the report, click the image in the Image list, and click
Delete.

5. Click OK to save your changes.

Adding a Subreport to the Report
Subreports allow you to include data from other reports in the current report. You can add one report or
multiple subreports to a single master report.

Adding a Subreport to the Master Report

To include a subreport in the master report, you use the SubReport visual element. You can link the
subreport to the master report and define the subreport's appearance, behavior, design, and layout
properties.

The name of the subreport to be included in the master report is defined by the ReportName property
of the Subreport visual element. If the subreport uses parameters, you need define them in the master
report to pass the parameters' values from the master report to the linked report you add to the master
report.

To add a subreport to the master report section and define it appropriately, perform the following steps:

1. Add the SubReport visual element to the report section, and position it within the report section.
(Adding and Removing Visual Elements in the Report describes how to add visual elements.) You
can add a SubReport visual element to only a report header or detail section.

 | Report Designer | 699

2. Change the name of the subreport if necessary (Name on the Properties tab).

3. Define the subreport's properties on the Properties tab.

Defining the Appearance Properties for the Subreport

Use the following properties, found in the Appearance group on the Properties tab, to define the
appearance of the subreport to be included in the master report.

Appearance Properties

Property Description

The printing style for the subreport, set by the following values:

BackColor: The background color for the subreport.

BackImage: The background image settings for the subreport. Enter desired values
for the following:

• Source - The source of the image.

• Image: The image to be used as the background:

• For an embedded image, select the image name.

• For an external image, enter the path to the image file.

• For an image retrieved from the database, enter the name of the data field
where the image is stored.

• Repeat: The repeating pattern for the chosen image:

• NoRepeat: Adds the specified image with no repeating

• RepeatX: Repeats the image horizontally to fill the width of the report
section

• RepeatY: Repeats the image vertically to fill the height of the report section

• Repeat: Repeats the image horizontally and vertically to fill both the width
and height of the report section

BorderColor The border color of the subreport. You can define the color for the
bottom, left, right, and top border, and set the default border color, which will be
applied if no special settings are defined for the specific borders.

BorderStyle: The border line style for the subreport. You can define the style for
the bottom, left, right, and top border, and set the default border style, which will be
applied if no special settings are defined for the specific borders.

BorderWidth: The border line width for the subreport (in pixels). You can define the
width of the bottom, left, right, and top border of the subreport, and set the default
border width, which will be applied if no special settings are defined for the specific
borders.

Font: The font settings for the subreport. You can select the font name and size and
specify whether the following font attributes are applied: bold, italic, strikeout, and
underline.

Padding: The padding setting for the subreport, which you can specify in pixels for
the left side, right side, top, and bottom of the subreport.

Style

TextAlign: The text alignment for the subreport: Left, Center, Right, or Not Set.

 | Report Designer | 700

Property Description

VerticalAlign: The content vertical alignment for the subreport: Not Set, Top, Middle,
or Bottom.

StyleName The name of the style defined for the subreport. To assign a descriptive name to a
style you have defined for a subreport, enter the name. To apply an existing style to
the subreport, select its name.

Value The value to be displayed in the subreport. Enter the text here if the subreport will
display a data label in the report, or use the Expression Editor dialog to define the
value to be displayed in the subreport.

WrapText The text wrapping for the ssubreport. To wrap the text across a subreport, set this
value to True.

Defining the Behavior Properties of the Subreport

The following properties, found in the Behavior group on the Properties tab, let you define the
parameters to be passed from the master report to the subreport, specify the data processing order, set
the link to subreport in the master report, and define the visibility properties for the subreport.

Behavior Properties

Property Description

Parameters The collection of parameters to be used in both master report and the subreport. To
add a parameter to the collection, use the External Parameter Collection Editor; for
details, see Using the External Parameter Collection Editor.

If any parameters are defined for the subreport, the number of parameters defined for
the master report and subreport must be equal. The names of the parameters used in
the master report and subreport should also be the same.

Process
Order

The data processing method for the subreport. Choose one of the following options:

• WhileRead: The subreport data is processed when the subreport is invoked from
the master report.

• WhilePrint: The subreport data is processed when the master report is printed.

• Always: The subreport data is processed when the master report is active.

ReportName The subreport name. To select the subreport for inserting it into the master report,
click the button in the box where the subreport name is displayed, and select the file
of the report to be used as a subreport.

The subreport file and the master report file should be located in the same folder.

Visible The subreport's visibility property (False or True). The invisible (hidden) visual
elements are not printed in the report.

VisibleExpr The expression that calculates the text box visibility property. This value overrides the
Visible property value if it was set explicitly.

Defining the Layout Properties of the Subreport

Use the following group of properties to define the position of the subreport on the report page.

 | Report Designer | 701

Layout Properties

Property Description

Location The position of the subreport on the report page (in pixels). The Location parameter
values include the horizontal (x) and vertical (y) coordinates of the subreport area on
the master report page.

Size The size of the subreport area (in pixels). The Size parameter values include the width
and height of the subreport.

Using Variables
Variables are used in reports to calculate values based on the expressions defined for them, store these
values, and make them available in all sections of the report.

Adding a Variable to the Report Section

To add a variable to the report section, perform the following steps:

1. Select the report section where you want to add the variable.

2. Click within the Variables edit box on the Properties tab (shown left of the red 1 in the
screenshot below), and the ReportVariable Collection Editor window appears. You can use
this window to add variables to the report and define their properties.

3. Click Add (item 2 in the screenshot). The new variable will be displayed in the Members list of
the ReportVariable Collection Editor dialog.

4. In the Name field in the Misc section of the ReportVariable Collection Editor window, enter
the name of the variable (item 3).

5. In the ProcessOrder field, select the process order for the variable, which defines how it
is processed: Choose While Read to direct the system to process the values of the variables
while reading, While Print to direct the system to process the values of the variables while
printing, and Always to direct the system to process the values of the variables while reading
and printing.

6. In the ResetExpr field, define the reset expression for the variable, if it is required.

7. In the ResetGroup field, select the group where the variable value will be reset (item 4).

In the ResetGroup property, you can specify the id of the group, in which the variable should
be calculated locally. If you have set this property, for each instance of the specified group the
variable has an independent value. At the end of each group, the variable is reset. If you have
two or more nested groups, you can calculate variables individually for each group by setting the
ResetGroup property.

Use this property to calculate some values within a group. For instance, if you have the Vendor
group inside the Account group and you want to calculate the account balance and each
vendor balance within the account. For the VendorBalance variable, set ResetGroup to the
Vendor group. For the AccountBalance variable set ResetGroup to the Account group. If
the ResetGroup property is not set, the value will be accumulated from one vendor to another.

8. In the ValueExpr field, define the expression used to set the variable value, if it is required.

To delete a variable from the list of existing variables, invoke the ReportVariable Collection
Editor dialog, click this variable in the Members list, and click the Remove button.

9. Click OK (item 5) to save the changes and close the window.

 | Report Designer | 702

References

• Using Expressions

Using the External Parameter Collection Editor
The External Parameter Collection Editor lets you define the parameters for a text box or subreport
visual object.

For a text box, you can add navigation parameters by invoking the ExternalParameter Collection
Editor dialog from the NavigateParams field on the Properties tab, and for a subreport, you can
define the external parameters shared by the master report and the subreport from the Parameters
field on the Properties tab. The existing parameters are listed in the Members list in the left area of
the dialog.

To add a new parameter or change the properties of the existing one, perform the following steps (a
text box is used as an example):

1. Select the text box and click the button for the NavigateParams (Collection) in the
Properties tab (shown left of the red 1 in the screenshot below).

2. Click the Add button in the bottom left of the dialog, or click the existing parameter's name in
the Members list (item 2 in the screenshot below).

 | Report Designer | 703

Figure: The ExternalParameter Collection Editor window

3. In the Name field in the parameter's properties table (located on the right side of the dialog),
enter the parameter's name (item 3).

4. In the Nullable field, set the nullability property for the parameter: True or False. If the
parameter's nullability property is set to True, the parameter can accept null values.

5. In the Type field, select the parameter's data type (item 4), which can be Boolean, DateTime,
Float , Integer, or String.

6. In the ValueExpr field, define the expression to be used to calculate the parameter's value
(item 5). Use the Expression Editor dialog to define the expression.

7. Click OK (item 6) to save the changes made to the external parameters, or click Cancel to
discard the changes.

References

• Using the Expression Editor

Saving and Publishing the Reports
A custom report you design can be saved on your system or network drive. To make the report
available for other Acumatica ERP users, you need to publish the report on the Acumatica ERP server.

Saving a Report

You can save custom reports locally or on the server. The decision about where to save the reports
depends on various factors, including the stage of the report designing process, the Internet connection
bandwidth, and the desired availability of the report to other users participating in the report
development and review process.

• Saving a Report Locally: To save the designed report locally, use the Save or Save As command
on the File menu, with a folder on a local system or network drive specified as the destination
folder.

• Saving a Report on the Server: To save the designed report on the server, select the Save on
Server command on the File menu, and provide the following information in the Save Report on
Server dialog box:

 | Report Designer | 704

1. Specify Web Site URL:The connection string to the server where the designed report will
be stored

2. Select report to load: The locally stored custom report to be uploaded on the server

3. Login: The login to connect to the server

4. Password: The password to connect to the server

Publishing a Report

You must publish the designed custom report on the Acumatica ERP site to make it available to other
Acumatica ERP application users. To publish a report on the site, use the Site Map (SM.20.05.20) form.

To publish a report, take the following steps:

1. Upload or copy the created report file to the appropriate folder on the Acumatica ERP website.
By default, the Reports/ folder, located in the root of the appropriate module on the Acumatica
ERP website, is used.

2. From Acumatica ERP, navigate to the Site Map form: System Management > Site
Management > Site Map.

3. Add a new node or expand the relevant module's hierarchical structure, and select Reports.

4. Add a new record to the list of expanded node items for the new report. Specify the following
information:

• Title: The title of the custom report.

• Icon: The path to the icon for the custom report (optional).

• URL: The URL of the custom report on the site. Use the following format for the URL
specification:

~/Frames/ReportLauncher.aspx?ID=ReportName.rpx

5. Click Save to save your changes. The added report will become visible with the site map.

For more information about the site management procedures, see the System Management Module
section of this guide.

After the report is published, users who will generate the report must be granted access rights to this
report.

References

• Site Map (SM.20.05.20)

Recommendations
This document describes some recommendations and best practices of report design for the Acumatica
ERP application. These recommendations focus on the creation of visually consistent and easy-to-
comprehend reports. You can also refer to an example of a simple report that illustrates the best
practices described here.

Header Layout

A report can include two types of headers: The report header appears on the first page of the report,
and the page header appears on the pages of the report. By default, the page header appears on all
pages of the report, but you can configure it to appear on pages starting from the second one. You
should always insert both the report header and the page header into your report. If either of them is

 | Report Designer | 705

absent, you can right-click the report area outside of any section and select Report Header or Page
Header.

The report header and the page header should each consist of two sections. To split any section into
two sections, right-click the section and select Duplicate section.

To make the page header appear on pages starting from the second one (rather than on all pages), you
should set the PrintOnFirstPage property to False on all sections that represent the page header and
footer.

The first section of the report header should have the following layout:

• On the left side of the report header, you should place the name of the report and the following
mandatory fields below it, with each field represented by two text boxes:

• Company

• Ledger (if it is included in your report parameters)

• Branch (if it is included in your report parameters)

• On the right side of the report header, you should place the following mandatory fields, with each
field represented by two text boxes:

• User

• Date

• Page

• If additional fields from the report parameters should be printed on the report header, put the
fields in the middle part of the header in one column or two columns.

For information about how to set the values of the mandatory fields, see the Parameter Values section
of this document.

The figure below shows an example of the layout of a report header.

Figure: Example of a report header

The first section of the page header should have the following layout:

• On the left side of the report, you should put the name of the report.

• On the right side of the report, you should put the Page field.

• No report parameters are displayed on the page header.

The second section of both the report header and page header should contain text boxes with labels for
columns.

The following screenshot shows the view of the report header in the Acumatica Report Designer.

 | Report Designer | 706

Figure: Example of the report header in the Report Designer

General Layout Properties

The table below shows the recommended properties for the layout of the whole report and all controls
the report includes.

Description Value

StylesTemplate property of the report TemplateReport.rpx1

NavigationTree property of the report False

LayoutUnit property of the report Pixel

Width property of the report 1026px

Margin from the left border of the report 4px

Margin from the right border of the report 4px

Vertical margin between two text boxes 4px

Horizontal margin between the text box with the label and
the text box with the value

0px

Height of the text box with the report name 16px

Height of the other text boxes 14px

1The template file should reside in the same directory as the report.

Recommended Predefined Styles

For any visual element of the report, you can set one of the predefined styles. You should assign
specific predefined styles to the elements listed in the following table. To use the predefined
styles, you should specify the template for the report by setting the StylesTemplate property to
TemplateReport.rpx. This file is located in the same folder that contains the default reports provided
with Acumatica ERP. To display report properties in the Properties view, click the little square in the
upper left corner of the designer area.

Element Style name

Text box with the report name Report Name

Text boxes for both labels and values of report
parameters in the header

Report Params

The report or page header section with column
names

ColumnsHeaderSection

The group header sections with information on the
grouping item

GroupHighlight

 | Report Designer | 707

Element Style name

The group header section with column names for
the display of detail records

GroupL1Highlight

Text boxes for column names Heading 1

Text boxes for total amounts of a group Heading 1

Text boxes for displaying regular data Normal

Abbreviations for Column Names

The following table shows the recommended abbreviations for column names.

Full column name Short column name

Beginning Balance Beg. Balance

Ending Balance End. Balance

Financial Period Fin. Period

Subaccount Sub.

Reference Number Ref. Nbr.

Batch Number Batch Nbr.

Document Doc.

Currency Cur.

Original Orig.

Transaction Tran.

Currency Column Before an Amount Column

In any details view, any column representing an amount should be preceded with the currency column.
If a column representing an amount immediately follows another such column and the two columns
have the same currency (such as debit amount and credit amount in journal transactions), you should
insert only one currency column—before the first of these two columns.

Parameter Names

When any of the following fields is used as a report parameter to specify a range of values, the name
should start with From or To.

The name of a report parameter is set on the Parameters tab of Schema Builder in the Prompt field. If
you don't specify the name in the Prompt field, the parameter won't be shown on the report webpage.

Field Display name of the
parameter

Display name of the
parameter

Period From Period To Period

Date From Date To Date

Account From Account To Account

Subaccount From Subaccount To Subaccount

 | Report Designer | 708

When the name of a field ends with ID, the name of the corresponding parameters should not include
ID. The fields to which this rule is applied are listed in the table below.

Field Display name of the parameter

Vendor ID Vendor

Customer ID Customer

Branch ID Branch

Tax Agency ID Tax Agency

Account ID Account

Parameter Values

The table belows describes the recommended way to display the values of the mandatory fields
displayed in the header.

First text box—Value Second text box—Value

Company: =Report.GetDefUI('RowCompanyBAccount.AcctName')

Ledger: =[@LedgerID]1

Branch: =[@BranchID]1

User: =Report.GetDefUI('RowAccessInfo.DisplayName')

Date: =Today()

Page: =PageOf()

1Insert the actual name of the parameter that you specified in the Schema Builder.

Sample Report
This example illustrates best practices in report design for the Acumatica ERP application. To implement
the sample report, you need to have the Acumatica Report Designer and an instance of the Acumatica
ERP application installed.

The report will display data records of a scheduled batch with their details—journal transactions. By
scheduled batch, we mean a batch that is processed according to the related schedule. The report will
select batches by the Scheduled field, which equals true when a schedule is associated with the batch.
By using the parameters of the report, you can filter batches by a ledger, branch, or batch number (to
display details of a specific batch).

Building the Data Schema for the Report

1. In the Schema Builder window, load the schema of the website by specifying the URL of the
application and valid credentials, and add the Batch table and GLTran (PX.Objects.GL.GLTran)
table to the report (see the screenshot below).

 | Report Designer | 709

Figure: Loading schema and selecting tables for the report

2. Configure the relationship between two tables with the following propeties:

• Parent Table: Batch

• Join Type: Left

• Child Table: GLTran

• Parent Field: BatchNbr

• Link Condition: Equal

• Child Field: BatchNbr

3. On the Parameters tab, add three parameters (Branch, Ledger, and Batch) with the following
properties.

Property Branch parameter Ledger parameter Batch parameter

Name BranchID LedgerID BatchID

Data Type String String String

View Name =[Batch.BranchID] =[Batch.LedgerID] =[Batch.BatchNbr]

Prompt Batch Ledger Batch

Column Span 2 2 2

Allow Null True True True

Visible True True True

In the View Name property, you specify the data field from which the report should take the
display options for the parameter (such as the type of the control for entering a value).

4. Specify filtering conditions to restrict the set of data (selecting only scheduled batches) and use
the report parameters.

Braces Data Field Condition Value1 Braces Operator

Batch.Scheduled Equal True And

(Batch.BranchID Equal @BranchID Or

@BranchID IsNull) And

(Batch.LedgerID Equal @LedgerID Or

 | Report Designer | 710

Braces Data Field Condition Value1 Braces Operator

@LedgerID IsNull) And

(Batch.BatchNbr Equal @BatchID Or

@BatchID IsNull) And

You can use the parameters of your report to build filtering conditions in any way you need.
Typically, as the example above shows, you check whether some field value equals the parameter
value or the parameter value is null (not specified).

Specifying General Settings for the Report

To specify general report settings, click the square button at the upper left corner of the designer and
set the following properties for the report:

• StylesTemplate: TemplateReport.rpx

• NavigationTree: False

• GridSize: 4px; 4px

• Excel Mode: Manual

• LayoutUnit: Pixel

• Width: 1026px

Preparing the Header

1. Add the report header and page header to the report, and split each header into two sections by
using the Duplicate Section command.

2. Set the following properties for the sections that represent the report header and footer and the
page header and footer.

Section StyleName PrintOnFirstPage Height

reportHeaderSection1 56px

reportHeaderSection2 ColumnsHeaderSection 24px

pageHeaderSection1 False 20px

pageHeaderSection2 ColumnsHeaderSection False 24px

3. Add and align the text boxes for the report name, mandatory parameters, and other report
parameters as described in the recommendations. The table below gives an example of the
settings for the text boxes.

Value StyleName Location Size

Scheduled Batches Report Name 4px; 0px 244px; 16px

Company: Report Params 4px; 20px 76px; 14px

=Report.GetDefUI('RowCompanyBAccount.

AcctName')

Report Params 80px; 20px 168px; 14px

Ledger: Report Params 4px; 38px 76px; 14px

=[@LedgerID] Report Params 80px; 38px 168px; 14px

Branch: Report Params 4px; 56px 76px; 14px

 | Report Designer | 711

Value StyleName Location Size

=[@BranchID] Report Params 80px; 56px 168px; 14px

Batch: Report Params 340px; 20px 76px; 14px

=[@BatchID] Report Params 76px;14px 168px; 14px

User: Report Params 916px; 20px 32px; 14px

=Report.GetDefUI('RowAccessInfo.DisplayName')Report Params 948px; 20px 76px; 14px

Date: Report Params 916px; 38px 32px; 14px

=Today() Report Params 948px; 38px 76px; 14px

Page: Report Params 916px; 56px 32px; 14px

=PageOf Report Params 948px; 56px 76px; 14px

You can copy a group of controls and paste them into the same section or another section. To
select multiple controls, click them one by one while pressing the Shift key. You can also set a
property for all selected controls at once.

For the label text boxes of the Ledger, Branch, and Batch parameters, set the VisibleExpr
property to the following values:

• =([@LedgerID]<>Null)

• =([@BranchID]<>Null)

• =([@BatchID]<>Null)

As a result, these text boxes will be displayed only when a user specifies parameter values for
the report and runs it.

4. Add text boxes with the properties shown in the following table to the section named
reportHeaderSection2. The text boxes will represent column headers for batch records.

Value StyleName Style—Text Align Location Size

Batch Nbr. Heading 1 4px; 4px 68px; 14px

Ledger Heading 1 72px; 4px 72px; 14px

Description Heading 1 144px; 4px 272px; 14px

Created By Heading 1 616px; 4px 112px; 14px

Last Modified By Heading 1 728px; 4px 112px; 14px

Currency Heading 1 Right 840px; 4px 64px; 14px

Control Total Heading 1 Right 904px; 4px 116px; 14px

You can use a predefined style and specify additional display properties in the Style group of
properties.

The same column headers should be placed in pageHeaderSection2. To copy column headers
from the report header, select all text boxes in reportHeaderSection2, right-click them, select
Copy, right-click pageHeaderSection2, and click Paste.

 | Report Designer | 712

Preparing the Main Part of the Report

1. Add one group by right-clicking the report outside of any section and selecting Add New Group.
Duplicate the group header and the group footer. Open the Schema Builder, open the Sorting
and Grouping tab, select group1, and specify the following properties for the grouping:

• Data Field: Batch.BatchNbr

• Sort Direction: Ascending

You can duplicate group headers and footers any number of times. You can use additional group
headers and footers to add spacing between rows. The numbers of headers and footers doesn't
have to be the same. However, you add a new group only to add a new level of grouping data.

2. Set the following properties for the group headers, footers, and detail section.

Section StyleName Height

groupHeaderSection1 GroupHighlight 16px

groupHeaderSection2 GroupL1Highlight 20px

groupFooterSection1 20px

groupFooterSection2 16px

detailSection1 16px

3. Copy the text boxes with column names from the report or page header to
groupHeaderSection1, shift them to the top of the section, and set the StyleName property to
Normal. Set Value to the corresponding Batch data fields:

• =[Batch.BatchNbr]

• =[Batch.LedgerID]

• =[Batch.Description]

• =[Batch.CreatedByID]

• =[Batch.LastModifiedByID]

• =[Batch.CuryID]

• =[Batch.CuryControlTotal]

4. Add text boxes with the following properties to groupHeaderSection2 to represent the column
headers for journal transaction records.

Value StyleName Style—Text Align Location Size

Branch Heading 1 4px; 4px 68px; 14px

Account Heading 1 72px; 4px 72px; 14px

Sub. Heading 1 144px; 4px 136px; 14px

Ref. Nbr. Heading 1 280px; 4px 116px; 14px

Description Heading 1 396px; 4px 332px; 14px

Currency Heading 1 Left 728px; 4px 60px; 14px

Debit Heading 1 Right 788px; 4px 116px; 14px

Credit Heading 1 Right 904px; 4px 116px; 14px

 | Report Designer | 713

5. Copy the text boxes with column names from groupHeaderSection2 to detailSection1, shift them
to the top of the section, and set the StyleName property to Normal for all of them. Set Value
to the corresponding GLTran data fields:

• =[GLTran.BranchID]

• =[GLTran.AccountID]

• =[GLTran.SubID]

• =[GLTran.RefNbr]

• =[GLTran.TranDesc]

• =[GLTran.CuryID]

• =[GLTran.CuryDebitAmt]

• =[GLTran.CuryCreditAmt]

6. In the first group footer, add four text boxes to groupFooterSection1 and set the following
properties for them. These text boxes will be used to display total amounts for a batch right
under the Debit and Credit columns in the first group footer.

Value StyleName Style—Text
Align

Location Size

Batch Total: Heading 1 616px; 4px 112px; 14px

=[Batch.CuryID] Heading 1 Left 728px; 4px 60px; 14px

=[Batch.CuryDebitTotal] Heading 1 Right 788px; 4px 116px; 14px

=[Batch.CuryCreditTotal] Heading 1 Right 904px; 4px 116px; 14px

You can use aggregation functions to perform calculations over grouped items. For example, you
could replace =[Batch.CuryDebitTotal] with =Sum([GLTran.CuryDebitAmt]), which would calculate
a sum over all child journal transactions for each parent batch. However, here we use the data field
of the parent, because it already contains the sum.

To draw a line above the total amounts, add a line to the groupFooterSection1 and properly align
it. You can set the following properties for the line:

• Location: 612px; 2px

• Size: 414px; 2px

The X coordinate of the location added to the width should be less or equal to the overall width
of the report for the line to not extend beyond the report.

Publishing the Report

To make the report accessible through the website, you should add it to the Site Map (System >
Customization > Manage > Site Map) of your Acumatica ERP application. For example, you can add
this report to the Finance > General Ledger > Reports > Audit section of the site. You can add a
new node with the following properties:

• ScreenID: GL.69.00.11

• Title: Scheduled Batches

• Url: ~/Frames/ReportLauncher.aspx?ID=<YouReportName>.rpx

 | Website Management | 714

Website Management

In this chapter, you will get acquainted with the standard Site Map of the Acumatica ERP application,
as well as learn how to configure or modify the Site Map for your own purposes. Topics of this chapter
also contain descriptions of how to register webpages, how to grant access rights to the registered
webpages, as well as how to manage the Help Wiki.

Content

This chapter covers the following topics:

• Configuring the Site Map

• Registering the Page as a New Webpage

• Granting Access Rights to a Registered Webpage

• Managing the Help Wiki

Configuring the Site Map
You use the site map of the Acumatica Framework application for adjusting the multilevel menu
structure and for registering webpages. See Site Map (SM.20.05.20) for details.

In the first section of this topic, the typical multilevel structure of the Acumatica Framework application
site map is described. The second section gives the common rules of site map configuration.

The Typical Structure of the Acumatica Framework Application Site Map

If you start an Acumatica Framework application instance and then navigate to System >
Customization > Manage > Site Map, you will see the site map tree. This tree displays the menu
and sub-menu structure of the typical Acumatica Framework application. As the screenshot below
illustrates, this structure consists of different levels, beginning with the topmost level (the common
solution level) and two upper levels that represent the main menu and sub-menu items, and ending
with the lowermost level, which includes various webpages (forms).

If you expand a menu item by clicking the node icon left of it, you will see the second-level node
names (sub-menu) in the tree, which mostly include the names of application modules (see again the
screenshot below).

 | Website Management | 715

Figure: Opening the site map

If you select a sub-menu item that represents an application module, you will see the third-level node
names in the table right of the tree (see the screenshot below), which holds the settings of the nodes
(see the screenshot below). Most modules include up to four nodes that provide access to the webpages
on the lowermost level:

• The Work Area node includes data entry, maintenance, and inquiry webpages.

• The Processes node includes processing webpages.

• The Reports node includes report webpages.

• The Configuration node includes setup webpages, analytical reports, and some maintenance
webpages.

Each node represents a tab that is displayed below the Search box at the top of the navigation pane
when a user is viewing the module.

 | Website Management | 716

Figure: An example of settings for the third-level nodes

The fourth-level nodes can be used for additional grouping of webpages in the navigation pane. There
are no system restrictions on how to name these groups and how many groups may be added.

After selecting a fourth-level node item, you can see the corresponding webpages within that group and
their settings (see the screenshot below).

Figure: An example of settings for the fifth-level items (webpages)

Common Rules of Configuring the site map

As you can see in the screenshot below, navigation in the standard Acumatica Framework application
instance represents the sequence of selected items on different levels, from the main menu down to
the item on the lowermost level of the site map, to open the required webpage (form). For instance,
to open at run time the Update Base Prices webpage, you should click Distribution (the first level
and top line of the main menu) and then Inventory (the second level and sub-menu, or bottom line

 | Website Management | 717

of the main menu). Then click the Processes (the third level, with the icon name) tab, and beneath
the Recurring (the fourth level, with a sub-section of the navigation pane) group, click Update Base
Prices (the fifth level, which is the required webpage).

Figure: Navigation at run time through the different levels of the site map

You can construct a site map structure for your own application, taking into account the following rules
of site map design:

• All of the site map levels are mandatory except for the third and fourth level. You should include
at least one needed node for each required level of the site map. In such a case, you can register
the webpage after selecting the appropriate item of the second- (or the third-) level node.

• The top-level node represents the common solution; you can add first-level (main menu) items
and adjust their properties after you select this level.

• The first-level node defines different sub-menu items; for each menu item, you must add and
adjust at least one sub-menu item.

• By selecting each node on levels from the second to fourth, you can adjust the appropriate item
properties of the level beneath the node, including adding and adjusting new items.

Notice that if you create a node with only one item as the second or third sub-node, this item will be
invisible unless you add a second item on the same level.

• To register a newly developed page as a webpage, you should select the respective item of the
fourth level, if it exists; otherwise, you have to first add and adjust properties of this level (and
each level above it). The process of adding new items is described in Registering the Page as a
New Webpage.

After you register a newly developed page as a webpage, you need to assign access rights to it, as
described in Granting Access Rights to a Registered Webpage.

Registering the Page as a New Webpage
To give the end user access to a page you have developed, debugged, and tested, you must register
this page as a webpage on the Site Map (SM.20.05.20) form and then grant appropriate access rights
to each webpage by using the Access Rights by Role (SM.20.10.25) form. The guidelines in this topic

 | Website Management | 718

will help you register the page. To learn how to grant access rights, see Granting Access Rights to a
Registered Webpage.

If your site map structure is not yet ready, you should first create and adjust nodes with appropriate
items for the upper levels of the site map upper levels. See Configuring the Site Map for details.

When the site map is ready, all the nodes are configured and most items are properly registered.

Adding Items to the Site Map and Adjusting Their Properties

This section describes the creation of an additional branch of the site map. (To illustrate the case when
you do not need the fourth level of the site map, which you can use to divide the navigation pane into
sections, this branch will have four levels instead of the maximum of five. You can decrease the number
of levels if you have only a few webpages to be registered.) To resolve this task, you should perform the
following instructions:

1. Start your project application.

2. Navigate to System > Customization > Manage > Site Map, and then select the top-level
folder (Acumatica Company).

3. Above the table on the right, click Add Row to add a node for the RB folder of the main menu.
Specify the following settings (see also the screenshot below).

• Screen ID: RB.00.00.00

• Title: RB

• Icon: None

• URL: ~/Frames/Default.aspx

• GraphType: Empty

• Expanded (check box): Cleared

4. By clicking the Move Row Up button several times, move the item to the needed position within
the first-level menu item, and then click Save.

Figure: Adding and adjusting properties of the first-level menu item

5. Select the RB folder. In the table on the right, click Add Row to add a sub-menu item for the
RB menu item you added in Instruction 3. Specify the following settings, and then save your
changes (see also the screenshot below):

• Screen ID: RB.00.00.00

• Title: RapidByte

 | Website Management | 719

• Icon: Empty

• URL: ~/Frames/Default.aspx

• GraphType: Empty

• Expanded (check box): Cleared

Figure: Adding and adjusting properties of the second-level item (sub-menu item)

6. Select the RapidByte folder, and add the third-level nodes to group the webpage types you will
use. Specify the following settings, keeping the sub-nodes in the order shown in the table below,
and then save your changes (see the screenshot below):

Screen ID Title Icon URL Expanded

Empty Work Area main@DataEntryF Empty Selected

Empty Processes main@ProcessF Empty Selected

Empty Reports main@ReportF Empty Selected

Empty Configuration main@SettingsF Empty Selected

In this example of adding a site map branch, you do not need to specify a screen ID for the third-
level nodes. By selecting the Expanded check box, you provide automatic expansion of any third-
level node with its webpages during site startup. The GraphType column also should be empty.

Figure: Adding and adjusting properties of the third-level node items (for webpage grouping)

 | Website Management | 720

Registering a New Page as a Webpage

Select the Work Area item, and then click Add Row to register the new developed pages as webpages
(see the screenshot below). Here is the example of registering the Employees page. Make the
appropriate specifications, and save your changes:

• Screen ID: RB.20.20.00

• Title: Employees

• Icon: Empty

• GraphType: RB.RapidByte.EmployeeMaint (added automatically)

• URL: ~/Pages/RapidByte/RB202000.aspx

• Expanded (check box): Cleared

Notice that the system automatically defines the Graph Type setting for webpages.

Figure: Registering the page as a webpage

You should register all the new developed pages as webpages similarly.

As was mentioned earlier, once you register webpages, you will grant access rights, as described in
Granting Access Rights to a Registered Webpage.

Granting Access Rights to a Registered Webpage
After you register newly developed pages as webpages, you should grant appropriate access rights to
them on the Access Rights by Role (SM.20.10.25) form, as this topic describes.

To grant access rights to the new registered webpage, proceed as follows:

• Navigate to Configuration > User Security > Manage > Access Rights By Role.

• In the Role Name box, select Administrator.

• In the System Tree pane of the form (lower left), click the node of the RB subfolder.

• On the Access Rights pane (lower right table), for the Employees page, select the Delete access
rights, as shown in the screenshot below.

• Save your changes.

 | Website Management | 721

The Delete access rights encompass the View, Edit, and Insert rights. For more information, see
Levels of Access Rights. If you need to cancel previous access rights to the webpage for the specified
role, you should select the Revoked rights.

Figure: Granting access rights to the Employees webpage

Generally, the access rights granted to the webpage user interface (UI) elements and actions for a role
are inherited from the access rights the role has to the webpage. Therefore, you should first give the
role a permissive level of access to the system object that supports the webpage functionality. Then you
can set access rights to the UI elements, as shown in the screenshot below (which shows an example
with another solution and another webpage).

 | Website Management | 722

Figure: Default access rights to the UI elements of the Bills and Adjustments webpage

The Inherited rights indicate that access rights to the element are inherited from the access rights the
role has to the webpage.

Managing the Help Wiki
Acumatica ERP includes a built-in wiki-based content management system that consists of topics (or
articles) organized within second-level menu items (submenus) and folders. By using this system, you
can create Help for any application you have developed with Acumatica Framework, in addition to the
Help already provided by Acumatica ERP.

The first section of this topic analyzes the main features of the Help wiki, while the second section
considers the configuration of the standard Help wiki. The third section describes how to create a new
topic within the Help wiki, and the fourth section illustrates how to create a new wiki and a topic within
it.

Exploring the Structure and Usage of the Help Wiki

The Acumatica Framework deliverable database contains a few wiki-based submenus with the standard
Help content. If you start an Acumatica Framework application and click the Help menu item on the
right side of the form title bar, you can see the available topics of the wiki-based Help for programmers
and IT specialists within the following submenu items:

• Getting Started

• Installation

• Customization

• Acumatica Framework

 | Website Management | 723

Acumatica ERP also has two Help wiki submenus that hold topics for end users:

• User Guide

• Implementation

To describe the webpages you develop and to cover other topics, you can easily add new topics to any
folder (or as a root item) of each Help wiki submenu item, and you can create your own folders and
subfolders and then add new topics. You can also create your own wiki menu and submenu items, but
new reference topics for webpages will still be added to the main Help wiki submenu items. You can add
only separate topics to the new wiki submenu items.

When you first install Acumatica ERP or Acumatica Framework, each topic in the Help wiki submenu
items has a single record in its history (with the full text copy of last topic version stored in the
relevant database table). You can give users appropriate access rights to edit any topic, including
those originally drafted by Acumatica Inc. Each time the user saves changes to any topic, the system
adds (along with the full text version of the topic) a new record to the history table that includes such
information as when the version was created and whether it was published (to make its text visible to
users who open the topic).

When you upgrade the Acumatica Framework or Acumatica ERP application instance, topics existing in
Help sections are updated if they were changed by Acumatica Inc., and new topics are added. If your
site has modified at least one version of a wiki topic and published the version, this version cannot be
replaced during the upgrade; however, you can access the updated text by restoring the appropriate
history record as a current published topic version without needing to remove your site's version. Thus,
you can refer the reader to the version updated by Acumatica Inc. and to your site's version when it is
necessary.

Exploring the Configuration of the Standard Help Wiki

Each wiki submenu holds the Acumatica Inc.-supplied Help topics, grouped by a common theme, and
can hold any Help topics you develop for webpages.

Proceed as follows to explore the setup of a standard Help wiki submenu:

1. Start the application, and navigate to the Wiki Setup (SM.20.20.05) form: Configuration >
Document Management > Manage > Wiki.

2. In the ID box, select HelpRoot_Studio. (The HelpRoot_ prefix is reserved for the Help wiki
submenus that are provided by Acumatica Inc.; this wiki section holds most of the topics
devoted to the development of an application by using Acumatica Framework.) Once you select
this ID, the system retrieves the settings of the other fields. Notice the following fields:

• Name: This field contains the name of the wiki item that you see as the second-level
menu (or submenu) item.

• Style: Open the lookup window of this field to see the style options for the existing Help
wiki (as shown in the screenshot below).

• Site Map Location: Open the lookup window with the Site Map tree, and then click the
Help node to see the location of the Help wiki (its position) among the other menu items.

• Site Map Title: This field holds the name of the selected Help wiki submenu item (the
same as the name of the wiki ID).

• Article Type: This field indicates the type of article (topic) that makes up the content of
the wiki. (Article is the appropriate setting for a wiki that holds information that will be
accessed by users over time.)

3. In the table on the Access Rights tab, notice the role names and their access rights, which you
(as an administrator) can give to the roles assigned to users.

 | Website Management | 724

Figure: Verifying the configuration of the Help wiki

Adding a Help Topic for a Webpage

In this step, you will learn how to add a reference topic to the Help wiki that documents a new
developed webpage.

All the forms (webpages) delivered with Acumatica Framework and Acumatica ERP already have detailed
descriptions. If your application instance has no newly developed webpage, you should read rather than
perform the instructions below.

To add a reference topic, you would perform the following tasks:

1. Open the webpage that you want to describe.

2. Click Help in the top right corner of the webpage, on the Main toolbar. You will see the following
error message: The article does not exist or you don't have enough rights to see it.

3. On the Wiki toolbar, click Edit, and a new topic will be created. Notice that the system generates
the Article ID based on the structure of the page number (Screen ID). For instance, the
SM_20_05_20 article ID corresponds to the SM.20.05.20 page number (Screen ID on the user
interface), which means SM (System Management) module, maintenance webpage (20), serial
number (05), and subnumber (20).

4. In the Article Name field, specify the name of the webpage that is displayed in the navigation
pane (that is, the same title you specified when you registered the webpage).

5. Add Help content for the page. Clear the Hold check box if you are ready to publish the topic.

6. Click Save. The new topic is now created.

 | Website Management | 725

You can repeat these steps for other webpages and reports that you have created.

Creating a New Wiki With a Topic

If you want to create a new wiki—for instance, to hold a group of not-yet-developed topics that describe
your application add-on—complete the guidelines of this section. Again, keep in mind that you won't be
able to add to the new wiki reference topics describing any webpage you develop. However, topics in
a new wiki can contain references to webpage-related topics that are stored in the built-in Help wiki's
submenu items; similarly, webpage-related topics in the Help wiki can have references to topics in the
new wiki.

Before you proceed, you should know that you can register the new wiki in the application site map
either as a separate menu item (that is, an additional help item) or as a submenu item of the Help
menu. For the first case, topics of your own wiki menu are accessible through the main menu, while
for the second case, you first have to select the Help submenu item. In both cases, the additional help
will have aforementioned restriction concerning webpage descriptions. You take similar actions for both
cases; we consider the first case. Proceed as follows:

1. Navigate to the Wiki Setup (SM.20.20.05) form: Configuration > Document Management >
Manage > Wiki.

2. In the Wiki area, specify settings for the new wiki: On the toolbar, click Add New Record (if
another wiki ID record is still active). Then type AdHelp as the ID and Additional Help as the
Name, and select Help as the Style, Help Print as the Print Style, and Article as the Article
Type. Open the Site Map Location window with the site map tree, and select the Company
root node (to create a new local wiki group of topics you should select the Help submenu item);
the Site Map Title value, added automatically, is the same as the Name value. Clear the
Require Approval check box, and select the Hold on Edit check box. (See the screenshot
below.)

If you clear the Hold on Edit check box, the Hold check box will be cleared by default when an
author edits a topic in the wiki, causing the topic to be published when it is saved. All readers can
see the text of a published topic. With the Hold on Edit check box cleared, the author can still
select the Hold check box before saving a topic, so that it is on hold. In this case, changes to the
topic will be seen only by users with the Publish or Delete access rights (see the next instruction).

3. On the Access Rights tab table, grant the Publish access rights to Wiki Author, and grant the
Delete access rights to Administrator and Wiki Admin, as shown in the screenshot below.
Other role names have the Not Set access rights by default; you can change some of these
rights.

 | Website Management | 726

Figure: Adding a new wiki

4. Save your changes. The new wiki appears on the main menu as the rightmost menu item.

5. On the main menu, click Additional Help. The Additional Help main folder opens, with the
Create a new article and Deleted Items links.

6. Click the Create a new article link to open the Wiki Editor for the new topic.

7. In the upper area of the Content tab, type Intro in the Article ID field and Introduction
in the Name field. Keep Additional Help selected as the Parent Folder. See the screenshot
below.

If you want to create subtopics under the created folder or the higher-level topic, select the Folder
check box. You can have any number of sublevels and topics at each level of a wiki. However, a
folder cannot be placed directly under a topic or between topics.

8. Type any text into the editing area.

9. Be sure the Hold check box is selected. If you want the text of the topic to be visible to users
now, however, clear the check box.

10. Click Save to save the new topic, Introduction, with the added text. The topic appears in the
navigation pane. Any user with View Only access rights or higher can open the application and
read this topic.

 | Website Management | 727

Figure: Adding a new topic

For more details, see Setting Up a New Wiki.

 | Web Services API Developer Guide | 728

Web Services API Developer Guide

The Acumatica ERP Web Services Application Programming Interface (API) provides a fast, reliable, and
convenient way of exposing business functionality and data managed by an Acumatica ERP application
for integration with any external business and operation support system. The Acumatica ERP API
is based on web service standards, such as SOAP and WSDL, and can be accessed with almost any
current programming environment or integration tool. By using the development environment you
are familiar with, you can easily create a client application that accesses the Acumatica Framework
application through standard web services protocols to do any of the following:

• Authorize the programmer with the server running the Acumatica ERP application

• Get query and access information from the Acumatica ERP application

• Import information into the Acumatica ERP application

• Create, update, and delete objects in the Acumatica ERP application

• Execute some long-running processes and perform administrative tasks

Every operation that uses the Acumatica ERP API is executed through the same business logic layer as
the user interface.

Web Services API Overview

Acumatica Inc. introduces a simple, streamlined way of interacting with its web services. The system
automatically generates a WSDL file describing the operations (services) and list of parameters and
objects; you can access this file through the Web Services (SM.20.70.40) form.

You can implement advanced integration scenarios involving operations on one or more forms by using
the new web services configuration form to generate custom WSDL files.

All the functionality of the application is available through the Web Services API; however, the
functionality and information that will be exposed and available to the web services client depends on
the access rights granted to the user signed in as a client to the Acumatica Inc. instance.

Web Services Calls

To execute the API call, you need to prepare the SOAP message and send it to the remote server that
provides web services by using the HTTP/HTTPS protocol.

To simplify this process, most development environments (such as Microsoft Visual Studio and
NetBeans) support importing of the WSDL definition file and provide automation tools for the creation of
proxy classes. This approach enables you to access the object model in a convenient and familiar way,
while ensuring compile-time verification of the web services calls.

Web Services API Objects

Interaction with the API is made through an object called Screen. This object acts as a gateway
between the web services client and Acumatica Inc., so that you can sign in and retrieve, insert,
update, or delete data, as well as perform any action that may be exposed by the form.

The preparation and execution of web services calls is facilitated by the Content object, which you can
retrieve by calling the GetSchema() API function. This function returns an object that closely matches
the way the form is presented to the end user. Each area on the form is mapped to an object in the
Content object. For example, the Account Settings area in the General Info tab of the Customers
(AR.30.30.00) form is defined in the GeneralInfoAccountSettings object. This object exposes a
public property for every field in this area. Actions that can be performed in the form are exposed in a
property called Actions. The class diagram below illustrates the relationship between the Screen and
Content objects and associated areas of the Content object.

 | Web Services API Developer Guide | 729

Figure: Sample web service class diagram

To execute an API call, you must build an array of commands and submit it to the form by calling the
Submit() function. To process batch import and export operations, you define a scenario and use the
Import() and Export() functions.

Quick Start
This mini-tutorial will help you get started with the Acumatica ERP Web Services Application
Programming Interface (API). To begin working with the Web Services API, perform the following steps:

• Generate and Locate the WSDL File of the Web Services

• Import the WSDL File of the Web Services Into the Development Environment

• Review and Use the Code From the Sample Project

Step 1. Generate and Locate the WSDL File of the Web Services

Acumatica ERP automatically generates a WSDL file describing the operations (services) and an XML
description of parameters and objects for a form or multiple forms. You can access this file through the
Web Services (SM.20.70.40) form of Acumatica ERP.

For more information about the WSDL standard, see Web Services Description Language (WSDL) 1.1.

To create a WSDL file for multiple forms, perform the following actions:

1. On the Web Services form, click Add New Record on the form toolbar, and type the Service ID
name (for instance, APITEST, as shown in the figure below).

2. Keep the Import, Export, and Submit check boxes selected (as they are by default), and leave
the Include Untyped check box cleared. Click Save.

If you also want to use untyped data to make it possible to manipulate string arrays instead
of structured data, select the Include Untyped check box. The generated untyped operations
have the Untyped prefix in their names—for instance, UntypedSetSchema, UntypedExport, and
UntypedSubmit. The untyped operations cannot be used with specific forms. For instance, you
can't generate the UntypedGL301000Submit operation, but you can generate the GL301000Submit
operation.

http://www.w3.org/TR/wsdl

 | Web Services API Developer Guide | 730

3. Click Add Row on the table toolbar, and then add the value for the Screen ID column by using
the lookup window and finding the Payments and Applications (AR.30.20.00) form.

4. Repeat the previous step to add each of the following forms, as shown in the figure below:
Customers (AR.30.30.00), Transactions (CA.30.40.00), Leads (CR.30.10.00), Contacts
(CR.30.20.00), Business Account (CR.30.30.00), Opportunities (CR.30.40.00), Journal
Transactions (GL.30.10.00), Stock Items (IN.20.25.00), Warehouses (IN.20.40.00), Transfers
(IN.30.40.00), Purchase Receipts (PO.30.20.00), Sales Orders (SO.30.10.00), and Shipments
(SO.30.20.00). Click Save again.

The collection of forms you added above is necessary for using a single WSDL file in various kinds
of examples that illustrate the use of the Web Services API. You can perform the instructions
in these examples to learn the rules of syntax and the semantics of the API code, and then use
the obtained experience in your work when you need to include a client application along with
Acumatica ERP.

Figure: Creating the WSDL file

5. On the form toolbar, click Generate to start the process of generating the WSDL file. After the
process is successfully completed, you can see the green flags in the leftmost column for each
table row (that is, for each form).

6. Optional: Click View Generated to open the new window with the list of operations that are
supported by the Acumatica ERP Web Services API, as illustrated in the figure below. Note that
some operations are bound with specific forms, because these operations support the particular
structure of the appropriate form. To see the examples of SOAP client requests and HTTP server
responses that can be implemented by using the appropriate operation, click any item.

 | Web Services API Developer Guide | 731

Figure: The list of available operations

7. Optional: Return to the previous screen, and click the Service Description reference to see the
XML description of the generated WSDL file. A fragment of this file is shown in the figure below.

8. Close the window and return to the application.

Figure: The XML description of the generated WSDL file

To find the latest version of the WSDL file, use the following URL:

http://{domain}/Soap/{name}.asmx?WSDL

 | Web Services API Developer Guide | 732

Replace domain with the actual URL path to your application and name with the ID of the web service.
For example, the valid URL to access the Customers form could be either of the following, with the
latter for the local Acumatica ERP instance:

http://localhost:8080/Demo/Soap/APITEST.asmx?WSDL
http://localhost/WebAPIVirtual/Soap/APITEST.asmx?WSDL

The WSDL file automatically generated by the system includes all the changes implemented to the
application logic and its database structure through the customization. If you made any customization that
affects the business logic or database structure that you use through the API support of the form, make
sure that you have retrieved the latest version of the WSDL file after the customization is published. You
may generate the WSDL file any number of times.

Step 2. Import the WSDL File of the Web Services Into the Development Environment

When the WSDL file is generated, you must import it into your development environment to generate
proxy classes. If necessary, see the documentation of your development environment to find out the
correct way of building the proxy classes based on the WSDL definition.

Programming languages supported by Microsoft Visual Studio.NET can access the Web Services API
through the proxy classes created by using the WSDL description for corresponding server-side objects.
Below you will find instructions on how to implement the proxy classes by using Visual Studio 2008 or
later and NetBeans 6.9.

To generate proxy classes from the WSDL definition by using Visual Studio 2008 or later:

1. Start MS Visual Studio and select File > New > Project.

2. In the New Project window that appears, select the required template; most examples of
Acumatica ERP Web Service API implementation are based on the Visual C# Console Application
template, although you can use any another template.

3. Define the name of the project and solution, as shown in the figure below, and click OK.
(Although you can use any name for the project and solution, we recommend that you use a
project name that is identical to the name of the solution that includes it.)

 | Web Services API Developer Guide | 733

Figure: Creating the new project

4. Open the Project menu and select Add Service Reference.

5. In the dialog box that appears, click Advanced.

6. In the second dialog box that appears, click Add Web Reference.

7. In the third dialog box, type the path to Web Service WDSL descriptor file for the URL, as shown
in the figure below. You can either use the local version of the WSDL file or provide the URL
reference to the remote server.

 | Web Services API Developer Guide | 734

Figure: Specifying the URL of the WSDL file for the web reference

8. Click GO to continue.

9. Specify the Web reference name: apitest, for instance (see the figure above). This name will
be used as a namespace for the generated web service proxy classes.

10. Click Add Reference to complete the creation process. As a result, in the Solution Explorer
window, you can see the Web References folder with the reference to the WSDL file generated in
Step 1, as shown in the figure below.

The new Visual Studio project now consists of the Program proxy class, which can be used for
communication between the client application and Acumatica ERP Web Services. The communication
program code must be added within the body of the Program proxy class.

Because you may access multiple web services in the same Acumatica ERP instance, we recommend that
you name web references according to the original name of the WSDL file, but without capitalization:
apitest.

 | Web Services API Developer Guide | 735

Figure: The apitest web reference and the Program proxy class

Java API for XML Web Services (JAX WS) supports the SOAP protocol and may be used with Acumatica
Framework.

To generate proxy classes from the WSDL definition by using NetBeans 6.9 or later:

1. Right-click on your project, and select New > Web Service Client.

2. In the dialog box, for the URL input line, specify the path to the web service WDSL descriptor
file.

3. Enter a package name.

4. Click Finish to complete the process.

NetBeans will process the specified WSDL definition and create a proxy class. This proxy class will be
used for communication between the client application and the Acumatica ERP Web Service.

Step 3. Review and Use the Code From the Sample Project

Once you have imported the WSDL file and created the proxy class, you can start development of
your client application. The fastest way to learn how to develop a client application by using the Web
Services API is to learn and use the client application code from the sample project. The first typical
solution can be found in Exporting Warehouse Data.

To avoid possible errors, pay attention to the following points:

1. To avoid unexpected code conflicts, create each example of the client application code within the
project of the new empty solution. Otherwise, you should replace all previous code lines within the
same project before starting to test the results of each code example.

2. Before adding the client application code, add to the proxy class code one line that contains the
using command (as the figure below shows):

using ConsoleApplication.apitest;

 | Web Services API Developer Guide | 736

Here ConsoleApplication is the name of your client application and apitest is the name of the bound
web service.

3. Optional: Before you debug the client application, replace the URL of the WSDL file with the URL
that corresponds to your file name and location. (In the figure below, you can see the example of
the command line with the highlighted URL in the client application code that is to be replaced with
the URL of your WSDL file.) This step is optional because if you don't specify the URL of the WSDL
file, the system will use the URL set in the App.Config file.

4. Optional: Before debugging the client application, ensure that you have created the proper support
of the authorization process; otherwise, you may need to make changes as follows (also shown in
the figure below):

• If your installation of Acumatica ERP includes the common company, use the simplest
authorization code line:

LoginResult result = context.Login("admin", "E618");

Instead of admin, you may have another user name, but you should have enough rights to
work with Web Services API services. Replace the password in the appropriate code line (E618
by default) with the password that you had specified for the Acumatica ERP instance.

In all the topics with examples, we use the common company and the simplest authorization
code line.

• If you work with more than one company but with the common branch, use the following
modified authorization code line:

LoginResult result = context.Login("user@CompanyCD", "E618");

In the code line above, Company CD represents the required company short (CD) name.

• If you work with more than one company and the company that you need has various
branches, you should use the following modified authorization code line:

LoginResult result = context.Login("user@CompanyCD:BranchCD", "E618");

In the code line above, CompanyCD represents the required company short (CD) name,
and BranchCD is the short branch name—that is, the CD name of the branch (for instance,
MAIN, NORTH, or SOUTH) within the selected company.

 | Web Services API Developer Guide | 737

Figure: Correcting the code of the client application

Examples of the Web Service API Implementation
The examples in this section demonstrate how to use the following objects and properties of the Web
Services API:

• Screen, an intermediary object that you will use for implementing the Web Services
communication layer.

• The CookieContainer property, which preserves the session state between round trips. This
property must be enabled in all client applications.

• Content, an object that defines the schema of the current form.

You can use the following links to directly access the examples of the Web Services API implementation:

• Exporting Warehouse Data

• Exporting Stock Items

• Simulating the Behavior of Add Buttons on the Purchase Receipts Form

• Copying a Sales Order

• Adding a New Cash Transaction Document

• Adding Records to the Business Accounts and Opportunities Forms

• Importing of Data With an Image Into the Journal Transactions Form

• Exporting of Data With an Image From the Journal Transactions Form

Exporting Warehouse Data
In this example, you create, run, and test a client application that exports to a string array required
record fields from the Warehouses (IN.20.40.00) maintenance form of the Inventory module. The
system filters exported data by the fixed Warehouse ID field value.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

 | Web Services API Developer Guide | 738

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the code
below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ IN204000Content IN204000 = context.IN204000GetSchema();
+ context.IN204000Clear();
+ string[][] IN204000result = context.IN204000Export
+ (
+ new Command[]
+ {
+ IN204000.WarehouseSummary.WarehouseID,
+ IN204000.LocationTableLocationTable.LocationID,
+ new Field { FieldName = "LocationID", ObjectName =
+ IN204000.LocationTableLocationTable.LocationID.ObjectName }
+ },
+ new Filter[]
+ {
+ new Filter()
+ {
+ Field = new Field() { FieldName = IN204000.WarehouseSummary.
+ WarehouseID.FieldName, ObjectName = IN204000.
+ WarehouseSummary.WarehouseID.ObjectName },
+ Condition = FilterCondition.Equals,
+ Value = "GIT",
+ Operator = FilterOperator.And
+ }
+ },
+ 0, false, false
+);
 }
 }
 }

This code implements the following process flow:

 | Web Services API Developer Guide | 739

1. Using the Export method to export data from the form.

2. Using the Filter method to constrain the exported data by two fields of one record from the
Warehouses form.

Figure: Exploring the Warehouses form

After you prepare the code, you should build the solution. Start the Acumatica ERP application instance
with the WSDL file, navigate to Distribution > Inventory, select the Configuration submenu,
and then select the Manage > Warehouses form. Select GIT as the Warehouse ID, and note the
Location ID column values, as shown in the figure above. In Visual Studio, set appropriate breakpoints
and then press F5 to run the client application in Debug mode. Use step-by-step debugging to ensure
that the array contains exported data. (The figure below illustrates the test results.)

 | Web Services API Developer Guide | 740

Figure: Checking the results in debug mode

Exporting Stock Items
In this example, you create, run, and test a client application that exports to a string array required
record fields from the Warehouses (IN.20.25.00) maintenance form of the Inventory module. The
system filter exports data by the hidden field LastModifiedDateTime. The date and time of the last
modification of the Stock Items form must be fewer than 100 days before the current date.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add two using operators, as shown in the code
below. (The added code lines are preceded by +.)

 using System;

 | Web Services API Developer Guide | 741

 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using System.Globalization;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ context.SetLocaleName(CultureInfo.CurrentCulture.Name);
+ DateTime lastSyncDate = DateTime.UtcNow;
+ lastSyncDate = lastSyncDate.AddDays(-100);
+ IN202500Content IN202500 = context.IN202500GetSchema();
+ context.IN202500Clear();
+ string[][] IN202500data = context.IN202500Export
+ (
+ new Command[]
+ {
+ IN202500.StockItemSummary.ServiceCommands.EveryInventoryID,
+ IN202500.StockItemSummary.InventoryID,
+ IN202500.WarehouseDetails.Warehouse,
+ IN202500.WarehouseDetails.QtyOnHand,
+ new Field
+ {
+ ObjectName = IN202500.StockItemSummary.InventoryID.ObjectName,
+ FieldName = "LastModifiedDateTime"
+ }
+ },
+ new Filter []
+ {
+ new Filter
+ {
+ Field = new Field { ObjectName =
+ IN202500.StockItemSummary.InventoryID.ObjectName,
+ FieldName = "LastModifiedDateTime" },
+ Condition = FilterCondition.Greater,
+ Value = lastSyncDate.ToLongDateString()
+ }
+ },
+ 0, false, false
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Export method to export data from the form.

2. Using the Filter method to limit the exported data by the date and time of the last modification
of the Stock Items form. (The date and time of the last modification must be fewer than 100
days before the current date.)

You defined the lastSyncDate variable, which is used to limit the quantity of data being exported
depending on the current date and time.

 | Web Services API Developer Guide | 742

Figure: Checking the results in debug mode

After preparing the code, you should build the solution. Set appropriate breakpoints and then press
F5 to run the client application in Debug mode. Use step-by-step debugging to ensure that the array
contains exported data. (The figure above illustrates the test results.)

Optionally, you can start the Acumatica ERP application instance with the WSDL file and navigate to the
Distribution > Inventory > Manage > Stock Items form. Select IB00000001 as the Inventory
ID, open the Warehouse Detail tab, and note the Warehouse and Qty On Handcolumn values, as
shown in the figure below. Compare the column values with the values in the string array, displayed in
the Watch window of Visual Studio in debug mode.

If no data has been exported, increase the number of subtracted days in the lastSyncDate =
lastSyncDate.AddDays(-100); code line and repeat the data export.

 | Web Services API Developer Guide | 743

Figure: Exploring the Warehouse Details tab of the Stock Items form

Simulating the Behavior of Add Buttons on the Purchase Receipts Form
In this example, you create, run, and test a command-line client application that adds lines to the
details table of the Purchase Receipts (PO.30.20.00) form from the details table of the Purchase Orders
(PO.30.10.00)form. (Both forms are located in the Purchase Orders module.) The client application
will add lines from all purchase orders that have the same VendorCD field value. The application will
imitate a user clicking the Add PO (the AddPOOrder action is called) button on the Purchase Receipts
form and the user's next few steps.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

In the steps below, before you create the code, you will add a purchase order and a purchase receipt.
These tasks are necessary to test the result of running the client application when we know the values
of key fields and use them in the code lines.

Do the following actions:

1. Start Acumatica ERP, and navigate to the Distribution > Purchase Orders > Enter >
Purchase Orders form. Add a purchase order with the Normal type and the following values:
PORG000084 as the Order Nbr, ACITAISYST as the Vendor, and MAIN as the Location. Click
Save.

2. Add to the Document Details tab three lines with any Inventory ID, Order Qty, and Unit
Cost column values (as an example, see the figure below). Add 0 as the Subitem value (this

 | Web Services API Developer Guide | 744

column cannot be empty). Add the Control Total value (if this field appears in your system)
so that it equals the Order Total value, and fill in the other mandatory fields (designated with
asterisks); otherwise, the purchase order will not be saved. Click Save.

3. Clear the Hold check box and click Save.

Figure: Creating a new purchase order

4. Navigate to the Distribution > Purchase Orders > Enter > Purchase Receipts form, and
add a receipt with the Receipt type and the following values: PORE000079 as the Receipt Nbr.,
ACITAISYST as the Vendor, and MAIN as the Location. Click Save.

5. Click Add PO on the table toolbar of the Document Details tab.

6. In the table of the Add Purchase Order dialog box that appears, notice one line with the field
values of the purchase order added before. (In other cases, more than one line or no lines may
be displayed.) Select the unlabeled check box and click Add & Close, as shown in the figure
below. Notice that the Add Purchase Order window is closed, while on the Document Details
tab, the three lines have been added. (You can see this in the figure in the end of this article.)
You will implement this scenario in the C# client application code. Click Cancel to not save the
added lines.

If you implement within one client application another scenario, based on the Add PO Line button,
you should obtain the same result. You can prepare the code for the second scenario independently.
This code is shown at the end of this topic; see code of the second scenario.

 | Web Services API Developer Guide | 745

Figure: Adding new lines to the details table of the purchase receipt

7. Add code lines to the Program proxy class code but previously add the using operator, as shown
in the code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ PO302000Content PO302000 = context.PO302000GetSchema();
+ context.PO302000Clear();
+ PO302000.Actions.AddPOOrder.Commit = true;
+ PO302000.Actions.AddPOOrder2.Commit = true;
+ PO302000.AddPurchaseOrder.Selected.LinkedCommand = null;
+ PO302000.DocumentDetails.InventoryID.LinkedCommand = null;

+ PO302000Content[] PO302000result = context.PO302000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "PORE000079", LinkedCommand =
+
 PO302000.DocumentSummary.ReceiptNbr },
+ new Value { Value = "OK", LinkedCommand =
+ PO302000.AddPurchaseOrder.ServiceCommands.DialogAnswer, Commit =
 true },
+ //uncomment the next two lines if you want to use multicurrency
 orders
+ //new Value { Value = "True", LinkedCommand =

 | Web Services API Developer Guide | 746

+ // PO302000.AddPurchaseOrderPOSelection.AnyCurrency, Commit =
 true },
+ PO302000.Actions.AddPOOrder,
+ new Key { Value = "='Normal'", FieldName =
+
 PO302000.AddPurchaseOrder.OrderType.FieldName,
+ ObjectName =
 PO302000.AddPurchaseOrder.OrderType.ObjectName },
+ new Key { Value = "='PORG000084'", FieldName =
+
 PO302000.AddPurchaseOrder.OrderNbr.FieldName,
+ ObjectName =
 PO302000.AddPurchaseOrder.OrderNbr.ObjectName },
+ new Value { Value = "True", LinkedCommand =
+ PO302000.AddPurchaseOrder.Selected, Commit =
 true },
+ PO302000.Actions.AddPOOrder2
+ }
+);
 }
 }
 }

If you created a purchase order with another Order Nbr. value or a receipt with another Receipt
Nbr. value, use the real document ID value.

8. Build the solution, open the application, and press F5 to run the client application in Debug
mode.

9. Again open Acumatica ERP, refresh the form, and ensure that the three lines have been added
as a result of running the client application. (The figure below illustrates the test results.)

Figure: Three added lines as a result of running the client application code

This code implements the following process flow:

1. Activating the AddPOOrder and AddPOOrder2 actions.

 | Web Services API Developer Guide | 747

2. Invoking the AddPOOrder and AddPOOrder2 actions to imitate adding lines to the details table
by using the scenario that had been implemented for the Add PO button in Acumatica ERP:
selecting all the records in the table of the Add Purchase Order dialog box (after invoking the
Add PO Line button, you can also specify through the code the required purchase order number),
and clicking the Add & Close button.

The code for the second scenario follows.

apitest.Screen context = new apitest.Screen();
 context.CookieContainer = new System.Net.CookieContainer();
 context.AllowAutoRedirect = true;
 context.EnableDecompression = true;
 context.Timeout = 1000000;
 context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
 LoginResult result = context.Login("admin", "E618");

 PO302000.Actions.AddPOOrderLine.Commit = true;
 PO302000.Actions.AddPOOrderLine2.Commit = true;
 PO302000.AddPurchaseOrderLine.Selected.LinkedCommand = null;
 PO302000.DocumentDetails_.InventoryID.LinkedCommand = null;
 PO302000result = context.PO302000Submit(
 new Command[]
 {
 new Value { Value = "PORE000079", LinkedCommand =
 PO302000.DocumentSummary.ReceiptNbr},
 new Value { Value = "OK", LinkedCommand =
 PO302000.AddPurchaseOrderLine.ServiceCommands.DialogAnswer,
 Commit = true },
 PO302000.Actions.AddPOOrderLine,
 new Key { Value = "='PORG000084'", FieldName =
 PO302000.AddPurchaseOrderLine.OrderNbr.FieldName, ObjectName =
 PO302000.AddPurchaseOrderLine.OrderNbr.ObjectName },
 new Key { Value = "='CPU00004'", FieldName =
 PO302000.AddPurchaseOrderLine.InventoryID.FieldName, ObjectName =
 PO302000.AddPurchaseOrderLine.InventoryID.ObjectName },
 new Value{ Value = "True", LinkedCommand =
 PO302000.AddPurchaseOrderLine.Selected, Commit = true },
 PO302000.Actions.AddPOOrderLine2
 new Key{ Value = "='CPU00004'", FieldName =
 PO302000.DocumentDetails_.InventoryID.FieldName, ObjectName =
 PO302000.DocumentDetails_.InventoryID.ObjectName},
 new Value{ Value = "1.00", LinkedCommand =
 PO302000.DocumentDetails_.ReceiptQty, Commit = true},
 // the next part of code is needed if you use Serial items
 PO302000.BinLotSerialNumbers.ServiceCommands.NewRow,
 new Value { Value = "R01", LinkedCommand =
 PO302000.BinLotSerialNumbers.Location },
 new Value { Value = "1.00", LinkedCommand =
 PO302000.BinLotSerialNumbers.Quantity, Commit = true },
 new Value { Value = "25.00", LinkedCommand =
 PO302000.DocumentDetails_.UnitCost, Commit = true },
 new Key { Value = "='CPU00004'", FieldName =
 PO302000.DocumentDetails_.InventoryID.FieldName, ObjectName =
 PO302000.DocumentDetails_.InventoryID.ObjectName },
 new Value { Value = "0.00", LinkedCommand =
 PO302000.DocumentDetails_.ReceiptQty, Commit = true }
 PO302000.Actions.Save
 }
);

If you created a purchase order with another Order Nbr. value or a receipt with another Receipt Nbr.
value, use the real document ID value.

 | Web Services API Developer Guide | 748

Copying a Sales Order
In this example, you create, run, and test a simple command-line client application that copies key field
and column values from an existing Sales Orders (SO.30.10.00) form of the Sales Orders module and
pastes the values into an added sales order.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also use your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

In the steps below, before you create the code example, you will ensure that a particular sales order
with a specific Order Nbr. value exists—the order we plan to copy—and check some of its values. This
step is necessary so you can later make sure the copying operation worked appropriately.

Do the following actions:

1. Start Acumatica ERP, and navigate to Distribution > Sales Orders > Enter > Sales Orders.
In the Order Type field, select SO, and in the Order Nbr. field, select (by using the lookup
window) 000097. Note the values of the Inventory ID column in the details table on the
Document Details tab (for the three rows) and the Order Total field in the main area of the
form. (See the figure below).

 | Web Services API Developer Guide | 749

Figure: The existing sales order

If you select Copy Order on the Actions menu, you can create a new order by using the internal
Acumatica ERP Copy Order operation. This example imitates the copying operation by using the
external client application code.

2. Add the code lines to the Program proxy class code and add the using operator, as shown in the
code below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ SO301000Content SO301000 = context.SO301000GetSchema();
+ context.SO301000Clear();
+ SO301000.Actions.CopyOrder.Commit = true;
+ SO301000Content[] SO301000Content = context.SO301000Submit
+ (
+ new Command[]

 | Web Services API Developer Guide | 750

+ {
+ new Value { Value = "SO", LinkedCommand =
+
 SO301000.OrderSummary.OrderType },
+ new Value { Value = "000097", LinkedCommand =
+
 SO301000.OrderSummary.OrderNbr },
+ new Value { Value = "OK", LinkedCommand =
+
 SO301000.CopyTo.ServiceCommands.DialogAnswer },
+ new Value { Value = "QT", LinkedCommand =
+
 SO301000.CopyTo.OrderType},
+ SO301000.Actions.CopyOrder,
+ SO301000.Actions.Save,
+ SO301000.OrderSummary.OrderNbr
+ }
+);
 }
 }
 }

3. Build the solution, open the application, and press F5 to run the client application in Debug
mode.

4. Again open Acumatica ERP and navigate to the Sales Order form. Select QT in the Order Type
field, and select the new sales order (with the highest Order Nbr. value).Ensure that same
three lines that existed in sales order 000097 have been added to the details table after you ran
the client application, and make sure the Order Total field has the same value that you noted in
sales order 000097. (The figure below illustrates the test results.)

Figure: The added sales order as a result of running the client application code

As the introduction mentions, this code represents the simple example of a client application that is
used for inserting a new sales order by copying many of its settings from an existing one. This code
implements the following process flow:

1. Using the Submit method to provide the copying operation.

 | Web Services API Developer Guide | 751

2. Invoking the CopyOrder action to imitate the selection of the Copy Order option on the Actions
menu of the form.

3. Using the SO301000.OrderSummary.OrderNbr command to invoke the document autonumbering
method implemented in Acumatica ERP.

Adding a New Cash Transaction Document
In this example, you create, run, and test a simple command-line client application that adds a new
cash transaction document to the Transactions (CA.30.40.00) form of the Cash Management module.

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the code
below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ try
+ {
+ CA304000Content CA304000 = context.CA304000GetSchema();
+ context.CA304000Clear();
+ CA304000Content[] CA304000result = context.CA304000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "100000", LinkedCommand =
+ CA304000.TransactionSummary.CashAccount },
+ new Value { Value = "PETTYEXP", LinkedCommand =
+ CA304000.TransactionSummary.EntryType },
+ new Value { Value = "111", LinkedCommand =

 | Web Services API Developer Guide | 752

+ CA304000.TransactionSummary.DocumentRef },
+ new Value { Value = "true", LinkedCommand =
+ CA304000.TransactionSummary.Approved },
+ CA304000.TransactionDetails.ServiceCommands.NewRow,
+ new Value { Value = "408000", LinkedCommand =
+ CA304000.TransactionDetails.OffsetAccount },
+ new Value { Value = "00-00-00-00-000", LinkedCommand =
+ CA304000.TransactionDetails.OffsetSubaccount },
+ new Value { Value = "1", LinkedCommand =
+ CA304000.TransactionDetails.Quantity },
+ new Value { Value = "100", LinkedCommand =
+ CA304000.TransactionDetails.Price, Commit = true },
+ new Value { Value = "100", LinkedCommand =
+ CA304000.TransactionSummary.ControlTotal, Commit = true },
+ CA304000.Actions.Save, CA304000.TransactionSummary.ReferenceNbr
+ }
+);
+ }
+ catch (Exception ex)
+ {
+ Console.WriteLine(ex.Message);
+ }
 }
 }
 }

As the introduction mentions, this code represents the simple example of a client application that is
used for inserting a new cash transaction document into the Transactions form of the Cash Management
module. This code implements the following process flow:

1. Using the Submit method to add data to the form.

2. Invoking the Save action in the form.

3. Using the CA304000.TransactionSummary.ReferenceNbr command to invoke the document
autonumbering method implemented in Acumatica ERP.

After preparing the code, you can build the solution and then press F5 to run the client application
in Debug mode. Start the Acumatica ERP application instance with the WSDL file, and navigate to
Finance > Cash Management > Enter > Transactions to open the Transactions form. In the
Reference Nbr. field, select the added transaction item (which has the highest reference number).
Ensure that the item has been added with the needed values. (See the figure below.)

 | Web Services API Developer Guide | 753

Figure: Testing the result of running the client application

Adding Records to the Business Accounts and Opportunities Forms
In this example, you create, run, and test a simple command-line client application that adds new
records to the Business Accounts (CR.30.30.00) and Opportunities (CR.30.40.00) forms of the
Customer Management module.

As with the previous example, we make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the code
below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {

 | Web Services API Developer Guide | 754

+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ CR303000Content CR303000 = context.CR303000GetSchema();
+ context.CR303000Clear();
+ CR303000Content[] CR303000Content = context.CR303000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "TEST123", LinkedCommand =
+ CR303000.AccountSummary.BusinessAccount },
+ new Value { Value = "TEST123", LinkedCommand =
+ CR303000.AccountSummary.BusinessAccountName },
+ new Value { Value = "US", LinkedCommand =
+ CR303000.DetailsMainAddress.Country },
+ new Value { Value = "Industry", LinkedCommand =
 CR303000.Attributes.Attribute },
+ new Value { Value = "Banking", LinkedCommand =
+ CR303000.Attributes.Value, Commit = true },
+ CR303000.Actions.Save
+ }
+);

+ CR304000Content CR304000 = context.CR304000GetSchema();
+ context.CR304000Clear();
+ CR304000Content[] CR304000Content = context.CR304000Submit
+ (
+ new Command[]
+ {
+ new Value { Value = "TEST123", LinkedCommand =
+ CR304000.OpportunitySummary.BusinessAccount },
+ new Value { Value = "MAIN", LinkedCommand =
+ CR304000.OpportunitySummary.NoteText },
+ new Value { Value = "INSIDE", LinkedCommand =
+ CR304000.Details.ClassID },
+ new Value { Value = "DESCRIPTION", LinkedCommand =
+ CR304000.OpportunitySummary.Subject },
+ CR304000.Actions.Save
+ }
+);
 }
 }
 }

As the introduction mentions, this code represents the simple example of a client application that adds
new records to the Business Accounts and Opportunities forms of the Customer Management module.
This code implements the following process flow:

1. Using the Submit method to add data to the forms.

2. Invoking the Save action in the form.

After preparing the code, you can build the solution and then press F5 to run the client application in
Debug mode. Perform the following actions:

• Start the Acumatica ERP application instance with the WSDL file. Navigate to Organization >
Cash Management > Manage > Business Account to open the Business Account form, and
in the Business Account field, find the added record by using a quick search and select it. (The
new record has the number TEST123.) Ensure that the record has been added with the needed
values. (See the figure below.)

 | Web Services API Developer Guide | 755

Figure: Testing the first result of running client application

• Navigate to Organization > Cash Management > Manage > Opportunities to open the
Opportunities form, and in the Opportunity ID field, select the added record, which has the
highest reference number. Ensure that the record has been added with the needed values. (See
the figure below.)

Figure: Testing the second result of running the client application

Importing of Data With an Image Into the Journal Transactions Form
In this example, you create, run, and test a client application that enables the import data with an
image into the Journal Transactions (GL.30.10.00) form of the General Ledger module.

 | Web Services API Developer Guide | 756

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the code
below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ byte[] filedata;
+ using (System.IO.FileStream file =
+ System.IO.File.Open(@"D:\01.jpg", System.IO.FileMode.Open))
+ {
+ filedata = new byte[file.Length];
+ file.Read(filedata, 0, filedata.Length);
+ }
+ GL301000Content GL301000 = context.GL301000GetSchema();
+ context.GL301000Clear();
+ GL301000ImportResult[] GL301000ImportResult = context.GL301000Import
+ (
+ new Command[]
+ {
+ new Value
+ {
+ Value = "GL", LinkedCommand = GL301000.BatchSummary.Module },
+ GL301000.BatchSummary.BatchNumber,
+ GL301000.BatchSummary.ControlTotal,
+ new Value
+ {
+ FieldName = "01.jpg", LinkedCommand =
- GL301000.BatchSummary.ServiceCommands.Attachment
+ }
+ GL301000.TransactionDetails.Account,
+ GL301000.TransactionDetails.Subaccount,

 | Web Services API Developer Guide | 757

+ GL301000.TransactionDetails.RefNumber,
+ GL301000.TransactionDetails.CreditAmount,
+ GL301000.TransactionDetails.DebitAmount,
+ GL301000.Actions.Save
+ },
+ null,
+ new string [][]
+ { new string[] { "00003849", "10", Convert.ToBase64String(filedata),
+ "100000", "US-00-00-00-000", "REF", "10,0", "0,0" },
+ new string[] { "00003849", "10", Convert.ToBase64String(filedata),
+ "101000", "US-00-00-00-000", "REF", "0,0", "10,0" },
+ },
+ false, false, true);
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Import method to import data into the form.

2. Using the standard .Net classes (FileStream, File, and FileMode) to open and read the byte
content of the external file.

3. Using the Attachment service command to attach the external file to the form.

Figure: Exploring the Journal Transactions form

Test the results of data importing as follows:

• After preparing the code, build the solution and then press F5 to run the application in debug
mode. Start the Acumatica ERP application instance with the WSDL file, and navigate to the
Finance > General Ledger > Enter > Journal Transactions form. In the Batch Number
lookup field, find and select the largest batch number, and note the transaction values of the two
transactions in the details table (these values must equal those used in the code lines), as shown
in the figure above.

 | Web Services API Developer Guide | 758

• To see the attached file, click Attach file on the title bar and select the attached file name. (The
figure below illustrates the process of opening the attached file.)

Figure: Opening the attached file

Exporting of Data With an Image From the Journal Transactions Form
In this example, you create, run, and test a client application that exports data with an image from
the Journal Transactions (GL.30.10.00) form of the General Ledger module to a string array and limits
exported data with filter conditions.

Before performing the actions of this example, import data with an image, as described in the previous
example (see Importing of Data With an Image Into the Journal Transactions Form).

We make the following assumptions in this example:

1. You have installed the local client application instance (named WEBAPIVirtual) with the standard
ERP demo application database. If you will use another application instance name, you should
correct appropriate code lines in the code example shown in the next section.

2. You have created the Web Services WSDL definition file. (See Quick Start, Step 1.)

3. You have imported the Web Services WSDL definition file and generated the proxy class in the
ConsoleApplication.apitest namespace. (See Quick Start, Step 2.) If you will use another WDSL
file name, location, or namespace, you should correct appropriate code lines in the code example
shown in the next section. You should also add your own password if it is different from the one
used in the authorization code line in the code example. (See Quick Start, Step 3.)

4. You have primary information about the objects and properties of the Web Services API that
the code lines of the example use. See the brief definitions in Examples of the Web Service API
Implementation.

Create, Correct, and Run the Code Example

Add the code lines to the Program proxy class code and add the using operator, as shown in the code
below. (The added code lines are preceded by +.)

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;

 | Web Services API Developer Guide | 759

+using ConsoleApplication.apitest;

 namespace ConsoleApplication
 {
 class Program
 {
 static void Main(string[] args)
 {
+ apitest.Screen context = new apitest.Screen();
+ context.CookieContainer = new System.Net.CookieContainer();
+ context.AllowAutoRedirect = true;
+ context.EnableDecompression = true;
+ context.Timeout = 1000000;
+ context.Url = "http://localhost/WebAPIVirtual/Soap/APITEST.asmx";
+ LoginResult result = context.Login("admin", "E618");

+ GL301000Content GL301000 = context.GL301000GetSchema();
+ context.GL301000Clear();
+ string[][] export = context.GL301000Export
+ (
+ new Command[]
+ {
+ new Value
+ {
+ Value = "GL", LinkedCommand = GL301000.BatchSummary.Module },
+ GL301000.BatchSummary.ServiceCommands.EveryBatchNumber,
+ new Field
+ {
+ ObjectName = GL301000.BatchSummary.BatchNumber.ObjectName,
- FieldName = "LastModifiedDateTime", Value = "TS"
+ }
+ GL301000.BatchSummary.BatchNumber,
+ GL301000.BatchSummary.ControlTotal,
+ new Value {
+ FieldName = "01.jpg", LinkedCommand =
+ GL301000.BatchSummary.ServiceCommands.Attachment
+ },
+ GL301000.TransactionDetails.Account,
+ GL301000.TransactionDetails.Subaccount,
+ GL301000.TransactionDetails.RefNumber,
+ GL301000.Transactionetails.CreditAmount,
+ GL301000.TransactionDetails.DebitAmount
+ },
+ new Filter[]
+ { new Filter { Field = GL301000.BatchSummary.TransactionDate,
+ Condition = FilterCondition.GreaterOrEqual, Value = DateTime.Today }
+ },
+ 0, true, true);
+);
 }
 }
 }

This code implements the following process flow:

1. Using the Export method to export data from the form to the string array.

2. Using the Filter object with the FilterCondition property to filter exported data to the string
array. (This exports only transactions from the current day.)

3. Using the Attachment service command to identify and download the attached file from the
form.

Test the results of data exporting as follows:

• After preparing the code, build the solution and then press F5 to run the application in debug
mode. Start the Acumatica ERP application instance with the WSDL file, navigate to the
Finance > General Ledger > Enter > Journal Transactions form. In the Batch Number
lookup field, find and select the largest batch number, change the Transaction Date field value

 | Web Services API Developer Guide | 760

to the current date value (if necessary), and note the transaction values of the two transactions in
the details table (which must equal the values that will be obtained in the watch window of Visual
Studio), as shown in the figure above. Compare the transaction values with the debugging results,
as shown in the figure below.

• In Visual Studio, set appropriate breakpoints and then press F5 to run the client application in
Debug mode. Use step-by-step debugging to ensure that the array contains exported data with
the attached image file code. (The figure below illustrates the test results.)

Figure: Checking the results in debug mode

	Contents
	Copyright
	Acumatica Framework Overview
	Introduction
	Acumatica Framework and Modern Web Development
	Acumatica Framework and Microsoft Technology
	Acumatica Framework Components
	Runtime Tools
	Development Tools
	Conclusion

	Components and Tools
	Design Guidelines
	Database Design Guidelines
	Application Design Guidelines

	Application Programming Overview
	Querying the Data
	Entity Model Declaration
	Handling Entity Data
	Implementing Business Logic

	Programming Tasks
	Localizing Applications
	Generating a Data Access Class
	Working With Images
	Adding Widgets to Dashboard
	Data Representation
	Filtering Data on a Webpage
	Creating Lookup Fields
	Adding Lookup Fields Onto a Form and Onto a Grid

	Calculations
	Calculating Values of UI Elements

	Data Input
	Managing Visibility of DAC Fields and UI Elements
	Validating UI Element Values
	Using Input Mask and Display Mask

	Interaction With the Server
	Confifuring Webpage UI Elements and Behavior of BLCs

	Creating an Acumatica ERP Add-on Project
	Implementing a Credit Card Processing Plug-in
	Using Substitute Keys
	Calling a New PXSmartPanel

	Debugging Applications
	API Reference
	Event Model
	Event Model Overview
	Scenarios
	Inserting a Data Record
	Updating a Data Record
	Deleting a Data Record
	Displaying a Data Record
	Saving Changes to the Database

	Events
	FieldDefaulting Event
	PXFieldDefaultingEventArgs Class

	FieldVerifying Event
	PXFieldVerifyingEventArgs Class

	FieldUpdating Event
	PXFieldUpdatingEventArgs Class

	FieldUpdated Event
	PXFieldUpdatedEventArgs Class

	FieldSelecting Event
	PXFieldSelectingEventArgs Class
	PXFieldState Class
	PXStringState Class
	PXSegmentedState Class
	PXSegment Class

	PXDoubleState Class
	PXFloatState Class
	PXDecimalState Class
	PXDateState Class
	PXIntState Class
	PXGuidState Class
	PXLongState Class

	RowSelected Event
	PXRowSelectedEventArgs Class

	RowInserting Event
	PXRowInsertingEventArgs Class

	RowInserted Event
	PXRowInsertedEventArgs Class

	RowUpdating Event
	PXRowUpdatingEventArgs Class

	RowUpdated Event
	PXRowUpdatedEventArgs Class

	RowDeleting Event
	PXRowDeletingEventArgs Class

	RowDeleted Event
	PXRowDeletedEventArgs Class

	CommandPreparing Event
	PXCommandPreparingEventArgs Class

	RowSelecting Event
	PXRowSelectingEventArgs Class
	PXDataRecord Class

	RowPersisting Event
	PXRowPersistingEventArgs Class

	RowPersisted Event
	PXRowPersistedEventArgs Class
	PXTranStatus Enumeration

	ExceptionHandling Event
	PXExceptionHandlingEventArgs Class

	CacheAttached Event

	BQL
	Constructing Statements
	PXSelect, Select, and Search Classes
	PXSelect Classes
	OrderBy Clause

	Filtering
	Where Clauses
	Comparisons
	Logical Operators
	Constants

	Querying Multiple Tables
	Join Clauses
	On Clause

	Grouping and Aggregating
	Aggregate and GroupBy Clauses
	Aggregation Functions

	Using Parameters
	Parameters

	Using Functions
	Arithmetic Operations
	Common Functions
	Switch Clause

	Executing Statements
	Appendix
	Search Classes
	Select Classes

	Core Classes
	PXCache<Table> Class
	PXCache<Table> Methods

	PXSelectBase<Table> Class
	PXSelectBase<Table> Methods
	WebDialogResult Enumeration
	MessageButtons Enumeration
	MessageIcon Enumeration

	PXSelect<Table> Class
	PXSelect<Table> Constructors
	PXSelect<Table> Methods

	PXProcessing<Table> Class
	PXProcessing<Table> Constructors
	PXProcessing<Table> Methods

	PXGraph Class
	PXGraph Methods
	PXClearOption Enumeration

	PXGraph Nested Classes
	PXGraph<TGraph> Class
	PXGraph<TGraph, TPrimary> Class

	PXView Class
	PXView Constructors
	PXView Methods

	Attributes
	Bound Field Data Types
	PXDBField Attribute
	PXDBBool Attribute
	PXDBByte Attribute
	PXDBDate Attribute
	PXDBTime Attribute
	PXDBDateAndTime Attribute
	PXDBDateAndTime Attribute Constructors
	PXDBDateAndTime Attribute Methods

	PXDBDecimal Attribute
	PXDBDecimal Attribute Constructors
	PXDBDecimal Attribute Methods

	PXDBDecimalString Attribute
	PXDBDecimalString Attribute Constructors

	PXDBDouble Attribute
	PXDBDouble Attribute Constructors
	PXDBDouble Attribute Methods

	PXDBFloat Attribute
	PXDBFloat Attribute Constructors
	PXDBFloat Attribute Methods

	PXDBGuid Attribute
	PXDBGuid Attribute Constructors

	PXDBIdentity Attribute
	PXDBLongIdentity Attribute
	PXDBImage Attribute
	PXDBShort Attribute
	PXDBInt Attribute
	PXDBLong Attribute
	PXDBString Attribute
	PXDBString Attribute Constructors
	PXDBString Attribute Methods

	PXDBEmail Attribute
	PXDBEmail Attribute Methods

	PXDBLocalString Attribute
	PXDBLocalString Attribute Constructors

	PXDBCryptString Attribute
	PXDBCryptString Attribute Constructors
	PXDBCryptString Attribute Methods

	PXRSACryptString Attribute
	PXRSACryptString Attribute Constructors
	PXRSACryptString Attribute Methods

	PXDB3DesCryphString Attribute
	PXDB3DesCryphString Attribute Constructors
	PXDB3DesCryphString Attribute Methods

	PXDBText Attribute
	PXDBTimeSpan Attribute
	PXDBTimeSpan Attribute Methods

	PXDBTimeSpanLong Attribute
	TimeSpanFormatType Enumeration

	PXDBTimestamp Attribute
	PXDBBinary Attribute
	PXDBBinary Attribute Constructors

	PXDBVariant Attribute
	PXDBVariant Attribute Constructors
	PXDBVariant Attribute Methods

	Unbound Field Data Types
	PXBool Attribute
	PXByte Attribute
	PXDate Attribute
	PXDateAndTime Attribute
	PXDateAndTime Attribute Methods

	PXDecimal Attribute
	PXDecimal Attribute Constructors
	PXDecimal Attribute Methods

	PXDouble Attribute
	PXDouble Attribute Constructors
	PXDouble Attribute Methods

	PXFloat Attribute
	PXFloat Attribute Constructors
	PXFloat Attribute Methods

	PXGuid Attribute
	PXImage Attribute
	PXInt Attribute
	PXLong Attribute
	PXShort Attribute
	PXString Attribute
	PXString Attribute Constructors
	PXString Attribute Methods

	PXTimeSpan Attribute
	PXTimeSpanLong Attribute
	PXVariant Attribute
	PXVariant Attribute Methods

	UI Field Configuration
	PXUIField Attribute
	PXUIField Attribute Methods
	PXUIVisibility Enumeration
	PXErrorLevel Enumeration
	PXCacheRights Enumeration

	Default Values
	PXDefault Attribute
	PXDefault Attribute Constructors
	PXDefault Attribute Methods
	PXPersistingCheck Enumeration

	PXDBDefault Attribute
	PXDBDefault Attribute Methods

	PXUnboundDefault Attribute
	PXUnboundDefault Attribute Constructors

	PXDefaultValidate Attribute

	Complex Input Controls
	PXStringList Attribute
	PXStringList Attribute Constructors
	PXStringList Attribute Methods

	PXDecimalList Attribute
	PXImagesList Attribute
	PXImagesList Attribute Constructors

	PXIntList Attribute
	PXIntList Attribute Constructors
	PXIntList Attribute Methods

	PXDBIntList Attribute
	PXDBStringList Attribute
	PXSelector Attribute
	PXSelector Attribute Constructors
	PXSelector Attribute Methods

	PXCustomSelector Attribute
	PXCustomSelector Attribute Constructors

	PXDimension Attribute
	PXDimensionSelector Attribute
	PXDimensionSelector Attribute Constructors
	PXDimensionSelector Attribute Methods

	PXDimensionWildcard Attribute
	PXDimensionWildcard Attribute Constructors

	Referential Integrity and Calculations
	PXParent Attribute
	PXParent Attribute Methods

	PXFormula Attribute
	PXFormula Attribute Constructors
	PXFormula Attribute Methods
	Formulas
	Functions Used in Formulas

	PXUnboundFormula Attribute
	PXDBChildIdentity Attribute
	PXLineNbr Attribute
	PXLineNbr Attribute Methods

	Adhoc SQL for Fields
	PXDBCalced Attribute
	PXDBScalar Attribute
	PXDBUserPassword Attribute

	Audit Fields
	PXDBCreatedByID Attribute
	PXDBCreatedByScreenID Attribute
	PXDBCreatedDateTime Attribute
	PXDBCreatedDateTimeUtc Attribute
	PXDBLastModifiedByID Attribute
	PXDBLastModifiedByScreenID Attribute
	PXDBLastModifiedDateTime Attribute
	PXDBLastModifiedDateTimeUtc Attribute
	PXDBLastChangeDateTime Attribute

	Data Projection
	PXProjection Attribute
	PXProjection Attribute Constructors

	PXExtraKey Attribute

	Access Control
	PXDBGroupMask Attribute
	PXDBGroupMask Attribute Constructors

	Notes
	PXNote Attribute
	PXNote Attribute Constructors
	PXNote Attribute Methods

	Report Optimization
	PXDependsOnFields Attribute

	Attributes on DACs
	PXPrimaryGraph Attribute
	PXPrimaryGraph Attribute Constructors
	PXPrimaryGraph Attribute Methods

	PXCacheName Attribute
	PXTable Attribute
	PXTable Attribute Constructors

	PXAccumulator Attribute
	PXAccumulator Attribute Constructors
	PXDataFieldAssign.AssignBehavior Enumeration

	PXHidden Attribute

	Attributes on Actions
	PXButton Attribute
	PXSpecialButtonType Enumeration
	PXConfirmationType Enumeration

	PXSaveButton Attribute
	PXSaveCloseButton Attribute
	PXInsertButton Attribute
	PXCancelButton Attribute
	PXCancelCloseButton Attribute
	PXDeleteButton Attribute
	PXFirstButton Attribute
	PXPreviousButton Attribute
	PXNextButton Attribute
	PXLastButton Attribute
	PXSendMailButton Attribute
	PXReplyMailButton Attribute
	PXForwardMailButton Attribute
	PXTemplateMailButton Attribute
	PXLookupButton Attribute
	PXProcessButton Attribute

	Attributes on Data Views
	PXFilterable Attribute
	PXViewName Attribute
	PXImport Attribute
	PXImport Attribute Constructors
	PXImport Attribute Methods

	PXPreview Attribute
	PXPreview Attribute Constructors

	PXEmailLoadTemplate Attribute

	Miscellaneous
	PXDisableCloneAttributes Attribute
	PXDynamicAggregate Attribute
	PXDynamicMask Attribute
	CloseBrackets Attribute
	DashboardType Attribute
	DashboardVisible Attribute
	DashboardVisible Attribute Constructors

	IncomingMailProtocols Attribute
	OpenBrackets Attribute
	OperationList Attribute
	PXAggregate Attribute
	PXAttributeFamily Attribute
	PXAttributeFamily Attribute Constructors
	PXAttributeFamily Attribute Methods

	PXAutomationMenu Attribute
	PXAutoSave Attribute
	PXBreakInheritance Attribute
	PXCheckUnique Attribute
	PXCompositeKey Attribute
	PXCopyPasteHiddenFields Attribute
	PXCopyPasteHiddenFields Attribute Methods

	PXCopyPasteHiddenView Attribute
	PXCopyPasteHiddenView Attribute Methods

	PXCultureSelector Attribute
	PXCustomization Attribute
	PXCustomStringList Attribute
	PXDACDescription Attribute
	PXDBDataLength Attribute
	PXDBDataLength Attribute Constructors

	RowCondition Attribute
	RowNbr Attribute
	SSlRequest Attribute
	TypeDelete Attribute
	PXEMailAccountIDSelector Attribute
	PXEMailAccountIDSelector Attribute Constructors
	PXEMailAccountIDSelector Attribute Methods

	PXEMailSource Attribute
	PXEMailSource Attribute Constructors

	PXEntityName Attribute
	PXEnumDescription Attribute
	PXEnumDescription Attribute Methods

	PXExtension Attribute
	PXFeature Attribute
	PXFontList Attribute
	PXFontSizeList Attribute
	PXFontSizeStrList Attribute
	PXLineNbrMarker Attribute
	PXName Attribute
	PXNotCleanable Attribute
	PXNoteText Attribute
	PXNotPersistable Attribute
	PXNoUpdate Attribute
	PXNubmerSeparatorListAttribure Attribute
	PXOffline Attribute
	PXOverride Attribute
	PXPhoneValidation Attribute
	PXPhoneValidation Attribute Methods

	PXRefNote Attribute
	PXRefNoteSelector Attribute
	PXRefNoteSelector Attribute Methods

	PXRateSync Attribute
	PXRestrictor Attribute
	PXShortCut Attribute
	PXShortCut Attribute Constructors

	PXSplitRow Attribute
	PXStandartDateTimeFormatSelector Attribute
	PXSubstitute Attribute
	PXSuppressEventValidation Attribute
	PXSurrogate Attribute
	PXTableName Attribute
	PXTimeZone Attribute
	PXUnboundKey Attribute
	PXVirtual Attribute
	PXVirtualDAC Attribute
	PXVirtualSelector Attribute
	PXZipValidation Attribute
	PXZipValidation Attribute Constructors
	PXZipValidation Attribute Methods

	ReportView Attribute

	Alphabetical Index

	Common Types
	PXEntryStatus Enumeration
	PXErrorHandling Enumeration
	PXDbType Enumeration
	PXDBOperation Enumeration

	Report Designer
	Acumatica Report Designer Report Designer User Interface
	Creating and Modifying the Reports
	Selecting Data for the Report
	Loading the Database Schema
	Building the Database Request

	Composing the Report Layout
	Adding and Removing Report Sections
	Defining the Appearance of a Report Section
	Defining the Behavior Settings of a Report Section
	Adding and Removing Visual Elements in the Report

	Data Grouping and Sorting
	Defining the Data Groups and Grouping and Sorting Rules for a Report
	Defining Parameters for a Report
	Using Filters

	Using Expressions
	Using the Expression Editor
	Using Globals, Parameters, and Local Variables
	Using Operators in Expressions
	Using Functions in Expressions

	Creating the Report Content
	Adding a Text Box to the Report Section
	Adding a Picture Box to the Report Section
	Adding a Panel to the Report Section
	Adding a Line to the Report Section
	Adding Graphics to a Report
	Adding a Subreport to the Report

	Using Variables
	Using the External Parameter Collection Editor
	Saving and Publishing the Reports
	Recommendations
	Sample Report

	Website Management
	Configuring the Site Map
	Registering the Page as a New Webpage
	Granting Access Rights to a Registered Webpage
	Managing the Help Wiki

	Web Services API Developer Guide
	Quick Start
	Examples of the Web Service API Implementation
	Exporting Warehouse Data
	Exporting Stock Items
	Simulating the Behavior of Add Buttons on the Purchase Receipts Form
	Copying a Sales Order
	Adding a New Cash Transaction Document
	Adding Records to the Business Accounts and Opportunities Forms
	Importing of Data With an Image Into the Journal Transactions Form
	Exporting of Data With an Image From the Journal Transactions Form

